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Despite global connectivity, societies seem to be increasingly polarized and
fragmented. This phenomenon is rooted in the underlying complex structure
and dynamics of social systems. Far from homogeneously mixing or adopt-
ing conforming views, individuals self-organize into groups at multiple
scales, ranging from families up to cities and cultures. In this paper, we
study the fragmented structure of American society using mobility and com-
munication networks obtained from geo-located social media data. We find
self-organized patches with clear geographical borders that are consistent
between physical and virtual spaces. The patches have multi-scale structure
ranging from parts of a city up to the entire nation. Their significance is
reflected in distinct patterns of collective interests and conversations. Finally,
we explain the patch emergence by a model of network growth that com-
bines mechanisms of geographical distance gravity, preferential attachment
and spatial growth. Our observations are consistent with the emergence of
social groups whose separated association and communication reinforce dis-
tinct identities. Rather than eliminating borders, the virtual space reproduces
them as people mirror their offline lives online. Understanding the mechan-
isms driving the emergence of fragmentation in hyper-connected social
systems is imperative in the age of the Internet and globalization.
1. Introduction
The increasing polarization of societies is becoming apparent around the world.
Despite access to global communication [1], people seem to be splitting into
groups that mostly listen to their own members [2–4]. Individual choices of
association due to ideologies [5–7], occupations [8,9] or consumer habits [10]
can drive the emergence of social polarization or fragmentation [9,11]. While
different social features affect processes of homophily and influence, in this
work, we study how fundamental geographical factors also affect the large-
scale structure of social interactions and communication networks. Previous
studies have proposed distance as the driving factor for social interactions
[12–14]. We show that the structure of the emergent social networks is richer
than what distance alone can explain and includes the influence of factors
like administrative borders and urban structures. It is crucial to understand
the structural and geographical properties of collective association and their
relationship to the social space.

The social space is defined as the place where people meet and interact [15].
While group cohesion is strongly influenced by internal communication,
weaker external ties are necessary for integration at larger scales, providing
individuals with information and resources beyond the borders of their own
community [15–20]. Previous studies have shown that the structure of both
strong and weak ties affects the behaviour of social systems, including the
spread of innovation [21], business and culture [22], crime systems [23] and
the development of regional and national events [24]. Social fragmentation
affects the way information flows among individuals [25] and consequently
their emergent behaviours [5,9,26], including political or physical conflict
[27–30].

The recent availability of large-scale datasets obtained from communication
or transaction records for landlines, mobile phones, social media and banknote
circulation has considerably improved our ability to study social systems
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[31–34]. Geo-located data sources, such as Twitter, enable
direct observation of social interactions and collective beha-
viours with unprecedented detail. While the Twitter user
base is known to skew younger and more urban [35,36], the
large size of its user base and high frequency of tweets has
enabled new types of studies of networks and geo-located
activities. For example, Twitter data have been used in
studies on a wide range of behavioural phenomena, includ-
ing human migration, disease outbreaks, and patterns of
happiness and lifestyle [37–42].

Networks of human mobility [31,34,43–45] and
communication [10,34,37,46–49] reveal the existence of geo-
located communities or patches. Researchers have used
Twitter data on mobility to show where geo-located commu-
nities deviate from administrative boundaries in Great Britain
[42]. Others have generated networks of Twitter communi-
cations and examined community formation in various
countries [37] or in a natural disaster [41]. While these studies
analyse the structure of mobility or communication networks
separately, we show that these two are not independent from
one another and rather that networks in physical space are
mirrored in the virtual space.

In this work, we use geo-located Twitter data to identify
two networks in the US, human mobility and communi-
cation. We show that the specific geographical patches of
both networks are very similar. We validate the significance
of these patches by analysing hashtag use by location and
find similar patterns of divergence as in the mobility and
communication networks. Finally, we build a model of net-
work growth to understand the generic statistical properties
of the natural human dynamics observed in the data. Our
model combines a distance gravity component for cluster
formation with preferential attachment and spatial growth
mechanisms to allow clusters to differentiate in geographical
space and grow over time. This work provides an extensive
depiction of geographic network dynamics and social frag-
mentation in the USA.
2. Material and methods
2.1. Data
We use geo-located Twitter data to generate geographical net-
works based on where people travel or communicate. The data
were obtained using the Twitter Streaming Application Program-
ming Interface (API). We collected tweets from 22 August 2013 to
25 December 2013, totalling over 87 million tweets posted by
over 2.8 million users in the USA.

2.2. Networks
We analyse mobility and communication patterns by generating
geographical networks. Nodes represent a lattice of 0.1° latitude
× 0.1° longitude cells overlaid on a map of the USA. Each cell is
approximately 10 km wide. There are about 400 000 cells com-
prising inhabited areas of the USA. Network edges reflect two
types of data: mobility and communication. In the mobility net-
work, edges are created when a user u tweets consecutively
from two locations, i and j. In the communication network,
edges are created when a user u at location i mentions another
user v that has most recently tweeted at location j. The weight
of an edge represents the number of people who either travel or
communicate between i and j. These networks aggregate the het-
erogeneities of human activities in a large-scale representation of
social collective behaviours [50].
2.3. Methods
The term network fragmentation is often used in the literature to
describe the process of network dismantling [51,52]. In this work,
we use the term ‘social fragmentation’ to represent the modular
structure of a social system due to the absence of links and nodes.
This is in line with terminology from other works that employ
community detection methods such as the Girvan–Newman
method [53].

We analyse social fragmentation by applying the Louvain
method [54] with modularity optimization [55] to the mobility
and communication networks obtained from Twitter data. The
Louvian algorithm starts by considering each node as a single
community. Iteratively, nodes move to the neighbouring commu-
nities and join them to maximize modularity (M). Modularity is a
scalar value −1 <M < 1 that quantifies how distant the number of
edges inside a community are from those of a random distri-
bution. Negative modularities occur when nodes are assigned
to the wrong communities, zero occurs when all the nodes are
assigned to a single community, and higher values represent
increasingly optimal partitions as the values get closer to
1 [56,57].

To study communities at multiple scales, we use a general-
ized version of modularity [54] that includes a resolution
parameter γ. In the conventional modularity equation, γ = 1
and the sameweight is given to observed links and expected links
from a randomized network. In the generalized form, γ < 1 gives
more weight to the observed links, which generates larger com-
munities, while γ > 1 puts more weight on the randomized
term and generates smaller communities. Because it is a
method with multiple maxima, we chose partitions that are
robust to multiple runs of the algorithm.

We validate the significance of the patches by observing
hashtag use. We create a matrix whose rows represent locations
and columns represent hashtags. In order to observe collective
behaviours, we consider only those hashtags that were posted
at least 500 times and locations with at least 20 tweets. We
apply the term frequency-inverse document frequency (TF-IDF)
transformation [58,59] to the matrices in order to normalize
the hashtags (columns of the matrix). We then apply principal
component analysis (PCA) [60] to the hashtag matrix and
retrieve the top 100 components, and then apply t-distributed
stochastic neighbour embedding (t-SNE) [61,62] to the resulting
PCA matrix.
3. Results
3.1. Social fragmentation
We first generated a mobility network of instances in which a
user tweets from different locations, representing travel (see
§2.3). Figure 1 depicts the spatial properties of the mobility
network on a map of the USA in terms of degree centrality
(figure 1a) and two levels of modular structure (figure 1b,c).
The degree centrality shows the density of user movements
at each geographical point. The activity is concentrated in
large cities (red in figure 1a) and decreases towards suburban
and rural areas (green, blue and grey). In areas of the country
with high population density, cities merge into large regions
of high activity (e.g. the East Coast corridor). In other areas,
roads are also visible, as people tweet when they travel
between cities. Highways in rural areas with higher traffic
appear in green, and less travelled roads are blue.

The spatial fragmentation of social systems arises
when people travel and choose which boundaries not to
cross either directly or incidentally. Our results suggest
that the US mobility network is fragmented into 20 large
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Figure 1. Structure and fragmentation patterns of the network associated with human mobility. (a) Spatial degree centrality of the mobility network. Colours
indicate the amount of people travelling at each location, measured by the logarithm of the degree centrality of each node (scale inset). The mobility network
was used to generate communities using modularity optimization, with distinct colours indicating (b) 20 patches that can be visually associated with states or
regions and (c) 206 smaller subcommunities within the communities of (b) that can be visually associated with urban centres.

royalsocietypublishing.org/journal/rsif
J.R.Soc.Interface

16:20190509

3

communities (figure 1b) whose boundaries often follow state
boundaries but may in particular cases be parts of one state or
the combination of multiple states. At a finer scale of subdivi-
sion, these large communities of the mobility network are
subdivided into patches that typically include individual
cities and their surrounding areas. There are 206 such
communities that we obtain by applying the same modularity
optimization algorithm to each larger community (figure 1c).

Following the mobility network, we generated a com-
munication network from Twitter mentions, shown in
figure 2. Our modularity analysis on this network shows
that it also has structure of social fragmentation that is
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Figure 2. Structure and fragmentation patterns of the network associated with human communication. (a) Spatial degree centrality of the communication network.
Colours indicate the amount of communication at each location, measured by the logarithm of the degree centrality of each node (scale inset). The communication
network was used to generate communities using modularity optimization, with distinct colours indicating (b) 15 patches that can be visually associated with states
or regions and (c) 168 smaller subcommunities within the communities of (b) that can be visually associated with urban centres.

royalsocietypublishing.org/journal/rsif
J.R.Soc.Interface

16:20190509

4

consistent with the mobility network. Thus, while the Inter-
net and social media have drastically affected the dynamics
of communications, the geographical structure of online
communication remains fragmented and presents a similar
structure to the one obtained from offline interactions.
There are some differences as well. In contrast to the
20 modules in the mobility network, there are 15 modules
that arise in the communication network.

The borders of some communities in figure 2 are almost
the same as those in the mobility network (figure 1b), such
as the community encompassing states of the Northwest
(WA, OR, ID and MT), the community corresponding to
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Figure 3. Similarity of communities in the communication and mobility net-
works. Matrix of the regional communities for the communication network
(y-axis, n = 15) and mobility network (x-axis, n = 20), ordered by decreasing
overlap between communities. Cell colours represent the number of nodes
overlapping between the two networks in each community, normalized by
the size of the communities per row (scale inset), with no overlap indicated
in white.
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Michigan (MI) and the community corresponding to Florida
(FL). Ohio (OH), western Pennsylvania (PA) and West
Virginia (WV) are also still in the same patch. Meanwhile,
other communities in the mobility network merge into a
larger community in the communication network. For
example, the six-state region of New England (Maine (ME),
Massachusetts (MA), New Hampshire (NH), Vermont (VT),
Rhode Island (RI) and Connecticut (CT)) is a separate com-
munity in the mobility network but is combined with
New York (NY), New Jersey (NJ) and Pennsylvania (PA) in
the communications network. The two patches of North
and South Carolina (NC and SC) and Virginia (VA) and
Maryland (MD) are also combined into one. This demon-
strates that certain areas have a broader radius of online
communication than physical travel. Finally, figure 2c rep-
resents the smaller communities within each community in
figure 2b. These patches show areas connected to urban
centres and are very similar to those of the mobility network
in figure 1c. Some less populous states are now single com-
munities, such as Montana (MT), Nebraska (NE), Kansas
(KS), Oklahoma (OK), Arkansas (AR) and New Mexico
(NM), while more densely populated areas are subdivided
around urban centres.

To further investigate the role of state boundaries in com-
munity formation, we quantified to what extent each state
contributes to communities for both networks (see electronic
supplementary material, S1.1 and figure S1). States mostly
belong to specific communities. This shows that the structure
we observe is not simply due to the effects of distance [13]. To
show this, we generated artificial networks with links
weighted by only the inverse of distance or distance squared
(see electronic supplementary material, S1.2). While spatial
patches are also present in these artificial networks, the
patches do not follow state boundaries and are not consistent
across both types of networks (see electronic supplementary
material, figures S2 and S3). We also performed validation
of community stability and find that the number of commu-
nities and boundaries we show are consistent and stable
across multiple realizations of the algorithm (see electronic
supplementary material, S1.3 and figure S4). Overlapping
regions across realizations can happen either because small
locations flip between large communities or because large
communities are split into smaller ones.

We quantitatively compared the modular structure of the
mobility and communication networks (figure 3) by creating
a matrix where we count the number of overlapping nodes
of communities arising from the networks of communication
(rows) and mobility (columns). Rows have been normalized
by the size of each community in the communication network.
Some communities from the communication network are
almost identical in the mobility network and therefore show
a high overlap (red). Others are similar but not identical. A
few communities from the mobility network are merged into
communities in the communication network (green and light
blue). Despite the observed differences in the networks repre-
senting two fundamentally different types of interactions, the
modular structure is remarkably consistent, revealing that
there is a strong coupling between the way people travel in
physical space and communicate with each other online.

In order to further understand similarities between the
mobility and communication networks, we performed a
multi-scale analysis of community structure using a general-
ized modularity optimization algorithm that introduces a
resolution parameter, γ [54]. Smaller values of γ identify pro-
gressively larger communities, and vice versa. The multi-
scale analyses of the mobility and communication networks
are shown for some examples of γ values in figures 4
and 5, respectively. Partitions range from a single large
module of the entire USA (top panels) down to urban scale
partitions (bottom panels). Some states like Pennsylvania
(PA) are split into multiple communities early in the process
(γ≈ 0.4 in the mobility network), while other states like Texas
(TX) emerge as single communities (γ≈ 1 in the mobility net-
work) and internally fragment later in the process. These
differences are directly associated with the internal structure
of social ties and their geographical breakpoints, further
explored in the Discussion (§4). In order to validate these par-
titions, we compared them with the communities detected by
Infomap [63]. This method finds the best partition based on
the flow of information in a network. The comparison
shows that the patterns obtained using Infomap are very
similar to the ones obtained from the multi-scale modularity
method at specific values of γ (see electronic supplementary
material, S1.4 and figure S5).

We compare the partitions in both networks for different
values of γ by using three measures of cluster similarity:
Purity [64], Adjusted Rand Index [65] and Fowlkes–Mallows
Index [66]. These measures evaluate the overlap of partitions,
with values ranging between 0 (no intersection) and 1 (per-
fect match). Figure 6 shows a matrix whose rows and
columns represent the partitions of the mobility and com-
munication networks at different values of resolution
(γ-mobility and γ-communication) and whose elements
show the average of the three measures of similarity. The
highest similarity between the two networks occurs at similar
values of resolution (red diagonal), showing that the relative
structure of these networks is consistent across scales.
Additional comparisons between the two networks can be
found in electronic supplementary material, S1.5, including
measures of degree centrality and edge weight (electronic
supplementary material, figure S6) and an alluvial diagram
(electronic supplementary material, figure S7).
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Figure 4. Multi-scale decomposition of the mobility network. Colours indicate geographical patches detected in the mobility network for values of the resolution
parameter γ varied from 0.08 to 20 (upper left to bottom right). Colours are retained across panels by the following rule: when a community is divided into
multiple subcommunities, the subcommunity that is the most connected to the original (parent) community retains the colour of the parent community; the
other subcommunities are assigned new colours. The modularity for all of the panels is over 0.8.
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The consistency between the mobility and communi-
cation networks reveals that social spaces are not limited to
the physical space. Instead, offline interactions seem to con-
dition the structure of online communications. Moreover,
the hierarchical multi-scale structure of these networks
reveals that smaller communities with cohesive social ties,
interactions, and associations belong to progressively larger
ones. It may be expected that locations from the same com-
munity will have more similarity than locations from
different communities.

Locations from the same community show similarity in
hashtag use and divergence with locations from different
communities for either the mobility or communication net-
works (figures 1b and 2b). Hashtags highlight specific,
shared experiences and serve as markers of social interaction
[67]. We compared hashtags for locations in the mobility
and communication networks at γ = 1 using PCA followed
by t-distributed stochastic neighbour embedding (t-SNE)
analysis (figure 7a,c for mobility and communication, res-
pectively). See §2.3 for more information on the method.
We coloured each dot by location, matching the colours of
the communities in figures 1 and 2, panel (b). A number
of distinct coloured clusters emerge, suggesting that hashtag
use by location corresponds to communities of the mobility
or communication networks. Some clusters appear to
separate into smaller clusters near to each other, repre-
senting subcommunities inside the communities. These
patterns are statistically significant after randomizing
locations (p < 0.001), detailed in electronic supplementary
material, S1.6 and figure S8. To compare communities to
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Figure 5. Multi-scale decomposition of the communication network. Colours indicate geographical patches detected in the communication network for values of the
resolution parameter γ varied from 0.2 to 20 (upper left to bottom right). Colours are retained across panels by the following rule: when a community is divided
into multiple subcommunities, the subcommunity that is the most connected to the original (parent) community retains the colour of the parent community; the
other subcommunities are assigned new colours. The modularity for all of the panels is over 0.8.
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each other based on hashtag use, we performed analysis of
cosine similarity (figure 7b,d for mobility and communi-
cation, respectively). Squares are coloured from blue to red
for increasing similarity (colour bar, right). About half of
community pairs have less than 50% similarity, while the
rest have 50–90% similarity. Communities are distinct at
some scales and form larger communities at higher scales.

3.2. Model
We constructed a network growth model that combines
aspects of network dynamics and human mobility in order
to show the emergence of social fragmentation. Our model
combines geographical distance gravity [14], preferential
attachment to allow creation of hubs (cities) and spatial
growth to allow the growth of cities [68]. We begin with a
lattice representing geographical locations, and grow connec-
tions among them simulating the way people travel. The
probability of creating an edge between locations i and j in
each time step is:

Pij � hknnini
kaj
dbij

, (3:1)

where i represents the origin of the interaction, j indicates the
destination, 〈knn〉i indicates i’s nearest neighbours’ average
degree, kj represents j’s degree and dij represents the distance
between i and j. The exponents α, β and ν control the effects of
the preferential attachment mechanism, geographical dis-
tance gravity and spatial growth, respectively. The model
reproduces the growth of geographical clusters similar to
cities (ν), their degree of attractiveness (α) and the linkage
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between urban centres and surrounding areas, including
neighbouring cities (β). We introduce the preferential attach-
ment mechanism to break the symmetry of spatial
connections over time and the spatial growth mechanism to
allow the city-like structures to grow.

Each location in the lattice has four nearest neighbours,
except for locations in corners and on edges, which have
two and three neighbours, respectively. Simulations start
with a random seed of three connected locations. Links are
undirected and weighted to represent the iteration of links
over time. Origins are picked randomly (independent from
destinations) if their normalized value of 〈knn〉

ν exceeds a
random threshold. To allow all the locations in the lattice to
participate in the dynamics, for the first N time steps, we
turn off the origin priority selection and let the system
choose origins from a random order of locations, where N rep-
resents the number of locations. The probability of selecting
destinations is a combination of the preferential attachment
mechanism and geographical distance gravity as shown in
equation (3.1). Thus, locations that are nearer to the origin
location and have a higher degree have a higher probability
to be chosen. Simulations continue until reaching a stable
state in which communities form and do not change in
number.

Figure 8 shows the results of model simulations in terms
of the spatial degree distribution (top panels) as well as mod-
ular structure (bottom panels) for different values of α (rows)
and β (columns) and a fixed value of ν = 0.1. If we do not
include the effects of either preferential attachment (α = 0)
or gravity (β = 0), the destinations of edges are independently
distributed among all nodes and the resulting communities
have no spatial pattern. If α > β, then a few hubs and one or
two communities arise without significant geographical
effects. Spatial fragmentation arises when the gravity mech-
anism is stronger than the preferential attachment (β > α),
either without hubs (α = 0) or with hubs (α > 0). Increasing ν
leads to more localized high-activity areas (cities), but this
also destroys localized patches, leading to lower values of
modularity. For additional results exploring variation of the
spatial growth mechanism while keeping α and β constant,
see electronic supplementary material, S1.7 and figure S9.

We validated the model results against Twitter data by
first testing whether the degree distributions from both
sources are drawn from the same distribution and second
comparing the modularity values. For each set of parameters,
we created 20 model realizations and analysed their statistical
behaviour. We applied the Kolmogorov–Smirnov statistical
test (K-S) to compare the average degree distribution from
the model realizations to that of the mobility network, and
similarly for the communication network. Figure 9a shows
the values of the test results for different values of α and β
(rows and columns of the matrix) and ν = 0.1. Lower K-S
values (red) indicate more similarity, and higher K-S values
(blue) indicate less similarity. The average modularity
values for the simulations in figure 9a are shown in figure
9b, ranging from 0 (no modular structure) to 1 (high modular
structure). We find that α = 0.9, β = 1.5 and ν = 0.1 give a good
fit between simulations and observed data. Results for the
K-S statistic with variation of all three parameters are
shown in electronic supplementary material, S1.7 and figures
S10 and S11.
4. Discussion
Understanding the structure and dynamics of groups is an
essential aspect of understanding social interactions gener-
ally. The functioning of human societies arises not only
from the activities of individuals but also from their inter-
action and integration by means of social ties. We analysed
the structure of social ties in the USA using Twitter data
and found multi-scale, self-organized fragments that span
from urban up to national scales for mobility, communication
and hashtag use. Our results show that the structures emer-
ging from these different types of interaction are highly
consistent, revealing that social ties couple the integration
and separation of groups in both physical and virtual
spaces. Despite potential biases in Twitter samples [35,36],
the similarity of the detected communities between mobility
and communication networks shows that the networks reveal
the underlying social structure.

We also constructed a model of network growth that is
consistent with the statistical property of the emergence of
the observed patterns from the Twitter data. Our model
shows that social fragmentation may result from short-
distance interactions, in support of hierarchical models of
social network formation [69]. However, this mechanism
alone does not explain the emergence of highly connected
places such as cities. We model the emergence of cities
using preferential attachment and spatial growth mechan-
isms, which increase heterogeneity in degree distribution
but may destroy spatial fragmentation if cities grow large
enough. Other generative models can also create fat-tails
and power-law behaviours. For example, the emergence of
city centres can also be modelled as processes of optimization
of social interactions and information flows or as outcomes of
multiplicative growth mechanisms [70].

The gravity model [71,72] describes how the strength of
mobility between two locations is directly related to the
population density of those locations and inversely related
to the distance between the locations, each of which is a
power-law relation. Reported values for the scaling
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exponents vary in the range 0.5–2.0 depending on the system
[2,10,13,34,42,73]. Thus, the gravity model predicts that cities
with higher population densities attract higher mobility.
However, an important limitation is that the gravity model
may overestimate mobility from a low-density population
to a high-density population, limiting its applicability over
wide geographical areas [14]. Furthermore, the gravity
model does not allow for cluster growth or changes in the
population of locations. We overcome these limitations by
creating a model incorporating geographical distance gravity
with preferential attachment and spatial growth.

The formation of groups and their interactions are inti-
mately related to the formation of individual identity
through self-identification and adoption of group norms
and narratives. Thus, while individual identities are highly
complex and unique, there are shared patterns among mem-
bers of self-associating groups. These common patterns
define the group identity, which may involve linguistic, cul-
tural, economic, opinion or interest differences from other
groups. To investigate divergence of shared social experience,
we analysed hashtag use by location. Hashtags are a means
of discussing shared experiences and ideas, aspects of
group formation. Our analysis demonstrated that many of
the communities from the mobility or communication
networks have also distinct hashtag use. This suggests that
the communities shared experiences also diverge from other
communities.

When we further examine the mobility and communi-
cation networks at different scales (figures 4 and 5), we
observe that many communities follow state lines, but a
few do not, suggesting other forces driving community for-
mation. The large metro area around St Louis, MO creates a
community that spills across the Mississippi River and thus
the Missouri (MO)-Illinois (IL) state line (mobility network:
γ≈ 0.7–20, communication network: γ≈ 1). Eastern and wes-
tern Pennsylvania (PA) splits into two communities, roughly
along the Appalachian mountain boundary (mobility net-
work: γ≈ 0.4–1, communication network: γ≈ 0.6–1).
California (CA) splits into northern and southern commu-
nities (mobility network: γ≈ 0.7–1, communication network:
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γ≈ 2), following a known cultural and economic divide
[74,75]. The area of eastern Idaho (ID) combines with Utah
(UT) (mobility network: γ≈ 0.3–0.7, communication network:
γ≈ 0.7–2), corresponding to the area of historical Mormon
settlement [76]. Geographers have proposed that many cul-
tural, political and religious divisions trace back to the
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original settlers in each area [77], such that America can be
divided into corresponding cultural regions or ‘nations’
[78], which has largely been supported by recent genetic
studies of the US population [79]. Our observations also sup-
port that the communities we observe reflect geographical,
cultural and economic forces that can supersede admini-
strative boundaries in some locations, although state
boundaries remain an important factor in social interactions.

Recent trends seem to be accelerating the forces of com-
munity formation and divergence we observe. These forces
include economic shifts, political polarization, and the rise
of social media. Analyses of work commutes have supported
the rise of ‘megaregions’, interconnected labour markets with
large cities as hubs, reminiscent of the communities we
observe [80]. Migrations from one megaregion to another
may be motivated by economics, such as the migration over
the last decade from the Northeast towards the mountain
West and Southwest, which have offered better job prospects
and lower housing prices [81]. In addition to economic move-
ments, an increase in political self-sorting behaviour has been
observed, with people physically moving nearer to like-
minded individuals [82]. The percentage of people who
identify as ‘consistently’ liberal or conservative has doubled
to over 20% in the past two decades, and these individuals
express preferences to live near to, be close friends with,
and marry those of the same political persuasion [83].
Social media may be exacerbating this polarization, creating
spaces in which users interact with like-minded individuals
and ignore opposing opinions [4]. Future work will need to
examine how patterns of group formation change and
whether cultural, political, or economic factors drive this
polarization.

Moving forward, there are at least two strategies for pol-
icymakers seeking to address social fragmentation in the
USA. One is to fight social fragmentation by promoting inter-
group connection and uniformity in society. The other is to
recognize that social fragmentation is present and to incor-
porate it into policy decisions. This means adopting a
policy of localism, which involves tailoring policy approaches
to each specific area and fostering participation from local
political groups [84]. Our analysis suggests that division
into two political groups (e.g. Republican and Democrat) is
not sufficient in the US today and that subgroups may require
partial local autonomy to address the multi-scale divisions
present in society.
5. Conclusion
In summary, we have used geo-located Twitter data to gener-
ate networks of US mobility, communication and hashtag use
and to explore how networks fragment at multiple scales. We
also developed a model of network growth that incorporates
the properties of geographical distance gravity, preferential
attachment, and spatial growth and successfully replicates
statistical properties of the social fragmentation patterns
observed in the data. Overall, our analysis demonstrates
there are many boundaries along which fragmentation of
US society may be taking place. Moreover, this fragmentation
represents a multi-factorial and dynamic process that is
ongoing. It is an important question how social fragmenta-
tion at multiple levels will affect the stability and
dynamism of US society in the future.
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