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Nucleotide excision repair (NER) is a highly conserved mechanism to
remove helix-distorting DNA lesions. A major substrate for NER is DNA
damage caused by environmental genotoxins, most notably ultraviolet
radiation. Xeroderma pigmentosum, Cockayne syndrome and trichothiody-
strophy are three human disorders caused by inherited defects in NER. The
symptoms and severity of these diseases vary dramatically, ranging from
profound developmental delay to cancer predisposition and accelerated
ageing. All three syndromes include developmental abnormalities, indicat-
ing an important role for optimal transcription and for NER in protecting
against spontaneous DNA damage during embryonic development. Here,
we review the current knowledge on genes that function in NER that also
affect embryonic development, in particular the development of a fully
functional nervous system.

1. Human syndromes and NER deficiencies

The genome of all living beings exists in a dynamic equilibrium between
ongoing DNA damage and reversal of the damage by DNA repair pathways.
Multiple DNA repair mechanisms have evolved to shelter organisms from
the continuous genotoxic stress induced by both intrinsic and extrinsic agents
[1]. These agents can vary from cellular metabolites, such as reactive oxygen
species (ROS), to environmental contaminants and ultraviolet (UV) radiation
from the Sun [2]. DNA repair pathways can repair almost all possible DNA
lesions created by these damaging agents. Consequently, a decrease in the
cell’s DNA repair capacity ultimately manifests itself in the form of mutagen-
esis, carcinogenesis, cellular senescence or cell death, and is implicated in a
number of human diseases [3].

The disclosure of the intricacies of DNA repair has been made possible by the
early description of human familial disease syndromes and by the more recent
investigation of their genetic and molecular bases. The role of large protein
complexes and the significance of their cellular localization are common features
of many of the biochemical mechanisms involved. One of these DNA repair
mechanisms is nucleotide excision repair (NER), which is responsible for
removing a large variety of DNA lesions, including those helix-destabilizing
DNA lesions induced by UV radiation [4]. There are two subclasses of NER.
One is the global genome nucleotide excision repair (GG-NER), which removes
lesions throughout the genome regardless of whether any specific sequence is
transcribed or not. The other is the transcription-coupled nucleotide excision
repair (TC-NER), which refers to the faster removal of damage from the
transcribed strands of active genes.

Eukaryotic NER is a highly conserved multi-step process involving many
different proteins whose molecular mechanism of action has been described
in detail [5-9]. Alterations in NER genes are associated with autosomal
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recessive human diseases, such as xeroderma pigmentosum
(XP), Cockayne syndrome (CS) and trichothiodystrophy
(TTD), whose symptoms involve skin cancer and
developmental and neurological symptoms. Other human
syndromes associated with mutations in proteins involved
in NER are cerebro-oculo-facio-skeletal (COFS) syndrome,
UV-sensitive syndrome (UVSS) and the rare combined
XP/CS [10].

XP is a prototypical DNA repair disorder and is character-
ized by extreme sensitivity to UV light and a 2000-fold
incidence in skin cancer. Patients who are severely affected
by XP also experience late-onset neurological defects and
some affected individuals have neurodevelopmental abnorm-
alities [11]. In XB the skin cancer-prone phenotype is readily
explained by the inability of these patients to repair
UV-induced DNA lesions in skin tissues exposed to sunlight.
By contrast, patients with CS are not overly cancer prone, but
they endure additional symptoms. CS is a multi-system
disorder with pleiotropic effects and patients have severe
neurological abnormalities (including myelination defects,
calcification and microcephaly), mental retardation, growth
and developmental abnormalities, lack of subcutaneous fat,
hypogonadism, tooth decay, cataracts and shorter lifespans
[12]. CS is also considered to be a premature ageing disorder
with patients displaying progressive neurodegeneration [2].
TTD includes a spectrum of ectodermal abnormalities such
as congenital ichthyosis, brittle hair and short stature. Some
of the most affected patients have an increased incidence of
skin cancers and a wide variety of central nervous system
(CNS) abnormalities [13].

Seven complementation groups with defects in the NER
pathway have been assigned genetically in XP (XP-A to
XP-G). An eighth one, XP variant (XP-V), is proficient in
NER, but carries mutations in the POLH gene, which encodes
DNA polymerase 7 (eta), a translesion synthesis (TLS)
polymerase that specializes in error-free replication of DNA
containing UV lesions [14,15].

The defining CS factors are Cockayne syndrome A (CSA)
and B (CSB) proteins, although the CS phenotype can also
result from specific mutations in some XP genes (XPB, XPD
and XPG). In addition, another related factor, named
XPA-binding protein 2 (XAB2), has been isolated as an
XPA-interacting protein in a yeast two-hybrid screen. XAB2,
a protein containing tetracopeptide repeats (TRP), also inter-
acts with CSA, CSB and RNA polymerase II (RNAP2) [16].
Specifically, in cells treated with DNA-damaging agents,
there was an enhanced interaction of XAB2 with RNAP2 or
XPA [17]. Human cells depleted of XAB2 by RNAi show
defects in transcription elongation and pre-mRNA splicing
as well as hypersensitivity to killing by UV light and
decreased recovery of RNA synthesis after UV irradiation,
indicating that XAB2 is a multi-functional factor involved in
splicing, transcription and TC-NER [17].

The transcription factor TFIIH is a central component of
both NER processes (GG-NER and TC-NER). Mutations
of its subunits are associated with both XP and CS. Like
XAB2, TFIIH acts in distinct cellular processes. First, it is an
essential component of the basic RNAP2 transcription
machinery. Second, it is a basic DNA-repair factor, which is
required for all repair by the NER pathway. And third, it
can stimulate the ligand-dependent phosphorylation and
activation of some nuclear receptors [18,19]. Genes for two
subunits of TFIIH, XPB and XPD, are mutated in some

cases of XP and CS. XPG, another XP factor, is responsible n

for maintaining the integrity and function of TFIIH [18] and
is involved in some forms of CS as well [20]. Hence, whereas
XP is a disease more directly linked with the NER core reac-
tion, CS is intrinsically connected with the transcriptional
side of DNA repair and general transcription defects [21,22].

2. The NER reaction: global genome repair
and transcription-coupled repair

Both GG-NER and TC-NER employ a common set of proteins
but differ in their mode of DNA damage recognition. GG-NER
requires detection of the damaged sites in DNA by the UV-
damaged DNA-binding protein (UV-DDB) and a complex
containing XP group C (XPC) protein, the human homologue
of RAD23 (either of two paralogues RAD23A and RAD23B)
and the centrosomal protein Centrin-2 (CETN2) [23-25]. As
shown by cell-free systems and structural analysis, XPC inter-
acts with damaged DNA and subsequently initiates the repair
reaction [5,26,27]. Damage in the transcribed strand of active
genes is repaired by TC-NER, which is initiated by a stalled
RNAP2 during transcription and depends on recruitment of
the ATP-dependent chromatin remodelling protein CS protein
B (CSB) and the adaptor subunit for a CUL4A-based E3
ubiquitin ligase CS protein A (CSA) to the site of damage
[19,28,29].

The NER reaction can be initiated by either of these
two subpathways: GG-NER or TC-NER [30] (figure 1a).
GG-NER can occur anywhere in the genome, whereas
TC-NER is responsible for the accelerated repair of lesions in
the transcribed strand of active genes. GG-NER is initiated
by the GG-NER-specific factor XPC-RAD23B, in some cases
with the help of UV-DDB [27]. TC-NER is initiated by
RNAP2 stalled at a lesion with the help of TC-NER-specific
factors CSA and CSB. Despite different beginnings, both
pathways require the core NER factors to complete the excision
process [10]. The core NER dual incision reaction has
been reconstituted in vitro with purified factors using XPC-
RAD23B, TFIIH, XPA, RPA, XPG and ERCCI-XPF [5].
Functional and structural studies revealed that XPC-RAD23B
is the initial damage recognition factor in this system, as
the presence of XPC-RAD23B is required for assembly of the
other core NER factors and progression through the NER
pathway both in vitro and in vivo [23,27,31,32].

The transcription and NER factor TFIIH is the next factor to
join the NER complex and it is recruited by direct interaction
with the XPC-RAD23B protein [2,33,34]. TFIIH consists of 10
subunits and can be divided up into the core (consisting of
XPB, p52, p8, p62, p34, p44) and CAK (cyclin-activated
kinase, consisting of CDK7, cyclin H and MAT1) complexes
and the XPD protein that bridges the two [8]. The CAK com-
plex dissociates from TFIIH and is not required for NER
[5,35]. Of particular importance for the NER reaction are the
two helicase subunits, XPB and XPD, which are known to
open the DNA around the lesion [8,9,31]. The engagement of
XPD with the lesion enables the full assembly of the pre-
incision complex. XPA, RPA and XPG are next recruited to
the site of the lesion independently of each other, and
XPC-RAD23B departs from the complex at this point [36].

A central hub of the NER complex is XPA. It interacts with
the TFIIH, RPA, XPC-RAD23B, DDB2, ERCCI1-XPF and
PCNA proteins, as well as with DNA. Through these
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Figure 1. Schematic diagram of NER proteins involved in NER (TC-NER and GG-NER) and other pathways. (a) Schematic of the protein complexes involved in NER.
Different recognition complexes operate during TC-NER and GG-NER. After the damage recognition step, the same protein complex is involved in damage excision
and repair. NER factors also participate in replication (b), transcription (c) and other DNA repair pathways (d).

interactions, XPA occupies a central role as an NER factor and
probably works to make sure that all the NER factors are in the
right place for the incision to occur (reviewed in [30]).

XPA interacts tightly with the ssDNA-binding protein
RPA in the NER complex and the two are believed to
cooperate in their association with DNA. There is evidence
that RPA binds the non-damaged DNA strand, helping
position the two endonucleases ERCC1- XPF and XPG on

their substrate, the damaged DNA strand. The structure-
specific endonuclease XPG is recruited through interaction
with TFIIH. XPG, in fact, seems to be constitutively associ-
ated with TFIIH, at least for some of its roles in
transcription [4,30,34]. Structural studies with recombinant
human TFIIH show that XPB and XPD are stimulated by
XPA and XPG and that these players change the mode of
TFIIH from transcription to repair [9].
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The complex consisting of TFIIH, XPA, RPA and XPG is
relatively stable, and the dual excision reaction is only
triggered once ERCC1-XPF joins the complex. ERCC1-XPF
is recruited to NER complexes by interaction with the XPA
protein. Once the two endonucleases are in place, dual
incision at junctions between single-stranded and double-
stranded DNA can be initiated [33,37]. Following the excision
reaction, the lesion-containing oligonucleotide is released
and the NER reaction finalizes with the resulting nucleotide
single-stranded DNA gap being filled by DNA synthesis
and ligation repair synthesis by DNA polymerases,
associated factors and DNA ligase [5,30].

3. NER deficiencies and phenotype
complexities

Many patients with mutations in NER or CS genes present
developmental abnormalities at birth and may develop
neurodegeneration later in life. Owing to the need for fast
transcription during embryonic development [38,39] and in
brain cells [40,41], many of these phenotypes may be due
to the severely mutagenic and chromosome-destabilizing
consequences of a stalled RNAP2. This could result in a
transcriptional defect for critical genes, as well as a failure
to accomplish TC-NER [42,43]. It has been hypothesized
that TC-NER is more important for protecting non-dividing
cells and neuronal function in the face of normal endogenous
DNA damage [10,44]. This agrees with the general symptoms
of XP-C patients, who have a defect in GG-NER but not
in TC-NER and who present with neither developmental
nor neurological abnormalities [45,46]. Interestingly, XP-A
patients do not display obvious developmental phenotypes
and do not seem to have widespread transcriptional
impairment [47]. Affected individuals with mutations that
completely ablate XPA function develop relatively normally,
are born and may live for several decades. However, they
often have various degrees of neurodegeneration [44]. Like
other NER factors, XPA may have additional functions
beyond NER. Recently, it was reported that XPA-deficient
cells display mitochondrial dysfunction, with defects in
mitophagy [46]. Mitochondrial dysfunction has been impli-
cated in a number of pathophysiological processes such
as ageing, neurodegenerative diseases, fertilization and
embryonic development [48].

In fact, other NER factors are also involved not only in
NER but also in replication, transcription and splicing
(figure 1b,c). For instance, RPA was originally defined as a
eukaryotic single-stranded DNA-binding protein essential
for replication and an indispensable player in recombination
(figure 1b). TFIIH is important for transcription initiation of
RNAP2 during the expression of protein-coding genes and
binds to a cyclin-activating kinase subcomplex for the cell
cycle (figure 1c). Thus, the phenotypic complexity of patients
with mutations in NER/CS genes might depend on a plethora
of dysfunctional mechanisms (such as GG-NER, TC-NER,
transcription, replication, recombination and splicing)
fighting against DNA lesions in the context of the whole
organism. In addition, we may speculate that some of the
phenotype complexity could be due to neurodevelopment-
specific DNA lesions recognized and repaired by NER.
These still incompletely defined tissue-specific DNA lesions
may have different effects on the organismal homeostasis.

In order to unravel the reason why NER-deficient patients [ 4 |

develop neurodevelopmental abnormalities and neurodegen-
eration later in life, it is necessary to study possible
embryonic-specific DNA lesions as well as which cellular
mechanisms are impaired by them. A full understanding of
the complex genotype/phenotype relationships of human
DNA damage response disorders clearly requires further
studies and suitable disease animal models [49,50].

4. NER and possible DNA lesions during
embryonic development

As mentioned previously, human NER is the main pathway
eliminating a wide variety of helix-destabilizing bulky
DNA lesions that block DNA replication and transcription
[1]. One important source of such DNA lesions is exposure
to the UV component of sunlight, which generates photo-
lesions (cyclobutane pyrimidine dimers (CPDs) and 6-4
pyrimidone photoproducts (6-4PPs)) in DNA. Cells from
NER-deficient patients, that is, those with XB, CS or TTD,
are extremely sensitive to UV light and patients with XP
show an increased incidence of sunlight-induced skin cancers
[2]. But what types of DNA damage may be responsible for
the developmental abnormalities displayed by NER-deficient
patients? UV radiation cannot generate photoinduced lesions
in fetal or embryonic cells. So, sources of damage during
development are most likely to be different, as NER elimin-
ates not only UV-induced DNA lesions but also bulky
DNA lesions such as the adducts induced by the anti-
cancer drug cisplatin or mutagens like acetylaminofluorene
[51]. Exposure to these carcinogenic substances may induce
some of these NER-repairable lesions. However, these are
neither very common nor a source of significant damage
during human gestation.

Hence, DNA-damaging sources during embryonic devel-
opment are most likely to be endogenous to cells, rather than
exogenous. A spontaneous source of DNA damage inside
patients’ bodies is cellular generated ROS, such as superoxide
and hydrogen peroxide, which produce hydroxyl radicals via
the Fenton reaction that are highly reactive and cause various
modified DNA bases [52]. Among them, 8-oxo0-7,8-dihydro-
guanine (8-0xoG) is the most abundant and seems to play a
major role in mutagenesis and in carcinogenesis. Interestingly,
8-0x0G is highly accumulated in the brain cells of patients with
Alzheimer or Parkinson disease [53]. As a tissue, the brain is
very sensitive to ROS, owing to its high oxygen consumption,
about 20% of the whole body [54]. Thus, the brain is especially
vulnerable to oxidative stress. In most cases, 8-0xoG is mainly
removed from DNA by human base excision repair (BER)
using 8-oxoguanine DNA glycosylase (OGG1), endonuclease
III-like 1 (NTH1) and endonuclease VIII-like 1 (NEIL1) [55].
8-0x0G is not a bulky, helix-destabilizing DNA lesion, but it
has been reported that NER can also be involved in removing
8-0x0G from DNA [56].

Another important candidate for the endogenous
generation of helix-distorting bulky DNA lesions by ROS is
purine cyclodeoxynucleoside (cyPu) [52,57]. This type of
lesion can block replication and it is unlikely to be removed
by BER. Action of a glycosylase in BER would not be
expected to release such cyPus, because the purine would
remain attached by the 5,8 carbon—carbon bond even after
cleavage of the glycosyl bond. The cyPu lesions may be
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repaired by NER, which can remove oligonucleotides con-
taining a DNA lesion by dual incision action. The lesions
appear to be relatively abundant forms of DNA damage
after exposure to ROS, introduced at 20-30% of the levels of
the major lesions, although the relative rates of formation
vary with experimental conditions. Thus, cyPu lesions in
the brain might explain the progressive neurodegeneration
seen in NER-deficient individuals [52,57]. Other candidate
lesions for NER action are lipid peroxidation (LPO) product
lesions and acetaldehyde-induced DNA lesions [58,59]. LPO
products originate during normal cellular metabolism and
generate protein and DNA adducts, which have detrimental
effects in embryonic cells and can be repaired by NER
[60,61]. Acetaldehyde is thought to cause a variety of DNA
lesions and occurs naturally in various plants, ripe fruits
and vegetables. In addition, drinking alcohol and smoking
cigarettes can lead to high levels of acetaldehyde in
the body that can be passed on to the developing fetus.
Even without these environmental challenges, human cells
are constantly exposed to acetaldehyde [58], and some
acetaldehyde-induced DNA lesions might be repaired by
NER. Interestingly, an acetaldehyde-GG cross-link resembles
CPDs, 6-4PP and cisplatin-induced-GG adducts, and might
be repaired as such. These lesions show an increase of GG-
to-TT mutations in NER-deficient human XP cells [62].
Genome-wide analysis of sequence signatures indicates that
GG-to-TT mutations are associated with cancer, suggesting
that acetaldehyde in our body might induce DNA lesions
[63]. During embryonic development, acetaldehyde can be
detected in fetuses of alcoholic mothers and has been
shown to have teratogenic effects [64,65].

By and large, it is unknown which kinds of DNA lesions
cause developmental abnormalities in NER patients. Since
NER, including both GG-NER and TC-NER, removes a wide
variety of DNA lesions, it will be important to detect NER-
repairable DNA lesions in cells during embryonic development.

5. NER and embryonic development

DNA repair is crucial both for dividing proliferating cells, in
which lesions in DNA interfere with replication fork pro-
gression and may be converted into mutations upon
replication, and for non-dividing differentiated cells, which
sometimes have to maintain their genome integrity for the
entire lifespan of the organism and have cell division-
dependent checkpoints downregulated or switched off. In the
first case, failure of DNA repair will induce mutations whereas
in the second case it will give rise to an accumulation of DNA
damage that can interfere with many cellular processes [45].
In actively proliferating cells, such as the cells of the early
developing embryo, DNA repair is crucial for preventing the
accumulation of mutations and synchronizing cell division
[66,67]. Accordingly, it has been shown using the nematode
Caenorhabditis elegans that early developmental stages are
more sensitive to UV irradiation than later stages [68]. How-
ever, many developmental processes such as late
organogenesis rely on fully differentiated cells, which are
not actively dividing but frequently need to change their
behaviours very rapidly, a process that relies on the fast tran-
scription of many genes. Organ formation requires rapid cell
proliferation, active gene transcription and a high rate of
DNA metabolism, especially during the developmental

stages. Thus, embryonic cells are likely to be sensitive to [ 5 |

both global-genome and transcribed-strand damage with
slower rates of transcription leading to embryonic lethality
[69]. In addition, an increase in NER capacity accompanies
cell differentiation, as shown by the upregulated transcription
of genes encoding XPA, XPC, XPG and ERCC1-XPF during
neuron and muscle cell differentiation [70]. Hence, the pro-
teins involved in the two NER pathways, GG-NER and TC-
NER, are probably necessary for proper embryonic develop-
ment, from the oocyte to fully developed organismal stages.
Embryonic development can progress to term in the complete
absence of NER, as shown by the apparently normal develop-
ment and size of XPA knockout mice and humans [71]. Of
course, there are severe developmental abnormalities dis-
played by many patients with XP or CS [72]. These are
likely to be a combined effect of compromised transcription
and DNA repair. In addition, if we consider that increased
risk of developing cancer is based on intrinsic developmental
defects at the molecular and cellular level, then most known
DNA repair deficiencies are associated with significant
developmental abnormalities.

As for many other biological studies, the ability to under-
stand the interplay between NER and developmental
processes requires appropriate model organisms. So far,
much has been learned about human embryonic develop-
ment and physiology through the study of model animals,
which have particular advantages for laboratory research.
There are many reasons for using them. Research on
humans and other primates is expensive and limited by
ethical considerations whereas the most commonly studied
model animals are relatively inexpensive to maintain and
are well suited for experimental manipulation [73]. In
addition, recent research has shown that there is a remarkable
degree of similarity in the developmental mechanisms of all
animals. In developing model organism embryos, not only
individual genes and proteins but also entire signalling
pathways and cell behaviours appear highly conserved.
This means that, although the embryology of simpler animals
might appear superficially very different from that of
humans, knowledge gained from those models can often be
applied directly to understanding human developmental
mechanisms. Furthermore, many of the known human
disease-causing mutations are hypomorphic and animal
models are the ideal way to study the effects of amorphic
mutations during development, since many of these null
mutants result in embryonic lethality. Therefore, research
on the involvement of NER proteins in developmental
biology has been largely done using model organisms.

6. Embryonic development without NER
factors: survival and phenotypes

It has long been known that many NER proteins are actively
expressed in many tissues during embryonic development
even in the absence of external DNA-damaging agents
[74-76]. NER genes, together with other DNA repair path-
way genes, are expressed from early stages of embryonic
development [77]. In widely studied model organisms such
as Mus musculus or Drosophila melanogaster, expression of
NER factors has been observed during development, ubiqui-
tously in the whole organism or in specific tissues (table 1
and figure 2).
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Table 1. Known embryonic transcript expression of NER transcripts in Mus musculus according to the Gene eXpression Database (GXD; http:/www.informatics. ~ [Ji}
jax.org/expression.shtml) and Drosophila melanogaster according to the Berkeley Drosophila Genome Project (BDGP; https:/insitu.fruitfly.org). ND, not identified

in this species; GUDMAP, GenitoUrinary Development Molecular Anatomy Project.

mouse gene embryonic expression reference
Xpa limb bud [78]

Xpb ubiquitous; nervous system and liver [74]

Xpc no expression data —

Xpd nervous system, eye and liver [81]

Xpg nervous system [83]

Ercct nervous system [84]

Ercc4 nervous system [83]
mHR23B nervous system; genitourinary system [81] and GUDMAP
CSA (Ercc8) cranium [86]

(SB (Ercc6) genitourinary system GUDMAP
Xab2 nervous system [81]

One of the earliest observations of a strong influence of
NER factors in embryonic development was a report showing
that null mice lacking ERCC1 died before weaning [87]. Since
then, other null mutations in NER genes have proven to
be embryonic lethal in different species, suggesting a strong
need for some of these factors during development [71]
(table 2). When not lethal, many of these null mutations,
such as XPA and CSB, induce growth retardation [75,105],
another hint to their important functions during development
(table 2). When some of these mutations are combined in the
same animal, they give rise to stronger phenotypes, suggesting
genetic interactions during developmental processes between
many of these factors [71]. For instance, mice lacking both
XPA and CSB displayed severe growth retardation, ataxia
and motor dysfunction during early postnatal development,
suggesting that these genes may have additive roles during
nervous system development [106].

One of the crucial factors in NER is TFIIH, which is also
one of the factors that bridges the two human syndromes XP
and CS. Of the many TFIIH subunits, only XPB and XPD
can be involved in both XP and CS. In Drosophila, loss of
haywire (hay), the gene homologous to XPB, leads to male
sterility, CNS defects and UV sensitivity, not unlike human
XPB/CS patients [89] (table 2). Hay is expressed in several
stages of development and hay mutant embryos display
phenotypes that range from completely disordered ventral
nerve cords (VNCs) to VNCs with only a few broken
commissures [89]. Transgenic flies carrying human-like alleles
with mutations reported in human patients reproduce these
defects, suggesting that Drosophila is a good model for
these studies [107]. Another existing model for another
TFIIH subunit, XPD, has been reported in Drosophila, allowing
for different human mutations to be tested during develop-
ment [108]. This Drosophila model revealed an Xpd function
in cell cycle coordination which is affected by XP/CS and
TTD mutations [108]. The two XP/CS alleles G47R and
G675R, as well as the TTD allele R722 W, showed the highest
frequency of asynchronous waves of all the xpd mutants in this
Drosophila model. Human patients with these mutations dis-
play severe neurological abnormalities, reduced growth, and
delayed and defective development, correlating the degree

Drosophila gene embryonic expression reference
Xpac ventral nerve cord [79]

haywire ubiquitous [80] and BDGP
Xpc faint ubiquitous [80] and BDGP
Xpd ubiquitous (nuclear) [82]

mus201 no available data —

Erccl no available data —

Mei-9 no available data —

Rad23 faint ubiquitous [85]

(SA (ND) — —

(SB (ND) — —

fandango ubiquitous [38]

of neurological abnormalities with asynchronous waves of
cell division [108]. XPB and XPD mutants have also been ana-
lysed in other model organisms such as zebrafish or mouse
(table 1). Overall, these two TFIIH subunits have been
shown to be important for embryonic development across
species [90,109]. XPB and XPD being subunits of TFIIH
implies that their involvement in embryonic development is
also due to their direct effects in transcription. Crippled tran-
scription of key developmental genes might be responsible for
the observed developmental phenotypes [110].

One more factor shown to be involved in both XP and CS
is the endonuclease XPG [111]. Mice carrying truncated forms
of XPG, generally associated with CS, exhibited postnatal
growth failure and premature death, similar to the clinical
hallmarks of CS despite apparent normal development [95].
In Drosophila, mutant flies are defective in NER and hyper-
sensitive to UV radiation as the homozygous mutant mice.
However, in contrast to these, the two Drosophila mutants
are viable and fertile in the absence of exogenous DNA-
damaging agents [112,113]. XPG has also been found to be
a partner of BRCA1 and BRCA2 in maintaining genomic
stability through homologous recombination (HRR) [114]
(figure 1d). The role of this endonuclease in HRR suggests
that this player has important roles in genome stability
and may explain some of the phenotypes and clinical
consequences associated with its loss of function.

The other NER endonuclease is ERCC1, which when
mutated in mice leads to attenuated growth, resulting in
cachectic dwarfism during the second week of life and
premature death before postnatal day 35 [97]. This severe
growth retardation was shown to originate from defective
transcription initiation of developmental gene expression
programmes [97]. In addition, ERCC1 has also been impli-
cated in double-strand break, interstrand cross-link (ICL)
and base excision repair [37] (figure 1d). This suggests that,
as in the case of XPG, the developmental defects associated
with mutations in ERCC1 may be due to transcriptional
impairment as a consequence of faulty chromatin remodel-
ling or other defective DNA damage responses, rather than
to a direct effect of NER in the developmental programme.
Interestingly, a metabolic connection was found between
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Figure 2. Embryonic and nervous system (NS) expression of NER genes in
Drosophila melanogaster and Mus musculus. Graphical representation of
transcript expression during embryonic development, according to high-
throughput expression data. (a) D. melanogaster expression data from
ModENCODE (www.modencode.org) tissue and temporal expression data;
(b) M. musculus expression data from Expression Atlas (www.ebi.ac.uk/gxa/
home) embryonic and tissue expression data. Data mining was performed
according to all developmental stages (embryonic expression) and specific
nervous system expression (larval expression for Drosophila and embryonic
expression for mouse). Arbitrary values were attributed according to
expression levels (1, low; 2, moderate; and 3, high) and plotted in parallel.

defects in ERCC1 and patients” phenotypes, suggesting an
association between ERCC1 and organismal homeostasis
and energy balance [115].

CSA (ERCCS8) and CSB (ERCC6) are two factors directly
associated with CS and mice deficient for either of these

genetically mimic CS in humans [116]. However, when
analysed at birth these mutants do not seem to show any
developmental abnormalities, leading to the conclusion that
CSA and CSB are not directly involved in any developmental
process [116]. To gain further insight into these mutants and
their effects in whole-organism homeostasis, various double
mutant combinations were generated between CS and XP fac-
tors (reviewed in [116]). Of these, it is interesting to pinpoint
the Csb/Xpa and Csb/Xpc double mutant mice, which had a
very short lifespan and severe pathology in multiple tissues.
In some litters, there was perinatal death and in others defects
started very early in postnatal life. In addition, double mutant
pups showed progressive development of ataxia and other
motor dysfunctions, which correlated with smaller cerebella
with a reduced number of granule cells [106]. In addition,
Csb—/- embryonic and adult neural precursors exhibited
defective self-renewal, and neurons differentiated in vitro
from Csb—/- neural precursors, which had been irradiated
with UV, exhibited defective neurite outgrowth [117]. Taken
together, these data point at an active role of CSB during
neurogenesis and the morphogenesis of the nervous system.
Irregularities in the regulation of transcription might
account for many of the somatic features associated with CS,
including neurological symptoms. CSB may have an impor-
tant role in the transcriptional programmes that govern the
plasticity and the maintenance of the CNS during early life
[118]. Neurogenesis occurs both during embryonic develop-
ment and later in life and failure to accomplish this process
may lead to neurodevelopmental and neurodegeneration phe-
notypes. Accordingly, CSB deficiency has been shown to affect
neuronal differentiation, suggesting that patients with CS are
less able to support brain plasticity and repair events [119].
CS complementation genes CSA and CSB have also been
studied in non-vertebrate models such as C. elegans.
Mutations in the nematode csa-1 and csb-1 genes lead to
developmental growth defects and UV sensitivity and both
genes are expressed throughout embryonic development
[120-122]. In Drosophila, neither CSA nor CSB homologues
are present, despite their presence in many insect species
[123]. It was reported in the past that repair of the transcribed
strand occurs at the same speed as that of the non-transcribed
strand both in embryonically derived cells and in brain tissue
[124,125]. Lack of clear gene homology and biochemical data
on GG versus TC-NER has led to the conclusion that Droso-
phila does not carry out TC-NER [126]. However, this is still
under discussion, as flies would be the only model organism
not to be able to actively repair highly transcribed genes. An
alternative explanation is that there is CSB-independent TC-
NER in Drosophila as has been shown in yeast [127,128]. Fur-
thermore, the lack of differences between actively transcribed
and non-transcribed genes in Drosophila was experimentally
done using the white (w) gene as a control non-transcribed
gene in both embryos and larval brains [124,125]. However,
w expression could be detected in the same brain tissues
where the comparison between repair of different strands
was made [125]. And later reports have shown that, indeed,
w is expressed both in embryos and in larvae and has pleio-
tropic effects in the whole organism [129,130]. Moreover,
XAB2, a binding partner for CSA and CSB [17], has been
recently identified in Drosophila, where it was named fandango
(fand), and has been shown to be involved in embryonic pre-
mRNA splicing and organogenesis [38,103]. As in Drosophila,
null mutants for XAB2 in mice are embryonic lethal, pointing
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Table 2. Requirements of NER genes during development inferred by the analysis of null mutations in Mus musculus and Drosophila melanogaster.

mouse
gene phenotype Drosophila gene phenotype reference
Xpa viable; develop normally Xpac no mutant developmental data [88]
Xpb‘ embryonic lethal ‘ haywire embryonic lethal; CNS defects ‘ ‘ [89,90]
Xpc viable; develop normally Xpc no mutant developmental data [91,92]
Xpd‘ pre-implantation lethality ‘ Xpd embryonic lethal; early mitotic division defects [93,94]
Xpg mice are viable but die before weaning mus201 no mutant developmental data [95,96]
Ercct viable but growth failure and death before Ercct no mutant developmental data [87,97]
weaning
Ercc4 severe postnatal growth defect with death Mei-9 no mutant developmental data [98,99]
approximately three weeks after birth
mHR23B impaired embryonic development; prenatal Rad23 no mutant developmental data [100]
and early postnatal death (90%)
» CSA (Ercc8) viable; minor postnatal growth retardation not identified — [101]
and neurological defects
CS‘B‘ (Erccé) viable; minor postnatal growth retardation ‘ not identified ‘ — ‘ ‘ [102]
and neurological defects
Xab2 embryonic lethal fandango embryonic lethal; organogenesis defects [103,104]

at the important function of this gene during development
[104]. So, the quest for factors controlling possible TC-NER
in Drosophila is still on.

Overall, all current data seem to point out that many
factors involved in NER are also important during embryonic
development. However, during these studies, analysis of
developmental defects was done without the challenge of
exogenous DNA repair, during normal development, taking
into account only endogenous levels of DNA damage.
Hence, the effects of NER/CS mutations in development
are mostly analysed under conditions that mimic low levels
of DNA damage. Stronger phenotypes are attained if
embryos are subjected to exogenous DNA damage. A study
using C. elegans has revealed that DNA ICLs lead to develop-
mental arrest and tissue defects in mutants for NER proteins
[131], revealing the importance of NER in embryos subjected
to extra sources of DNA damage.

Taken all together, the role of NER in embryonic develop-
ment is not yet well understood; however, a number of clues
have surfaced indicating that efficient repair of endogenous
damage may be crucial to normal development. It seems
that factors involved in GG-NER as well as TC-NER are
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