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Understandinghowcells proliferate,migrate anddie in various environments is
essential in determining how organisms develop and repair themselves.
Continuum mathematical models, such as the logistic equation and the
Fisher–Kolmogorov equation, can describe the global characteristics observed
in commonly used cell biology assays, such as proliferation and scratch
assays. However, these continuum models do not account for single-cell-level
mechanics observed in high-throughput experiments. Mathematical modelling
frameworks that represent individual cells, often calledagent-basedmodels, can
successfully describekeysingle-cell-level features of these assays but are compu-
tationally infeasible when dealing with large populations. In this work, we
propose an agent-based model with crowding effects that is computationally
efficient and matches the logistic and Fisher–Kolmogorov equations in par-
ameter regimes relevant to proliferation and scratch assays, respectively. This
stochastic agent-based model allows multiple agents to be contained within
compartments on anunderlying lattice, thereby reducing the computational sto-
rage compared to existing agent-based models that allow one agent per site
only. We propose a systematic method to determine a suitable compartment
size. Implementing this compartment-based model with this compartment
size provides a balance between computational storage, local resolution of
agent behaviour and agreement with classical continuum descriptions.
1. Introduction
Cell-level processes, including proliferation, death and migration, drive tissue-
level processes during regeneration, development and repair [1–3]. Traditionally,
mathematical models of development and repair account for such tissue-level pro-
cesses by modelling the cell population density with ordinary differential
equations (ODEs) [4–7] and partial differential equations (PDEs) [8–10]. These
continuum descriptions can be parametrized to predict the cell population density
growth profile in commonly used cell biology assays, such as proliferation assays
[5–7,11,12] and scratch assays [8–10,13,14]. In a proliferation assay (figure 1), cells
are seeded uniformly on a two-dimensional substrate. Due to this initial place-
ment of cells (figure 1a,c), there are no macroscopic spatial gradients in cell
population density at the beginning of the experiment. As the experiment pro-
ceeds (figure 1b,d), individual cells undergo movement and proliferation events,
with the net result being a gradual increase in the density of the monolayer
towards some maximum carrying capacity density. A common mathematical
model to describe these proliferation assays is the logistic equation [4–7],

dC(t)
dt

¼ lC(t) 1� C(t)
K

� �
, (1:1)

where C(t) is the cell population density at time t≥ 0, λ > 0 is the cell proliferation
rate and K> 0 is the carrying capacity. In a scratch assay (figure 2), a uniform
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Figure 1. Images of cell proliferation assays. Images in (a,c) show a cell proliferation assay with epithelial 3T3 fibroblast cells (cell line 1) [15], while images in (b,d )
show a cell proliferation assay with mesenchymal MDA-MB-231 breast cancer cells (cell line 2) [16]. The location of cells is highlighted with a yellow marker. The
size of images is 640 μm × 480 μm. All images reproduced with permission from [6]. (Online version in colour.)
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Figure 2. Images of a scratch assay. Images in (a–e) show the progression of
a scratch assay performed with epithelial C4-2B prostate cancer cells (cell line
3) [17]. The size of images is 1800 μm × 300 μm. The fronts of cells move
towards the centre of the initially vacant region as time progresses. All
images reproduced with permission from [14].
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scratch is made in a cell monolayer and observations are made
of the time-dependent movement of the resulting fronts of cells.
As the initial scratch creates macroscopic spatial variation in the
monolayer, the cell density evolves in both time and space. A
common mathematical model to describe these scratch assays
is the Fisher–Kolmogorov equation [8,9,13,14,18,19],

@C(x, y, t)
@t

¼ lC(x, y, t) 1� C(x, y, t)
K

� �

þDr2C(x, y, t), (1:2)

where C(x, y, t) is the cell density at time t and position (x, y),
and D> 0 is the diffusivity of the cell density.
While equations (1.1) and (1.2) can match the evolution of
cell population densities in experiments [8], these models
focus exclusively on the characteristics of the global cell popu-
lation. However, recent technology [9,14,20,21] has made it
possible to perform these assays in a high-throughput
fashion, allowing hundreds of identically prepared prolifer-
ation or scratch assays to be simultaneously performed, as
well as to collect single-cell-level data from these assays.
With the availability of single-cell-level data, including real-
time tracking of cells [20,21], different types of mathematical
models that focus on cell-tracking and single-cell-level mech-
anics are desirable. This modelling approach is especially
important since cell-tracking technology is not always accu-
rate, especially in experiments where the cell density is
high [22,23]. A convenient way to model individual cells is
in a stochastic mathematical framework; these models are
often called stochastic agent-based models [5,7,19,24,25],
whereby cells are modelled as agents, often constrained to
an underlying lattice.

A common spatial discretization for stochastic agent-based
models [5,7,19,24,25] involves choosing the lattice spacing to be
equal to a typical cell diameter. This spatial discretization is a
natural choice when agent-based models include crowding
effects, often referred to as an exclusion process, since lattice sites
are limited to binary occupancy of a single agent. However,
employing these models with this level of local resolution can
be computationally infeasible for a large number of agents [26],
whereas the computational storage of the analagous continuum
model description is independent of the number of agents. This
demand of large computational storage motivates us to consider
other spatial discretizations. For instance, one could instead
choose the lattice spacing to be m times the size of a typical
cell diameter, where m> 1 is an integer, allowing multiple
agents to be accommodated within each lattice compartment.
An immediate consequence of choosing m> 1 is a reduction in
computational storage, since the computationalmemory require-
ment reduces from O(N ), where N is the number of agents, to
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Figure 3. Choices of compartment size in the CBM. Images of proliferation assays using cell lines 1 and 2, from figure 1c,d, are shown in (a,e), respectively. Images
in (b)–(d ) show various discretizations of the arrangement of cells in (a) with m = 1, 4, 8, respectively. Images in ( f–h) show various discretizations of the
arrangement of cells in (e) with m = 1, 4, 8, respectively. (Online version in colour.)
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O(N =m2), where N =m2 is the number of compartments. How-
ever, this reduction in computational storage comes at the cost
of losing local agent resolution, so the key question is: how do
we choose this lattice compartment size to capture local agent
dynamics while still being computationally efficient?

In this work, we propose a modification to previous
descriptions of stochastic agent-based models on lattices (e.g.
[5,7,19]) to: (i) allow for computationally efficient simulations,
(ii) capture local agent dynamics, and (iii) provide reliable
agreement of the average agent density to traditional conti-
nuum model descriptions. This compartment-based model
(CBM) discretizes space using lattice compartments with m> 1
(figure 3). The CBM also encodes additional biologically
inspired features, such as crowding effects, whereby potential
movement and proliferation events cannot occur if the target
compartment is fully occupied with agents. Inclusion of
crowding distinguishes the CBM from other agent-based
models that describe reaction–diffusion processes [27–34]
and provides additional biological realism, since many
experimental observations confirm that crowding effects are
very important in proliferation assays and scratch assays
[1,3,5,6,11].

We compare the CBM with ODE and PDE descriptions,
since traditional continuum models provide well-understood
explicit solutions to key features of experiments, such as the
temporal evolution of the agent density [5–8,11,12,19,24,25].
We do this by examining the continuum limit of the CBM,
which describes the salient features of the CBM in the limit
when the number of lattice sites is large [5,7,11,19,24,25]. We
explore how the predicted average density of agents changes
for different compartment sizes. In particular, with larger m,
the CBM allows us to retain the use of traditional continuum
descriptions when cell clustering is either absent (figure 1a,b)
or present (figure 1c,d). Previous examination of stochastic
agent-based models [5,7,19] reveals that when the prolifer-
ation-to-motility rate ratio is not sufficiently small, clustering
develops and the resulting agent density profile no longer
matches the solution of the continuum limit when m = 1
(equations (1.1) and (1.2)). However, the CBM avoids this dis-
agreement by using a sufficiently large compartment size. We
show that, for a suitable choice of m, the average agent density
determined by the CBM agrees well with the solution
of the continuum limit and provides a balance between
computational storage and local agent information.
2. Model
We begin by presenting the CBM on a two-dimensional
square lattice (figure 3) to describe simulations of both pro-
liferation and scratch assays. Additional results (electronic
supplementary material) demonstrate how the CBM general-
izes to three-dimensional lattices that are relevant for
three-dimensional assays.

2.1. Lattice discretization
As we focus on employing the CBM to describe two-dimen-
sional assays (figure 3), we consider ways to discretize an
ID̂� JD̂ rectangle with a square lattice. Here, D̂ is a typical
cell diameter (20–25 μm [6]), implying that there can be at
most N ¼ IJ agents on the lattice under square packing.
To compare different cell lines with different cell diameters,
we non-dimensionalize the lattice to have unit length spacing
by setting D̂ ¼ LD, where Δ = 1 and L is the cell diameter
[5,6,25]. We focus on non-dimensional lattices and represent
the location of the top right corner of each site in
Cartesian co-ordinates as (xi, yj) = (iΔ, jΔ), where i = 1,…, I
and j = 1,…, J.

The CBM discretizes this underlying lattice into compart-
ments. These compartments, of size mΔ ×mΔ, can contain up to
m2 agents. To ensure that the dimensions of the original
ID̂� JD̂ rectangle remain consistent under this discretization,
we have X= I/m compartments in the x-direction and Y= J/m
compartments in the y-direction. We index each m×m compart-
ment with co-ordinates (xi, yj) = (i mΔ, j mΔ), where i = 1,…, X
and j= 1,…, Y. While the total number of compartments in the
CBM is N =m2, the maximum number of agents on the lattice
stays at N .

The CBM is an extension of previous agent-based models
with crowding [5,7,19], in which each compartment can be
occupied by at most one agent (m = 1). Here, the distinguishing
feature of the CBM is the fact that each compartment can be
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occupied bymore than one agent whenm > 1 and the key ques-
tion is howwe choosem to reduce computational storagewhile
retaining sufficient local resolution. In figure 3, snapshots of
proliferation assays are used tomotivate the choice ofm. As pre-
viously mentioned, the CBM with m = 1 (figure 3b,f) demands
significant computational memory for large numbers of
agents. Contrastingly, employing the CBM with m > 1 (figure
3c,d,g,h) reduces the computational storage. Both of these
advantages, along with a systematic method of determining
an appropriate compartment size, will be discussed in §3.

2.2. Compartment-based model
Since crowding effects are important in cell biology assays
[5,7,9,19,25], theCBM is an exclusionprocess, as bothmovement
andproliferation processesmayonly takeplace if the target com-
partment (i.e. either the same or an adjacent compartment of the
agent undergoing these processes) has sufficient space to accom-
modate potential motility and movement events. For lattice-
based models, such as the CBM, the excluded volume is the
volume occupied by agents; however, this equivalence is not
true for lattice-free agent-based models [35,36]. At any time, a
randomly chosen isolated agent has a transition rate rm per
unit time of moving (either within the same compartment or
to an adjacent compartment), a proliferation rate rp per unit
time of giving rise to another agent (placed either in the same
or an adjacent compartment), and a death rate rd per unit time
(agent is removed). We assume that an agent is equally likely
to be found at any particular location within a particular com-
partment; this is also known as a well-mixed assumption. The
probabilityof an isolated agent attempting tomoveorproliferate
to an adjacent compartment, rather than remainwithin the same
compartment, is 1/m. This probability can be interpreted as the
number of configurations, for an agent placed inside a well-
mixed m ×m compartment, that result in the agent moving or
proliferating into an adjacent compartment, 4m, divided by the
total number of configurations, 4m2. The probability that there is
sufficient space available in the compartment selected for the
agent to move or proliferate into is 1−N/m2, where N is the
number of agents in this compartment.We implement reflecting
conditions along all boundaries of the lattice, whichmodels zero
net flux of cells into orout of the domain [9,21,37]. The initial pla-
cement of agents is discussed further in §§3.1 and 3.2. Using the
Gillespie algorithm [38], we simulate the evolution of agents as a
function of time and space using algorithm 1.

To quantify data from the CBM, we introduce appropriate
notation. To describe a proliferation assay, we define Qm(t) as
the total number of agents on the lattice discretized with a
compartment size m at time t and from a single realization of
the CBM. When comparing data from the CBM with the con-
tinuum limit description for a proliferation assay, we average
data from the CBM using

hCm(t)i ¼ 1
PN

XP
p¼1

Qm,p(t), (2:1)

where Qm,p(t) is the pth identically prepared realization of Qm(t)
and P is the total number of identically prepared realizations. To
describe a scratch assay, we define Qm(xi, yj, t) as the number of
agents in each compartmentof sizem locatedat co-ordinates (xi,yj),
at time t, from a single realization of the CBM. Motivated by the
scratch assays in figure 2, we examine spatially dependent initial
conditions that are approximately uniform in the y-direction
[9,21,37,39]. To compare data from the CBMwith the continuum
limit description for a scratch assay with y-independent initial
conditions, we average data in the y-direction alone using

hCm(x, t)i ¼ 1
PY

XY
j¼1

XP
p¼1

Qm,p(xi, y j, t), (2:2)

where Qm,p(xi, yj, t) denotes the number of agents in a compart-
ment at position (xi, yj) in the pth identically prepared realization.

2.3. Continuum limit
An aim of this work is to formulate and implement the CBM so
that the averaged data from this stochastic model are
consistent with commonly used traditional continuum
descriptions. Following [24,25,28], we examine the limit
when the number of sites is large. In this limit, we can arrive
at mathematical descriptions of the time-dependent average
density by constructing approximate conservation statements
and taking appropriate limits [24,25,28]. Furthermore, by
assuming that the occupancy status of lattice sites is indepen-
dent (normally referred to as the mean-field approximation
[5,7,11,19,24,25]), the continuum limit of the CBM with m = 1
[24,25] is the two-dimensional analogue of the Fisher–Kolmo-
gorov equation (equation (1.2)) on the domain [1, I ] × [1, J ],
where λ = rp− rd, K = 1− rd/rp and D = rmΔ

2/4. For the CBM,
we require that equation (1.2) be modified for m > 1; further
details of these modifications appear in §3.

In the previous examination of continuum limits of sto-
chastic agent-based models with crowding, such as the
CBM with m = 1 [5,25], agreement between the solution of
equations (1.1) and (1.2) and the averaged agent density
from the stochastic model requires rp/rm≪ 1 (figure 4a–d ).
This agreement occurs because the mean-field approximation
is valid in this parameter regime [5,7,19]. In §3, we will show
that, with a suitable choice of m, agreement between the sol-
ution of the continuum limit and the CBM average agent
density is excellent, even when rp/rm is not sufficiently
small and clustering is present (figure 4e–h).
3. Results and discussion
It now remains to show how one should choose m. Since the
CBM only keeps track of the occupancy of compartments,
rather than individual agents’ locations, the computational
storage decreases as m increases. However, this comes at
the cost of losing local agent resolution. Consequently, it is
important to determine the minimum compartment size for
which the average agent density of the CBM reasonably
matches the solution of the continuum limit.

3.1. Simulating cell proliferation assays using the
compartment-based model

We begin by employing the CBM in a setting that is appropri-
ate for modelling a cell proliferation assay. Here, we focus on
I × I lattices (i.e. I = J), so that N ¼ I2. The proliferation assay
begins with uniformly seeded agents, with no macroscopic
gradients in agent density (figure 4a,e). In the context of the
CBM, each site is initially populated uniformly at random,
with some user-specified probability. Because of these trans-
lationally invariant initial conditions, the net flux of agents
entering and leaving each compartment due to migration is
zero and r2C ¼ 0 [9,21,37]. Consequently, C(x, y, t) simplifies
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to a function of time only, C(t), and equation (1.2) simplifies
to equation (1.1), which can be written as

dC(T)
dT

¼ C(T) 1� C(T)
K

� �
,

with solution C(T) ¼ KC(0)eT

K þ C(0)(eT � 1)
,

9>>>=
>>>;

(3:1)

where T= λt and C(0) is the initial agent density. Previous
examination of stochastic models with m = 1 and rp/rm≪ 1
[5,7,13,19] reveals that the averaged model data agree well
with the solution of the continuum limit, equation (3.1).
Under these conditions, pairwise correlations between the occu-
pancy status of lattice sites are negligible. From [5,7,13,19], we
note that pairwise correlations are a local effect and need only
be considered for small distances between agents.

To quantify how far sites must be separated before the
correlation in occupancy is negligible, we examine the corre-
lation function, F(s, T ) [5], using the CBM with m = 1. The
correlation function is

F(s, T) ¼ Q(2)
s (T)N 2

x(2)s Q1(T)
2 : (3:2)

Here, Q(2)
s (T) is the number of pairs of agents separated on the

underlying m = 1 lattice by the Euclidean distance s at time T;
x(2)s is the number of distinct lattice site pairs separated by a
distance s. By denoting the discrete two-dimensional
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Figure 4. Simulations of two cell proliferation assays using the CBM with m = 1. The first simulation, shown in (a–d ) with rm = 1 and rp = 0.01, results in the
absence of clusters. The second simulation, shown in (e–h) with rm = 1 and rp = 1, results in clear cluster formation. In both simulations, each site of the corre-
sponding 120 × 120 lattice is initially populated uniformly at random with probability 0.05. To compare simulations with different proliferation rates, we show
results on the non-dimensional timescale T = λt = (rp− rd)t, where rd = 0.1rp. (Online version in colour.)
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Euclidean distance s as
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
‘21 þ ‘22

q
, where ‘1 = 1,…, I and ‘2 =

0,…, ‘1 to prevent double-counting, we express x(2)s as

x(2)s ¼ x(2)ffiffiffiffiffiffiffiffiffi
‘21þ‘22

p ¼ 2(I � ‘1)(I � ‘2)(2� d‘1‘2 � d‘20), (3:3)

where δij is the Kronecker delta. To simplify notation, we will
refer to the set of discrete Euclidean distances separated byffiffiffiffiffiffiffiffiffiffiffiffiffiffi

‘21 þ ‘22

q
as fskg, k � 1.

If all sites are uncorrelated, F = 1, which is implicitly
assumed in deriving the continuum limit descriptions in
§2.3 [5,7,19]. To make an appropriate choice of m, we wish
to determine the threshold correlation radius, s�k (T), beyond
which pairwise correlations are sufficiently negligible:

s�k (T) ¼ min
k

F(sk, T)
���jF(sk, T)� 1j , e

n o
, (3:4)

for some user-specified tolerance ϵ > 0. Furthermore, we
define the maximal correlation radius as

s�
k ¼ max

T
hs�k (T)i: (3:5)

Here, s�
k is implicitly a function of rm, rp, rd and C(0), and

hs�k (T)i is the average of s�k (T) over many realizations of the
CBM with m = 1.

The maximal correlation radius, s�
k , is straightforward to

compute, with the advantage that it relies only on quantities
that are available during a typical simulation of the CBM
when m = 1, for any rm, rp, rd and C(0). We now show how
to determine a suitable compartment size m from s�

k . There
are many ways to choose the minimum compartment size,
denoted as m*, from s�

k , provided that m* is a monotonic
non-decreasing function in s�

k and that m* = 1 when the
mean-field approximation is satisfied up to the tolerance e.
We will consider the function

m� ¼ d2s�
k�1e, (3:6)

since all significant pairwise correlations are contained within a
compartment diameter of at least 2s�

k�1. Therefore, any choice of
m≥m* ensures that the mean-field approximation is satisfied
up to the tolerance ϵ. We note that if the mean-field approxi-
mation is satisfied up to the tolerance e for all time, then
s�
k ¼ 1, i.e. k = 1. From equation (3.6) and defining s�

0 ¼ 1=2,
we have that m* = 1 is the minimal compartment size when
the mean-field approximation always holds up to tolerance e.

By definition, the choice of e will influence how large the
maximal correlation radius s�

k becomes. However, there is
good agreement between the average agent density of the
CBM with m = 1 and the solution of the continuum limit
when rp/rm≪ 1 [5,7,19], and we should choose ϵ in such a
fashion that s�

k � 1 in this parameter regime. Previous results
in [5,7], as well as the electronic supplementarymaterial of this
work, show that when F < 1.5, there is excellent agreement
between the CBM (m = 1) and the solution of the continuum
limit, implying that e < 0.5 is sufficiently small. Indeed, as
shown in figure 5a, employing the CBM in this parameter
regime with larger compartment sizes (m = 4, 6) does not
significantly affect the agreement between 〈Cm(T )〉 and C(T ).

Knowing that s�k (T) is constructed to provide an agreement
between the average agent density of the CBM and the solution
of the continuum limit where clustering is absent, we now
examine parameter regimes where agent clustering is present.
As is evident in figure 4e–h, clusters of agents are visually dis-
tinct when rp/rm = 1, providing a suitable parameter regime to
test how robust the CBM is. Results in figure 5b confirm that the
agreement between 〈Cm(T )〉 and C(T ) improves as the com-
partment size m increases. Additionally, we note that the
threshold correlation distance s�k (T) predicts that s�

k �
ffiffiffi
5

p

(yellow curves, figures 5c,d), implying, from equation (3.6),
that m� � d2 � 2e ¼ 4 is the minimum compartment size to suf-
ficiently contain pairwise correlations in this parameter regime.
Therefore, we do not expect that the average agent density from
the CBM would agree with the solution of the continuum limit
in this parameter regime for m= 1. Nevertheless, a compart-
ment size m larger than m* (say, m= 6, green curve in
figure 5b) is sufficient in obtaining reasonable agreement.
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Finally, we examine how hs�k (T)i varies with rp/rm and C(0).
Without lossofgenerality,we set rm= 1andexamine the influence
of rp and C(0) on hs�k (T)i. As shown in figure 5c, the maximum
value of hs�k (T)i, which is s�

k , decreases as rp decreases. This is to
be expected; a small rp/rm corresponds to parameter regimes
where the average agent density of the CBM with
m= 1 matches the solution of the continuum limit. Furthermore,
this same phenomenon happens when C(0) is increased (figure
5d). Therefore, in parameter regimes where C(0) is small, or
when rp/rm is sufficiently large,m* > 1 and thus disagreement is
expected. Consequently, choosing a compartment size m>m* in
the CBM reduces computational storage requirements, provides
better agreement with the solution of the continuum limit when
agent clustering is present and retains local agent behaviour.
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3.2. Simulating scratch assays using the
compartment-based model

Now having demonstrated that, for a suitable m and e, the
average agent density of the CBM agrees with the solution
of the continuum limit for cell proliferation assays, we exam-
ine how the CBM can be used to describe scratch assays by
employing spatially varying initial conditions (figure 6). We
consider simulations of scratch assays where clustering is
absent (see cell line 1 in figures 1 and 6a–e) and simulations
of scratch assays where clustering is present (cell line 2 in
figure 1 and 6f –j ). To apply the CBM, we must first consider
how the diffusion term in equation (1.2), Dr2C, changes
when varying m. Previous examination of the continuum
limit of diffusion-only compartment-based models [28,29]
reveals that the jump rates between adjacent compartments
scale with 1/m2, for m > 1. However, the models proposed
in [28,29] assume that an isolated agent will always leave
its compartment, rather than having non-zero probability to
remain within its compartment. Since agents in the CBM
attempt to move out of a particular compartment with prob-
ability 1/m, we divide the scaled diffusivity proposed in
[28,29], m2D, by m. Therefore, the diffusivity D of the CBM
continuum limit with m = 1 becomes mD for the CBM conti-
nuum limit with m > 1, and the continuum limit description
of CBM simulations of scratch assays can be written as

@C(x, T)
@T

¼ C(x, T) 1� C(x, T)
K

� �
þ D̂

@2C(x, T)
@x2

, (3:7)

where D̂ ¼ mD=l. This continuum description is valid when
the initial conditions are independent of y [39], such as in
figures 2, 6 and 7.

Unlike in §3.1, it is less obvious how to determine m* when
describing scratch assays. This is because the threshold corre-
lation radius (s�k from §3.1) will depend on both T and x, due
to the spatially dependent initial conditions. While there are
manyways one could determinem* from s�k (x, T), for simplicity,
we choose the same m* determined from equation (3.6) in §3.1.
When rp/rm≪ 1 (e.g. rp = 0.01, figure 7a–e), m* = 1 and the
average agent density of the CBM, 〈Cm(x, T )〉, agrees well with
the solution of equation (3.7) for different compartment sizes
and different times. However, for larger proliferation rates
(e.g. rp= 0.1, figure 7f –j), the fronts in the CBM become more
disperse as m increases. While the CBM with m = 1 predicts
slower-moving fronts than the solution of the continuum limit
(figure 7g,h), the CBM with an intermediate compartment size
(m=m* = 4) agrees well with the solution of the continuum
limit on the timescale shown in figure 7i,j. For larger compart-
ment sizes, the fronts in the CBM are overly disperse and the
agreement with the solution of the continuum limit diminishes.
These benefits continue to hold for CBM simulations of scratch
assays with different initial cell densities (electronic supplemen-
tary material). Nevertheless, the average agent density of the
CBM, 〈Cm(x, T )〉, can produce qualitatively similar results to
the solution of the associated continuum limit for a suitable com-
partment size, while requiring less computational storage than
previously described stochastic agent-based models.
4. Conclusion
In thiswork,wepropose a computationally efficient andaccurate
agent-basedmodel that can beused to simulate two-dimensional
cell biology assays. This CBM stems from the previous examin-
ation of cell proliferation assays, where an initially uniform
distribution of biological cells move and proliferate to give rise
to a monolayer of cells whose density increases with time. We
also apply the CBM to scratch assays, which are prepared by
scratching a monolayer of cells and observing the movement of
the resulting fronts of cells. The CBM faithfully describes the be-
haviour of individual cells in these cell biology assays while
requiring less computational overhead than other lattice
models [5,7,19] when modelling large numbers of cells. Further-
more, in parameter regimes that are prone to cell clustering, the
average cell density determined by these previous models does
not always agree with their continuum description.

We show that the CBM is more computationally efficient
than previously proposed exclusion process models on lattices
through the discretization of the underlying lattice into
compartments containing multiple agents. These mesoscale
compartments in theCBMprovide abalance between traditional
continuummodels and other agent-based on-lattice models that
demand significant computational storage for large numbers of
cells. Furthermore, when compartments larger than a threshold
size are employed, the CBM agrees well with the continuum
description for all physically relevant parameter regimes, includ-
ing when cell clustering is present. We find that this threshold
compartment size is the lattice distance beyond which pairwise
correlations of agents are negligible and can be computed
directly from the lattice-basedmodel, rather than relying on con-
tinuum approximations. Furthermore, this threshold distance is
a function of the cell proliferation-to-motility ratio, as well as the
initial cell density. We see good agreement between the average
agent density of the CBMand the continuumdescription both in
translationally invariant environments (cell proliferation assays)
and with spatially dependent initial conditions (scratch assays).

Further extensions to the description of the CBM can be
made when comparing to other cell biology experiments.
For example, three-dimensional gel proliferation assays
describe the proliferation of agents in a three-dimensional
material. By considering a three-dimensional setting (see elec-
tronic supplementary material), we can describe these gel
proliferation assays using the CBM. Other kinds of assays
observe the chemotactic movement of cells. By biasing the
agent movement between compartments (see electronic sup-
plementary material), we can describe these chemotactic
assays using the CBM. However, the description of the CBM
can be further extended to represent additional phenomena
present in other biological experiments, including (but not lim-
ited to) lattice-free models with crowding, modelling multiple
cell types with different proliferation and motility rates, model-
ling multiple cell types of different sizes and describing
Allee-type dynamics within a single cell type.
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