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SUMMARY

We developed a universal method termed OnCELISA to detect cytokine secretion from individual cells
by applying a capture technology on the cell membrane. OnCELISA uses fluorescent magnetic nano-
particles as assay reporters that enable detection on a single-cell level in microscopy and flow cytom-
etry and fluorimetry in cell ensembles. This system is flexible and can be modified to detect different
cytokines from a broad range of cytokine-secreting cells. Using OnCELISA we have been able to select
and sort highly cytokine-secreting cells and identify cytokine-secreting expression profiles of different
cell populations in vitro and ex vivo. We show that this system can be used for ultrasensitive moni-
toring of cytokines in the complex biological environment of atherosclerosis that contains multiple
cell types. The ability to identify and select cell populations based on their cytokine expression char-
acteristics is valuable in a host of applications that require the monitoring of disease progression.

INTRODUCTION

Probing how cells secrete cytokines as they respond to the surrounding signals is a major challenge (Liu
et al.,, 2016; Zhao et al., 2011). Given the important roles of cytokines across the biological spectrum,
including the control of cell replication and apoptosis, cancer, atherosclerosis, and tissue regeneration
and in the modulation of immune reactions (Miiller et al., 2002; Nicola, 1994), it is critical to advance the
understanding of the heterogeneity of cellular cytokine release at the level of single cells (Bienvenu
et al., 2000). This inspired us to create a simple and sensitive single-cell cytokine analysis platform that en-
ables a nuanced characterization of individual cytokine-secreting cells as well as quantitative analysis of cy-
tokines secreted from each cell. Our new approach is sensitive; it does not appreciably affect cell secretion,
and labeled cells are able to proliferate.

The current leading approach for cytokine detection is enzyme-linked immunosorbent assays (ELISA), which de-
tects average cytokine concentration in solutions of culture media, blood, plasma, synovial fluid, or homogenized
cell lysates or tissues, typically in the picomolar range (Schenk et al., 2001). An example commercial assay
(Achard et al., 2003) detects mouse interleukin (IL)-6 cytokine with a sensitivity of 18.2 pg mL~"ina5-pL sample,
whereas a high-throughput multiplex lllumina technology detects a panel of 96 cytokines at concentrations from
0.5pgmL™"to 14 pg mL~" in 50-uL samples (Quinn et al., 2008). These assays cannot detect specific cytokine
secretions from single cells and only provide information about the average cytokine concentration, which re-
flects the total expression over time (dependent on the stability of the measured protein). Cellular cytokine assays
typically use intracellular transport inhibitors such as brefeldin A (Biosciences), which prevent cytokine release,
and consequently kill the cells, considerably limiting the scope of their application. Inhibitor-free technologies
(Brosterhus et al., 1999; Wilson et al., 2007) have only been demonstrated in T cells.

Here, we present a universal approach to highly sensitive detection of trace cytokine secretions from indi-
vidual, single live cells, which we call “OnCELISA.” Our OnCELISA assay extends the ELISA approach by
utilizing the cell surface to capture the secreted molecules where they can be detected by fluorescent la-
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Figure 1. OnCELISA Assay

(A) Assay schematics where magnetic fluorescent nanoparticles are captured by antibodies on the biotinylated surface of
cells. (B and C) Assay implementation in RAW cells shown by confocal laser scanning microscopic images at two
magnifications. Green indicates successful OnCELISA labeling with fluorescent magnetic nanoparticles; blue, Hoechst;
red, cell mask deep red membrane staining.

magnetic nanoparticles as assay reporters. This enhances the sensitivity of OnCELISAto 0.1 pg mL™", which
is 10-fold more sensitive than with standard fluorophore labels. Our assay uniquely combines the advan-
tages of both cell-surface affinity capture (Kenney et al., 1995) and magnetic cell sorting/separation (Tibbe
et al., 2002). Using mathematical modeling and single-cell experiments, we confirmed that OnCELISA pre-
dominantly detects cytokine secretions from the same cell where they were captured.

With these new capabilities of OnCELISA we were able (1) to assess the ability of individual cells to secrete
cytokines, (2) to distinguish highly secreting cells from poorly secreting ones, and (3) aided by fluorescence
in situ hybridization labeling of the relevant messenger RNA, to provide insights into the cytokine secretion
dynamics, in particular on the existence of early and late responders to cytokine stimulation. Furthermore,
brightly fluorescent OnCELISA magnetic bead labeling made it possible to detect the ex vivo secretion of
IL-6 from multi-cellular atherosclerotic plague-containing mouse aortae. OnCELISA ex vivo was responsive
to an inflammatory stimulus and to an increase in the stage of atherosclerotic disease development. The
capability to select cells with a range of cytokine secretion levels and the ability to purify cell populations
through identification of cellular expression levels on a single-cell basis may have significant implications
for future cell therapy applications and for tracking disease progression in preclinical models.

RESULTS
Engineering and Testing the Cell-Surface Cytokine OnCELISA Assay

We designed our cytokine capture surface as shown in Figure TA. In our approach, cells first undergo sur-
face biotinylation followed by the attachment of neutravidin and a biotinylated IL-6 capture antibody to
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form the capture surface (Holmes and Al-Rubeai, 1999). The capture surface enables the cytokine mole-
cules secreted by cells to be immobilized on the cell surface immediately upon their release, before
they become diluted in the medium. These captured cytokines are then visualized by fluorescent magnetic
particles functionalized with detection antibodies. Their fluorescence signal indicates the amount of cyto-
kine secretion (Figures 1B and 1C) (see Transparent Methods). The two antibodies required for OnCELISA
(capture and detection) are raised to different epitopes of the target cytokine. Importantly, as we show
later, the cells are not affected and can be cultured after the application of OnCELISA.

The design of the OnCELISA affinity surface was verified by using BV2 microglial cells. Figures STA-S1C
show that the capture antibody is uniformly distributed on the cell surface. The IL-6 detection antibody con-
jugated to fluorescent magnetic nanoparticles (Dragon Green superparamagnetic iron oxide, DG SPIO) via
amide bonds displays similar fluorescence as the unconjugated DG SPIO (Figure S1D). The attachment of
antibodies to the fluorescent magnetic nanoparticles was further confirmed by their increased hydrody-
namic size (951 + 15 nm before and 989 + 10 nm after conjugation) and by zeta-potential measurements
(Figure S2). The DG SPIO-conjugated IL-6 antibodies (DG SPIO IL-6 Ab) retain their affinity to IL-6 upon
conjugation as seen in Figure S3A. The calibration curve in Figure S3B indicates that the OnCELISA assay
with fluorimetry readout is able to detect IL-6 down to 0.1 pg mL™", with a linear range between 0.1 and
1,000 pg mL~".For comparison, the low detection limit of mouse IL-6 in a BD OptEIA ELISA kit is 3.8 pg
mL~", whereas the Cisbio Bioassays product can detect 18.2 pg mL™"(Achard et al., 2003). The assay design
was additionally confirmed using lipopolysaccharide (LPS) stimulation, as shown in Figure S4 where we also
verified negligible (5%) non-specific adsorption and/or uptake of the DG SPIO IL-6 Ab particles (see Table
S1 for a summary of control experiments). Figures S5 and Sé show the location of OnCELISA labeling,
mostly on cell surface, with some cell-type-dependent nanoparticle uptake occurring after labeling, which
does not affect the assay reading (Betzer et al., 2015). The OnCELISA labeling of cells was stable after 12 h
at4°C. All these characterizations indicate that the level of OnCELISA labeling reflects the level of cytokine
secretion from each cell.

Cytokine Secretion from BV2 Cells following Cell Stimulation with Lipopolysaccharide

We characterized IL-6 cytokine secretion from the BV2 cell line by OnCELISA following LPS stimulation
(Figures 2A-2C). Figure 2B shows that only some cells were labeled by OnCELISA, which may indicate
that only this portion of cells were expressing high enough amounts of IL-6. The results of fluorescent
in situ hybridization of the IL-6 mRNA expression (Figures 2E-2G) also indicate variable expression of
IL-6 mRNA in different cells. We verified that the affinity surface on a cell preferentially captures IL-6
from this cell and not from the solution. To show this, OnCELISA was applied to cells with the
capture surface antibody as in Figure 1A, but without LPS stimulation. A high concentration of IL-6 of
200 pg mL™" (100 times higher than the concentration of IL-6 in body fluids) was then spiked into the
medium, following by the DG SPIO_IL-6_Ab. No labeling on the cell surface was observed in microscopic
imaging (Figure 2D). This is consistent with the IL-6 capture antibody on the surface of a cell preferen-
tially capturing the IL-6 molecules from this particular cell immediately after secretion. The capture oc-
curs when the IL-6 molecules are still present in high concentration near the cell membrane, before
they diffuse away. This was confirmed using mathematical modeling of OnCELISA (see Transparent
Methods for vesicular model of cytokine release). These features of the OnCELISA assay make it possible
to differentiate cells secreting high amounts of IL-6 from poorly secreting cells. Furthermore, we used
OnCELISA to monitor the time course of cytokine secretion in functionalized cells stimulated by LPS.
The presence of IL-6 released by the cells into the cell culture medium was consistent with the results
of our IL-6 mRNA assay (Figures 2E and 2F) and confirmed by a standard ELISA assay (Figure 2H).
Both ELISA and OnCELISA indicate that IL-6 secretion by BV2 cells (for cell density of 2.0 x 10° +/—
0.16 cells per mL) increased with the LPS stimulation time, and a maximum level of IL-6 (~493 pg/mL)
was obtained with LPS stimulation for 8 h, thereby further validating OnCELISA. The secretion rate
was constant in the first 4 h, estimated to be 0.6 + 0.2 molecule/s per cell (Figure 2H).

Next, we carried out the OnCELISA assay in a microfluidic chip in which each cell is located in an individual
well, separated from its neighbor by a distance of 25 um. The percentage of the OnCELISA-labeled cells
was 38% + 8%, similar to the labeled fraction in suspended cells discussed below (example results are
shown in Figure 2I). Using this chip we also verified that OnCELISA labeling was observed in the cells
that are simultaneously labeled for IL-6 mRNA (Figures 2E-2G). We found that, generally, more cells
were positive for IL-6 MRNA expression than for [L-6 OnCELISA with 2-h LPS stimulation. This is consistent
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Figure 2. Characterization of LPS-Stimulated BV2 Cells

(A-D) Combined differential interference contrast (DIC) and confocal laser scanning microscopy images of BV2 cells
incubated with OnCELISA labeling (with nucleus Hoechst staining in blue) after 8-h LPS stimulation, before (A) and after
treatment (B and C) with DG SPIO_IL-6_Ab (green) at different magnifications; (D) functionalized cells without LPS
stimulation after spiking 200 pg mL~" IL-6 to the medium solution followed by adding the DG SPIO_IL-6_Ab.

(E and F) IL-6 mRNA expression in BV2 cells detected by fluorescence in situ hybridization staining (orange, AlexFluor 555;
blue, DAPI nuclear stain). Cells were incubated with biotin-incorporated IL-6 cRNA probes at 0 h (E) and 2 h (F) following
LPS stimulation and labeled by streptavidin-AlexaFluor 555 IL-6. At both time points, the cells were expressing varying
levels of mMRNA (very low expression, blue arrow; low expression, green arrow; high expression, orange arrow; very high
expression, red arrow).

(G) Fluorescence intensity histograms (from over 1,000 cells) of MRNA expression in these four classes of cells for 0 h LPS
(top) and 2 h LPS (bottom), with relative brightness limits indicated in the figure.

(H and 1) (H) ELISA of IL-6 for cells after LPS stimulation for different periods of time, and fluorescence intensity for DG
SPIO_IL-6_Ab-labeled cells (OnCELISA) with LPS stimulation for different periods of time (data between 9 and 20 h was
not collected because of no laboratory access at midnight); (I) combined DIC and confocal laser scanning images of a
single-cell chip with wells holding individual cells stained for nuclei (blue, Hoechst), IL-6 mRNA (red), and OnCELISA
(green).

with the expression of IL-6 mRNA being only one of many rate-limiting steps in the process of cellular
expression of the IL-6 protein.

Mathematical Modeling Predicts That OnCELISA on a Single Cell Preferentially Detects Own
Secreted Cytokine Molecules

We explored whether the OnCELISA assay on a specific cell captures the cytokines that originate from
that particular cell or cytokines secreted by adjacent cells. To this aim, we developed a mathematical
model of cytokine secretion from cells (Lacy and Stow, 2011) (see Transparent Methods for details).
The model assumes that the cytokines are released from small (<1 um) secretory vesicles composed
of a high (millimolar range) concentration of cytokines (Stow et al., 2009). Once released, the cytokines
form a hemispherical cloud of molecules diffusing away from the cell, with a radius of R=+/Dt. Here D is
the diffusion constant and t is time since the moment of vesicle rupture. The model makes it possible to
estimate the local cytokine concentration at the cell surface, which is transiently much higher than the
average in the medium. The interaction of cytokines released from the vesicles is further described using
conventional chemical kinetics to evaluate the time constant for the cytokine-binding reaction. The re-
sults suggest that the cytokine reaction kinetics is very fast, because the OnCELISA capture surface is
on the cell membrane, where the cytokine release produces a transiently high cytokine concentration.
In our experimental conditions, we estimate that the binding time constant of 0.4-1.6 s and 63% achiev-
able binding to the affinity surface will take place in the region of radius of 1.3-2.0 um from the ruptured
vesicle. This means that OnCELISA on a cell that is isolated from other cells by more than 2 um detects
only its own cytokines.

OnCELISA-Labeled Highly Cytokine-Secreting Cells Form a Clear Subpopulation that Can Be
Purified

We further demonstrated that the OnCELISA assay is compatible with flow cytometry, so it may be used for
rapidly screening large numbers of cells, distinguishing cell subpopulations, and selecting target cells (Fos-
ter et al., 2007). The OnCELISA assay was applied to BV2 cells, and a subsequent flow cytometry measure-
ment showed that the OnCELISA clearly labels the cells into a distinguishable population, as shown in Fig-
ure 3B, with 38% of the cells in the DG SPIO_IL-6_Ab population. However, the control cells which were
treated with OnCELISA but without the attachment of biotinylated anti IL-6 Ab, did not show the cell pop-
ulation with the fluorescence labelling (Figure 3A). No OnCELISA labelling was observed in the confocal
imaging of the control cells either (Figure 3C). We have also shown that OnCELISA is compatible with
an alternative cell selection methodology, magnetic sorting. Starting from the same LPS-stimulated BV2
cells we were able to select the OnCELISA-labeled subpopulation with a magnetic pen (see Transparent
Methods). As shown in Figures 3D and 3F the OnCELISA labeling efficiency (percentage labeled cells)
and hence detectable cytokine-secreting cells is about 32% + 8%, consistent with the values obtained
by flow cytometry and with single-cell chip data 38% 4 8% (Figure 2I). The OnCELISA labeling efficiency
increased to about 72% + 8% after magnetic sorting (Figures 3E and 3F). Thus, the majority of the labeled
cells can be sorted by flow cytometry or by magnetic sorting.
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Figure 3. OnCELISA Labeling of LPS-Stimulated BV2 Cells

(A-F) Flow cytometry results for (A) control and (B) cells labeled with DG SPIO_IL-6_Ab (OnCELISA). Confocal laser
scanning microscopy images for (C) control, (D) cells labeled with OnCELISA after treatment with LPS, (E) cells selected
out after application of magnetic sorting, and (F) the fluorescent count of control and cells labeled with OnCELISA before

and after magnetic sorting.

The Progeny of Sorted, Highly Secreting Cells Inherits High Secretion

The OnCELISA-labeled magnetically sorted BV-2 cells were cultured further to establish cell viability and prolif-
eration potential. Figures 4A and 4B confirm that cells labeled with DG SPIO_IL-6_Ab can proliferate, as
apparent from the formation of a cell cluster. The sorted cells were then cultured, and the OnCELISA labeling
was applied again, as described in Transparent Methods. Using a fluorescein isothiocyanate (FITC)-avidin assay
we verified that the progeny of the sorted cells remained (partly) biotinylated (Figure S7). Figure 4C shows the
confocal images of the OnCELISA-labeled progeny of the previously sorted cells. The labeling efficiency was
59% + 8%, which is much higher than the 32% + 8% observed in the unsorted cells. This result indicates that
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Figure 4. Differential Interference Contrast (DIC) Microscopy Images of Sorted BV2 Cells after Incubation with
OnCELISA

(A) 3 days and (B) 7 days; (C) combined DIC and confocal laser scanning microscopy images of Dragon Green SPIO_|IL-
6_Ab-labeled progeny of highly cytokine-secreting BV2 cells previously magnetically selected using OnCELISA. The
progeny cells have grown for 7 days after magnetic selection, and they were biotinylated again before labeling.

(D) Changes in IL-6 concentration with LPS stimulation time for all BV2 cells and OnCELISA-selected BV2 cells.

(E-H) Histograms of cell area for all BV2 cells and OnCELISA-labeled BV2 cells before and after magnetic selection. The x
and y axes of (E-H) are the same.

the capacity of the cells to secrete high levels of IL-6 is inheritable. The retention of high IL-6 secretion was also
confirmed by ELISA. Figure 4D shows that the IL-6 concentration secreted by the selected BV2 cells is about
twice that of the BV2 cells before selection, in close agreement with the OnCELISA labeling ratio. Interestingly,
the selected BV2 cells can secrete IL-6 (~0.04 pg mL~" per cell) without LPS stimulation. The OnCELISA-positive
cell subpopulation before and after selection was additionally characterized to document whether biological dif-
ferences exist with unsorted cells. Figures 4F and 4H show that the size histogram of the selected cells shows a
higher proportion of small cells compared with the histogram before the selection (Figure 4E, 4G). This means
that OnCELISA does not select senescent cells that are typically larger (Childs et al., 2015; Starr et al., 2009), but
may select the smaller and younger cells.

Universal OnCELISA that Is Applicable to Other Cell Types and to Other Secreted Products
and Can Simultaneously Detect More than One Cytokine

To present a proof of concept of wide applicability of OnCELISA we applied the assay to other cell types
and other secreted proteins. To this aim, we prepared the IL-6 capture surface shown in Figure 1 on RAW
cells and on adipose-derived mesenchymal stem cells (MSCs). The results of the OnCELISA assay for these
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Figure 5. Detection of IL-6 Using OnCELISA in Atherosclerotic Plaque-Containing Mouse Aortae
Apolipoprotein E~/~ mice were fed a standard chow diet for 16 weeks to promote atherosclerotic plaque development in
their aortae. Excised aortae were digested into single-cell suspensions, and flow cytometry was used to detect the
number of viable IL-6-expressing (FITC-positive) cells. (A and B) Dot blots gated on viable cell number demonstrating the
presence FITC-positive aortic cells following incubation with (A) phosphate-buffered saline (PBS) or (B) LPS and (C) the
change in FITC signal with LPS treatment. * denotes statistical significance, p < 0.06.

cells are shown in Figures 1B, 1C, and S8. Owing to lower IL-6 secretion, the level of OnCELISA labeling for
these two types of cell lines was lower than that for the BV2 cells (Figure S9). We have also tested that On-
CELISA can detect the secretion of another important cytokine, IL-1B (Figure S10). In addition, we verified
that OnCELISA can be simultaneously used with two different color particles and two cytokines (Figure S11).
The ability of OnCELISA to detect more than a single cytokine is important as cytokines often work syner-
gistically (Kulbe et al., 2012).

OnCELISA Detecting Cytokine IL-6 from Aortic Cells in a Murine Model of Atherosclerosis
We next demonstrated that OnCELISA could be used for the detection of cytokine IL-6 secreted ex vivo
from multi-cellular aortae containing atherosclerotic plague. Atherosclerosis is an inflammatory-driven dis-
ease characterized by the deposits of inflammatory cells within the artery wall. The apolipoprotein E~/~
mouse spontaneously develop atherosclerotic plaques in their aortae. OnCELISA provided robust detec-
tion of IL-6 using flow cytometry (FITC-positive cells) in single-cell suspensions of digested plaque-contain-
ing aortic tissue. In accordance with an increase in inflammation, more aortic cells were found to be FITC
positive following stimulation with LPS in aortae from mice (Figures 5A-5C), when compared with phos-
phate-buffered saline non-stimulated control aortae.

DISCUSSION

Cytokines secreted from cells play a critical role in controlling cell survival, growth, migration, develop-
ment, differentiation, and function by binding with specific cytokine receptors and initiating their complex
signaling events (Hafler, 2007, Whicher and Evans, 1990; Young, 2009). They are heterogeneously released,
creating a unique signaling microenvironment around the reactive and responding cells (Schenk et al.,
2001). At the cellular level, a few secreted cytokine molecules may be sufficient to induce a significant
cellular response (Gurevich et al., 2003). This strength of the cytokine effect causes the study of cytokine
secretion to be experimentally challenging (Stenken and Poschenrieder, 2015), even more so that they
are soluble proteins that once released from the cell diffuse away and become diluted in culture media,
blood, or other tissue fluids, depending on the site of secretion.

Current single-cell analysis methods capable of analyzing secreted products include enzyme-linked immune
absorbent spot (ELISPOT) (Streeck et al., 2009), droplet cytometry (Joensson and Svahn, 2012), encapsulation
in microbeads (Turcanu and Williams, 2001), microengraving (Love et al., 2006), and single-cell barcode micro-
chip (Fan et al., 2008). Their disadvantages were discussed in Han et al. (2010). In particular, in ELISPOT the cells
are sparsely spread over a surface with immobilized capture antibodies and immobilized secretion products de-
tected by a colorimetric reaction. In this approach accuracy is limited as individual spots may overlap or single
cells may cluster. Furthermore, the cells are lost during the process (Han et al., 2010). Droplet cytometry (Joens-
son and Svahn, 2012), wherein cells are individually contained and analyzed in droplets, is not capable for abso-
lute quantification of secreted proteins owing to the lack of calibration approaches and challenges in loading
single cells (Han et al., 2010). Encapsulation in microbeads (Turcanu and Williams, 2001) may introduce cross-
contamination among cells, may perturb secretion (as cells may need to be cooled to 4° to achieve agarose
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gelling), and requires additional processing to recover cells (Han et al., 2010). Microengraving introduced in Love
et al. (2006) isolates individual cells in a dense, elastomeric array of custom-made microwells (~100 pL). The mi-
crowells are then sealed by glass slides coated with capture reagents. The slides undergo postprocessing with
detection reagents and are read out by a fluorescent scanner. Microengraving requires careful manipulation of
glass slides so that there is no cross-contamination of detection spots with fluid from adjacent wells, or without
stimulating or dislodging single cells. Its low throughput and difficulties of automation have limited its wide-
spread adoption. Single-cell barcode microchips (Fan et al., 2008) use custom-made microfluidic microchambers
pre-printed with antibodies. Cell delivery and deposition in wells is challenging, and the system has low
throughput. Intracellular staining (Jung et al., 1993) blocks cytokine secretion, and cells cannot be analyzed
when live as membrane permeabilization is required. The cell is tested when prohibited from secretion, which
may not accurately reflect secretion of a live cell. In contrast to these methods, OnCELISA does not require
custom-made microfluidics and only uses commercially available reagents. Cells are tested live, and they do
not require postprocessing to be able to proliferate. The method is fully compatible with flow cytometry,
enabling cell selection. Quantification of secreted products and calibration is also possible.

The cellular secretion assay presented here, uses fluorescence detection so that the cells can be interro-
gated individually by fluorescence microscopy, flow cytometry, or as an ensemble by fluorimetry. The ac-
curacy of OnCELISA analysis on a single-cell level is affected by any variation in biotinylation of live cells,
anchoring of capture probes, cytokine binding, and secondary reporter binding. The extent of these var-
iations is reflected in the size of error bars in Figure S3B, where OnCELISA was applied to exact replicates of
cell ensembles at a number of IL-6 concentrations introduced by spiking. It shows that the assay reproduc-
ibility is high, with average variation of 11%.

Low number of copies of individual target molecules combined with the unavoidable presence of cellular
autofluorescence background pose a challenge for fluorescence detection, which can be addressed by us-
ing bright labeling or amplification (Lei and Ju, 2012). In this work, we chose to use bright and relatively
large (few hundred nanometers) nanoparticle labels (Deng and Goldys, 2014). Owing to the brightness
of our labels, the OnCELISA assay is sensitive enough (0.1 pg/mL) to detect cytokines secreted by single
cells. This is an advance over standard single-cell analysis method such as microengraving where conven-
tional sandwich immunofluorescence detection offers sensitivity of ~1 ng/mL, or 10 pM, for most soluble
proteins (Herrera et al., 2019) (for example, Love et al., 2006, reports the lowest detected cytokine concen-
tration to be 4 ng/mL). Recently, microengraving with quantum dot (QD) nanomaterials as assay reporters,
chemical amplification (more than one QD per antibody), and single-particle counting achieved the limit of
detection of 60 aM for tumor necrosis factor-a. (Herrera et al., 2019). This is about two orders of magnitude
lower than reported in this work, pointing to possible improvements in the OnCELISA assay where chemical
amplification and single-particle counting can also be applied.

Being able to probe how the individual cells secrete cytokines makes it possible to detect how they
respond to the surrounding signals such as LPS stimulation, on the relevant timescale of several hours.
Our results shown in Figure 2H make it possible to calculate the secretion frequency from single BV2 cells
in the first 4 h when the secretion rates were approximately constant. We obtained secretion rates of 0.6 +
0.2 molecules/s per cell. This corresponds closely to the cellular IL-6 secretion rate of 0.5 molecules/s per
cell reported in Han et al. (2010) for peripheral blood mononuclear cells. Close similarity of these values
lends support to the argument that cytokine secretion rates are not affected by the OnCELISA processing
of cells. The flexibility of simultaneous monitoring of multiple secreted cytokines (IL-6 and IL-1B) provides
an exciting opportunity to explore the “immune synapse” in far greater detail than previously possible.

Importantly, our design only uses commercially available reagents, so it can be easily reproduced in other
laboratories. Its universal capture surface is applicable to various cytokines (here, IL-6 and IL1-B) and is
potentially suitable for a broad range of cell types (including BV2, RAW, and MSC cell lines presented
here) that secrete cytokines or other protein. OnCELISA also demonstrated robust ex vivo detection of
IL-6 secretion from the aortae of mice that contained atherosclerotic plaque. Atherosclerotic plaque is a
complex biological environment that contains multiple cell types. OnCELISA was able to be used on pla-
que-containing aortae digested into a single-cell suspension to capture and detect the expression of IL-6
from a multi-cellular environment, without the need prepare a cell homogenate as current commercial ELI-
SAs do. This enables the unique capability to characterize the different cells further, whether it be in func-
tional assays or using confocal microscopy, for example.
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The immunosensing scheme in this work uses a sandwich immunoassay, similar to a range of commercial
ELISA systems. Our approach may make it possible to make these standard ELISA assays more sensitive
and convert them into the OnCELISA format. Selection of high cytokine-producing cell populations is an
important first step in the characterization of the mechanisms underpinning critical heterogeneity in cyto-
kine signaling. The capability to select highly cytokine-expressing cells in complex biological diseases is
also valuable for future cellular therapies using cells selected to optimize their specific properties. Such
populations may also be therapeutically useful, for example, by interfering with the opposite immune
response near the diseased site. Such selected cell populations have traditionally been delivered by rounds
of limiting dilution cloning, followed by product analysis. However, these methods are labor intensive,
costly, time consuming, and have low efficiency. In contrast, our OnCELISA assay, which detects and mea-
sures single-cell secretion of specific cytokines using fluorescent magnetic particles, makes it possible to
select cells with optimized cytokine secretion rapidly and efficiently.

Limitations of the Study

The OnCELISA method presented here is able to probe how individual cells secrete cytokines as they
respond to the environmental cues. In addition, the OnCELISA method has the capacity for simultaneously
testing the secretion of multiple cytokines, demonstrated using two cytokines IL-6 and IL-1B. Our system
can be used for ultrasensitive monitoring of cytokines in the complex biological environment of atheroscle-
rosis that contains multiple cell types. We believe this study will be of interest to a broad community of re-
searchers from areas of cell biology to oncology. In this study the cells did not perform to the internalization
of capture antibodies attached to the cell surface. We cannot rule out the possibility that the attached cap-
ture antibodies were internalized by certain cell types. To provide further evidence of non-antibody inter-
nalization of capture antibodies, validation of OnCELISA using a spectrum of cell types would be required.

METHODS

All methods can be found in the accompanying Transparent Methods supplemental file.

SUPPLEMENTAL INFORMATION
Supplemental Information can be found online at https://doi.org/10.1016/}.is¢i.2019.09.019.

ACKNOWLEDGMENTS

This work was financially supported by funding from the ARC Future Fellowship (FT160100039 to G.L.), the
ARC Center of Excellence for Nanoscale BioPhotonics (CE140100003 to E.M.G. and M.R.H.), UNSW
Biomedical Engineering Seed Fund to G.L., and the National Natural Science Foundation of China (Grant
21575045) to G.L., Macquarie University MQRDG to G.L. and the Heart Research Institute to S.P.C. and
M.M.K..

AUTHOR CONTRIBUTIONS

G.L. and E.M.G. conceived and designed the experiments. G.L. carried out the preparation and character-
ization of OnCELISA and data analysis. E.M.G. performed the theoretical modeling of OnCELISA and data
analysis. S.P.C., M.M K., and C.B. designed and performed aortic cell extraction and data analysis. G.L. and
A.G.A. obtained confocal images of cells. L.M.P. performed IL-6 mRNA expression staining and confocal
images. S.F., G.L., and D.W.I. designed and made the single-cell wells. G.L. and K.Z. performed the char-
acterization of capture antibodies on cell surfaces. M.H. and E.M.G. performed imaging analysis. M.R.H.
provided guidance on cell type selection. G.L, EM.G., S.C., and M.R.H wrote the manuscript. All authors
reviewed and edited the manuscript.

DECLARATION OF INTERESTS

The authors declare that no competing interests.

Received: April 22, 2019
Revised: September 10, 2019
Accepted: September 12, 2019
Published: October 25, 2019

146 iScience 20, 137-147, October 25, 2019

Cell


https://doi.org/10.1016/j.isci.2019.09.019

iScience

REFERENCES

Achard, S., Jean, A., Lorphelin, D., Amoravain, M.,
and Claret, E.J. (2003). Homogeneous assays
allow direct" in well" cytokine level
quantification. Assay Drug Dev. Tech. 1, 181-185.

Ali, M.M., Kang, D.K., Tsang, K., Fu, M., Karp,
J.M., and Zhao, W. (2012). Cell-surface sensors:
lighting the cellular environment. Wiley
Interdiscip. Rev. Nanomed. Nanobiotechnol. 4,
547-561.

Beigi, R., Kobatake, E., Aizawa, M., and Dubyak,
G.R. (1999). Detection of local ATP release from
activated platelets using cell surface-attached
firefly luciferase. Am. J. Physiol. Cell Physiol. 276,
C267-C278.

Betzer, O., Meir, R., Dreifuss, T., Shamalov, K.,
Motiei, M., Shwartz, A., Baranes, K., Cohen, C.J.,
Shraga-Heled, N., and Ofir, R. (2015). In-vitro
optimization of nanoparticle-cell labeling
protocols for in-vivo cell tracking applications.
Sci. Rep. 5, 1-11.

Bienvenu, J., Monneret, G., Fabien, N., and
Revillard, J.P. (2000). The clinical usefulness of the
measurement of cytokines. Clin. Chem. Lab.
Med. 38, 267-285.

Biosciences, B. Detecting intracellular cytokines
in activated lymphocytes. https://www.
bdbiosciences.com/documents/
Detecting_Cytokines_Lymphocytes.pdf.

Brosterhus, H., Brings, S., Leyendeckers, H.,
Manz, R.A., Miltenyi, S., Radbruch, A.,
Assenmacher, M., and Schmitz, J. (1999).
Enrichment and detection of live antigen-specific
CD 4+ and CD 8+ T cells based on cytokine
secretion. Eur. J. Immunol. 29, 4053-4059.

Childs, B.G., Durik, M., Baker, D.J., and Van
Deursen, J.M. (2015). Cellular senescence in
aging and age-related disease: from mechanisms
to therapy. Nat. Med. 21, 1424-1435.

Deng, W., and Goldys, E. (2014). Analyst 139,
5321-5334.

Fan, R., Vermesh, O., Srivastava, A, Yen, B.K.H,,
Qin, L.D., Ahmad, H., Kwong, G.A,, Liu, C.C,,
Gould, J., Hood, L., et al. (2008). Integrated
barcode chips for rapid, multiplexed analysis of
proteins in microliter quantities of blood. Nat.
Biotechnol. 26, 1373-1378.

Foster, B., Prussin, C., Liu, F., Whitmire, J.K., and
Whitton, J.L. (2007). Detection of intracellular
cytokines by flow cytometry. Curr. Protoc.
Immunol. 110, 6.24.1-6.24.18.

Gurevich, K.G., Agutter, P.S., and Wheatley, D.N.
(2003). Stochastic description of the ligand-
receptor interaction of biologically active
substances at extremely low doses. Cell Signal.
15, 447-453.

Hafler, D.A. (2007). Cytokines and interventional
immunology. Nat. Rev. Immunol. 7, 423.

Han, Q., Bradshaw, E.M., Nilsson, B., Hafler, D.A.,
and Love, J.C. (2010). Multidimensional analysis
of the frequencies and rates of cytokine secretion

from single cells by quantitative microengraving.
Lab Chip 10, 1391-1400.

Herrera, V., Hsu, S.C.J., Rahim, M.K,, Chen, C.,
Nguyen, L., Liu, W.F., and Haun, J.B. (2019).
Pushing the limits of detection for proteins
secreted from single cells using quantum dots.
Analyst 144, 980-989.

Holmes, P., and Al-Rubeai, M. (1999). Improved
cell line development by a high throughput
affinity capture surface display technique to
select for high secretors. J. Immunol. Methods
230, 141-147.

Jiang, Z., Le, N.D., Gupta, A., and Rotello, V.M.
(2015). Cell surface-based sensing with metallic
nanoparticles. Chem. Soc. Rev. 44, 4264-4274.

Joensson, H.N., and Svahn, H.A. (2012). Droplet
microfluidics-A tool for single-cell analysis.
Angew. Chem. Int. Ed. 51, 12176-12192.

Jung, T., Schauer, U., Heusser, C., Neumann, C.,
and Rieger, C. (1993). Detection of intracellular
cytokines by flow-cytometry. J. Immunol.
Methods 159, 197-207.

Kenney, J.S., Gray, F., Ancel, M.H., and Dunne,
J.F. (1995). Production of monoclonal antibodies
using a secretion capture report web.
Biotechnology 13, 787-790.

Kulbe, H., Chakravarty, P., Leinster, D.A., Charles,
K.A., Kwong, J., Thompson, R.G., Coward, J.I.,
Schioppa, T., Robinson, S.C., and Gallagher,
W.M. (2012). A dynamic inflammatory cytokine
network in the human ovarian cancer
microenvironment. Cancer Res. 72, 66-75.

Lacy, P., and Stow, J.L. (2011). Cytokine release
from innate immune cells: association with
diverse membrane trafficking pathways. Blood
118, 9-18.

Lei, J., and Ju, H. (2012). Signal amplification
using functional nanomaterials for biosensing.
Chem. Soc. Rev. 41, 2122-2134.

Liu, G.Z.,, Qi, M., Huchtinson, M., Yang, G.F., and
Goldys, E.M. (2016). Recent advances in cytokine
detection by immunosensing. Biosens.
Bioelectron. 79, 810-821.

Love, J.C., Ronan, J.L., Grotenbreg, G.M., van der
Veen, A.G., and Ploegh, H.L. (2006). A
microengraving method for rapid selection of
single cells producing antigen-specific
antibodies. Nat. Biotechnol. 24, 703-707.

Manz, R., Assenmacher, M., Pfluger, E., Miltenyi,
S., and Radbruch, A. (1995). Analysis and sorting
of live cells according to secreted molecules,
relocated to a cell surface affinity matrix. Proc.
Natl. Acad. Sci. U S A 92, 1921-1925.

Muiller, G., Mdller, A., Tuting, T., Steinbrink, K.,
Saloga, J., Szalma, C., Knop, J., and Enk, A.H.
(2002). Interleukin-10-treated dendritic cells
modulate immune responses of naive and
sensitized T cells in vivo. J. Invest. Dermatol. 119,
836-841.

Cell

Nicola, N.A. (1994). Guidebook to Cytokines and
Their Receptors (A Sambrook & Tooze
Publication at Oxford University Press).

Quinn, J., Gratalo, D., Haden, K., and Moon, J.
(2008). Accurate multiplex cytokine assay
developed with VeraCode® technology.

Rider, T.H., Petrovick, M.S., Nargi, F.E., Harper,
J.D., Schwoebel, E.D., Mathews, R.H., Blanchard,
D.J., Bortolin, L.T., Young, AM., Chen, J.Z., et al.
(2003). A B cell-based sensor for rapid
identification of pathogens. Science 301,
213-215.

Schenk, T., Irth, H., Marko-Varga, G., Edholm, L.,
Tjaden, U., and van der Greef, J. (2001). Potential
of on-line micro-LC immunochemical detection in
the bioanalysis of cytokines. J. Pharm. Biomed.
Anal. 26, 975-985.

Starr, M.E., Evers, B.M., and Saito, H. (2009). Age-
associated increase in cytokine production
during systemic inflammation: adipose tissue as a
major source of IL-6. J. Gerontol. A Biol. Sci. Med.
Sci. 64, 723-730.

Stenken, J.A., and Poschenrieder, A.J. (2015).
Bioanalytical chemistry of cytokines-A review.
Anal. Chim. Acta 853, 95-115.

Stow, J.L., Low, P.C., Offenh&user, C., and
Sangermani, D. (2009). Cytokine secretion in
macrophages and other cells: pathways and
mediators. Immunobiology 214, 601-612.

Streeck, H., Frahm, N., and Walker, B.D. (2009).
The role of IFN-gamma Elispot assay in HIV
vaccine research. Nat. Protoc. 4, 461-469.

Tibbe, A.G., de Grooth, B.G., Greve, J., Dolan,
G.J., Rao, C., and Terstappen, L.W. (2002).
Magnetic field design for selecting and aligning
immunomagnetic labeled cells. Cytometry 47,
163-172.

Turcanu, V., and Williams, N.A. (2001). Cell
identification and isolation on the basis of
cytokine secretion: a novel tool for investigating
immune responses. Nat. Med. 7, 373-376.

Whicher, J., and Evans, S. (1990). Cytokines in
disease. Clin. Chem. 36, 1269-1281.

Wilson, N.J., Boniface, K., Chan, J.R., McKenzie,
B.S., Blumenschein, W.M., Mattson, J.D.,
Basham, B., Smith, K., Chen, T., and Morel, F.
(2007). Development, cytokine profile and
function of human interleukin 17-producing
helper T cells. Nat. Immunol. 8, 950-957.

Young, H.A. (2009). Cytokine multiplex analysis. In
Methods in Molecular Biology: Inflammation and
Cancer, Vol. 511,S.V. Kozlov, ed. (Humana Press),
pp. 85-105.

Zhao, W., Schafer, S., Choi, J., Yamanaka, Y.J.,
Lombardi, M.L., Bose, S., Carlson, A.L., Phillips,
J.A., Teo, W., and Droujinine, l.A. (2011). Cell-
surface sensors for real-time probing of cellular
environments. Nat. Nanotechnol. 6, 524-531.

iScience 20, 137-147, October 25, 2019 147


http://refhub.elsevier.com/S2589-0042(19)30357-8/sref1
http://refhub.elsevier.com/S2589-0042(19)30357-8/sref1
http://refhub.elsevier.com/S2589-0042(19)30357-8/sref1
http://refhub.elsevier.com/S2589-0042(19)30357-8/sref1
http://refhub.elsevier.com/S2589-0042(19)30357-8/sref2
http://refhub.elsevier.com/S2589-0042(19)30357-8/sref2
http://refhub.elsevier.com/S2589-0042(19)30357-8/sref2
http://refhub.elsevier.com/S2589-0042(19)30357-8/sref2
http://refhub.elsevier.com/S2589-0042(19)30357-8/sref2
http://refhub.elsevier.com/S2589-0042(19)30357-8/sref3
http://refhub.elsevier.com/S2589-0042(19)30357-8/sref3
http://refhub.elsevier.com/S2589-0042(19)30357-8/sref3
http://refhub.elsevier.com/S2589-0042(19)30357-8/sref3
http://refhub.elsevier.com/S2589-0042(19)30357-8/sref3
http://refhub.elsevier.com/S2589-0042(19)30357-8/sref4
http://refhub.elsevier.com/S2589-0042(19)30357-8/sref4
http://refhub.elsevier.com/S2589-0042(19)30357-8/sref4
http://refhub.elsevier.com/S2589-0042(19)30357-8/sref4
http://refhub.elsevier.com/S2589-0042(19)30357-8/sref4
http://refhub.elsevier.com/S2589-0042(19)30357-8/sref4
http://refhub.elsevier.com/S2589-0042(19)30357-8/sref5
http://refhub.elsevier.com/S2589-0042(19)30357-8/sref5
http://refhub.elsevier.com/S2589-0042(19)30357-8/sref5
http://refhub.elsevier.com/S2589-0042(19)30357-8/sref5
https://www.bdbiosciences.com/documents/Detecting_Cytokines_Lymphocytes.pdf
https://www.bdbiosciences.com/documents/Detecting_Cytokines_Lymphocytes.pdf
https://www.bdbiosciences.com/documents/Detecting_Cytokines_Lymphocytes.pdf
http://refhub.elsevier.com/S2589-0042(19)30357-8/sref7
http://refhub.elsevier.com/S2589-0042(19)30357-8/sref7
http://refhub.elsevier.com/S2589-0042(19)30357-8/sref7
http://refhub.elsevier.com/S2589-0042(19)30357-8/sref7
http://refhub.elsevier.com/S2589-0042(19)30357-8/sref7
http://refhub.elsevier.com/S2589-0042(19)30357-8/sref7
http://refhub.elsevier.com/S2589-0042(19)30357-8/sref8
http://refhub.elsevier.com/S2589-0042(19)30357-8/sref8
http://refhub.elsevier.com/S2589-0042(19)30357-8/sref8
http://refhub.elsevier.com/S2589-0042(19)30357-8/sref8
http://refhub.elsevier.com/S2589-0042(19)30357-8/sref9
http://refhub.elsevier.com/S2589-0042(19)30357-8/sref9
http://refhub.elsevier.com/S2589-0042(19)30357-8/sref10
http://refhub.elsevier.com/S2589-0042(19)30357-8/sref10
http://refhub.elsevier.com/S2589-0042(19)30357-8/sref10
http://refhub.elsevier.com/S2589-0042(19)30357-8/sref10
http://refhub.elsevier.com/S2589-0042(19)30357-8/sref10
http://refhub.elsevier.com/S2589-0042(19)30357-8/sref10
http://refhub.elsevier.com/S2589-0042(19)30357-8/sref11
http://refhub.elsevier.com/S2589-0042(19)30357-8/sref11
http://refhub.elsevier.com/S2589-0042(19)30357-8/sref11
http://refhub.elsevier.com/S2589-0042(19)30357-8/sref11
http://refhub.elsevier.com/S2589-0042(19)30357-8/sref12
http://refhub.elsevier.com/S2589-0042(19)30357-8/sref12
http://refhub.elsevier.com/S2589-0042(19)30357-8/sref12
http://refhub.elsevier.com/S2589-0042(19)30357-8/sref12
http://refhub.elsevier.com/S2589-0042(19)30357-8/sref12
http://refhub.elsevier.com/S2589-0042(19)30357-8/sref13
http://refhub.elsevier.com/S2589-0042(19)30357-8/sref13
http://refhub.elsevier.com/S2589-0042(19)30357-8/sref14
http://refhub.elsevier.com/S2589-0042(19)30357-8/sref14
http://refhub.elsevier.com/S2589-0042(19)30357-8/sref14
http://refhub.elsevier.com/S2589-0042(19)30357-8/sref14
http://refhub.elsevier.com/S2589-0042(19)30357-8/sref14
http://refhub.elsevier.com/S2589-0042(19)30357-8/sref15
http://refhub.elsevier.com/S2589-0042(19)30357-8/sref15
http://refhub.elsevier.com/S2589-0042(19)30357-8/sref15
http://refhub.elsevier.com/S2589-0042(19)30357-8/sref15
http://refhub.elsevier.com/S2589-0042(19)30357-8/sref15
http://refhub.elsevier.com/S2589-0042(19)30357-8/sref16
http://refhub.elsevier.com/S2589-0042(19)30357-8/sref16
http://refhub.elsevier.com/S2589-0042(19)30357-8/sref16
http://refhub.elsevier.com/S2589-0042(19)30357-8/sref16
http://refhub.elsevier.com/S2589-0042(19)30357-8/sref16
http://refhub.elsevier.com/S2589-0042(19)30357-8/sref17
http://refhub.elsevier.com/S2589-0042(19)30357-8/sref17
http://refhub.elsevier.com/S2589-0042(19)30357-8/sref17
http://refhub.elsevier.com/S2589-0042(19)30357-8/sref18
http://refhub.elsevier.com/S2589-0042(19)30357-8/sref18
http://refhub.elsevier.com/S2589-0042(19)30357-8/sref18
http://refhub.elsevier.com/S2589-0042(19)30357-8/sref19
http://refhub.elsevier.com/S2589-0042(19)30357-8/sref19
http://refhub.elsevier.com/S2589-0042(19)30357-8/sref19
http://refhub.elsevier.com/S2589-0042(19)30357-8/sref19
http://refhub.elsevier.com/S2589-0042(19)30357-8/sref20
http://refhub.elsevier.com/S2589-0042(19)30357-8/sref20
http://refhub.elsevier.com/S2589-0042(19)30357-8/sref20
http://refhub.elsevier.com/S2589-0042(19)30357-8/sref20
http://refhub.elsevier.com/S2589-0042(19)30357-8/sref21
http://refhub.elsevier.com/S2589-0042(19)30357-8/sref21
http://refhub.elsevier.com/S2589-0042(19)30357-8/sref21
http://refhub.elsevier.com/S2589-0042(19)30357-8/sref21
http://refhub.elsevier.com/S2589-0042(19)30357-8/sref21
http://refhub.elsevier.com/S2589-0042(19)30357-8/sref21
http://refhub.elsevier.com/S2589-0042(19)30357-8/sref22
http://refhub.elsevier.com/S2589-0042(19)30357-8/sref22
http://refhub.elsevier.com/S2589-0042(19)30357-8/sref22
http://refhub.elsevier.com/S2589-0042(19)30357-8/sref22
http://refhub.elsevier.com/S2589-0042(19)30357-8/sref23
http://refhub.elsevier.com/S2589-0042(19)30357-8/sref23
http://refhub.elsevier.com/S2589-0042(19)30357-8/sref23
http://refhub.elsevier.com/S2589-0042(19)30357-8/sref24
http://refhub.elsevier.com/S2589-0042(19)30357-8/sref24
http://refhub.elsevier.com/S2589-0042(19)30357-8/sref24
http://refhub.elsevier.com/S2589-0042(19)30357-8/sref24
http://refhub.elsevier.com/S2589-0042(19)30357-8/sref25
http://refhub.elsevier.com/S2589-0042(19)30357-8/sref25
http://refhub.elsevier.com/S2589-0042(19)30357-8/sref25
http://refhub.elsevier.com/S2589-0042(19)30357-8/sref25
http://refhub.elsevier.com/S2589-0042(19)30357-8/sref25
http://refhub.elsevier.com/S2589-0042(19)30357-8/sref26
http://refhub.elsevier.com/S2589-0042(19)30357-8/sref26
http://refhub.elsevier.com/S2589-0042(19)30357-8/sref26
http://refhub.elsevier.com/S2589-0042(19)30357-8/sref26
http://refhub.elsevier.com/S2589-0042(19)30357-8/sref26
http://refhub.elsevier.com/S2589-0042(19)30357-8/sref27
http://refhub.elsevier.com/S2589-0042(19)30357-8/sref27
http://refhub.elsevier.com/S2589-0042(19)30357-8/sref27
http://refhub.elsevier.com/S2589-0042(19)30357-8/sref27
http://refhub.elsevier.com/S2589-0042(19)30357-8/sref27
http://refhub.elsevier.com/S2589-0042(19)30357-8/sref27
http://refhub.elsevier.com/S2589-0042(19)30357-8/sref28
http://refhub.elsevier.com/S2589-0042(19)30357-8/sref28
http://refhub.elsevier.com/S2589-0042(19)30357-8/sref28
http://refhub.elsevier.com/S2589-0042(19)30357-8/sref30
http://refhub.elsevier.com/S2589-0042(19)30357-8/sref30
http://refhub.elsevier.com/S2589-0042(19)30357-8/sref30
http://refhub.elsevier.com/S2589-0042(19)30357-8/sref30
http://refhub.elsevier.com/S2589-0042(19)30357-8/sref30
http://refhub.elsevier.com/S2589-0042(19)30357-8/sref30
http://refhub.elsevier.com/S2589-0042(19)30357-8/sref31
http://refhub.elsevier.com/S2589-0042(19)30357-8/sref31
http://refhub.elsevier.com/S2589-0042(19)30357-8/sref31
http://refhub.elsevier.com/S2589-0042(19)30357-8/sref31
http://refhub.elsevier.com/S2589-0042(19)30357-8/sref31
http://refhub.elsevier.com/S2589-0042(19)30357-8/sref32
http://refhub.elsevier.com/S2589-0042(19)30357-8/sref32
http://refhub.elsevier.com/S2589-0042(19)30357-8/sref32
http://refhub.elsevier.com/S2589-0042(19)30357-8/sref32
http://refhub.elsevier.com/S2589-0042(19)30357-8/sref32
http://refhub.elsevier.com/S2589-0042(19)30357-8/sref33
http://refhub.elsevier.com/S2589-0042(19)30357-8/sref33
http://refhub.elsevier.com/S2589-0042(19)30357-8/sref33
http://refhub.elsevier.com/S2589-0042(19)30357-8/sref34
http://refhub.elsevier.com/S2589-0042(19)30357-8/sref34
http://refhub.elsevier.com/S2589-0042(19)30357-8/sref34
http://refhub.elsevier.com/S2589-0042(19)30357-8/sref34
http://refhub.elsevier.com/S2589-0042(19)30357-8/sref35
http://refhub.elsevier.com/S2589-0042(19)30357-8/sref35
http://refhub.elsevier.com/S2589-0042(19)30357-8/sref35
http://refhub.elsevier.com/S2589-0042(19)30357-8/sref36
http://refhub.elsevier.com/S2589-0042(19)30357-8/sref36
http://refhub.elsevier.com/S2589-0042(19)30357-8/sref36
http://refhub.elsevier.com/S2589-0042(19)30357-8/sref36
http://refhub.elsevier.com/S2589-0042(19)30357-8/sref36
http://refhub.elsevier.com/S2589-0042(19)30357-8/sref37
http://refhub.elsevier.com/S2589-0042(19)30357-8/sref37
http://refhub.elsevier.com/S2589-0042(19)30357-8/sref37
http://refhub.elsevier.com/S2589-0042(19)30357-8/sref37
http://refhub.elsevier.com/S2589-0042(19)30357-8/sref38
http://refhub.elsevier.com/S2589-0042(19)30357-8/sref38
http://refhub.elsevier.com/S2589-0042(19)30357-8/sref39
http://refhub.elsevier.com/S2589-0042(19)30357-8/sref39
http://refhub.elsevier.com/S2589-0042(19)30357-8/sref39
http://refhub.elsevier.com/S2589-0042(19)30357-8/sref39
http://refhub.elsevier.com/S2589-0042(19)30357-8/sref39
http://refhub.elsevier.com/S2589-0042(19)30357-8/sref39
http://refhub.elsevier.com/S2589-0042(19)30357-8/sref40
http://refhub.elsevier.com/S2589-0042(19)30357-8/sref40
http://refhub.elsevier.com/S2589-0042(19)30357-8/sref40
http://refhub.elsevier.com/S2589-0042(19)30357-8/sref40
http://refhub.elsevier.com/S2589-0042(19)30357-8/sref41
http://refhub.elsevier.com/S2589-0042(19)30357-8/sref41
http://refhub.elsevier.com/S2589-0042(19)30357-8/sref41
http://refhub.elsevier.com/S2589-0042(19)30357-8/sref41
http://refhub.elsevier.com/S2589-0042(19)30357-8/sref41

ISCI, Volume 20

Supplemental Information

A Nanoparticle-Based Affinity Sensor
that Identifies and Selects Highly
Cytokine-Secreting Cells

Guozhen Liu, Christina Bursill, SiAn P. Cartland, Ayad G. Anwer, Lindsay M.
Parker, Kaixin Zhang, Shilun Feng, Meng He, David W. Inglis, Mary M. Kavurma, Mark
R. Hutchinson, and Ewa M. Goldys



Supplementary Information

A nanoparticle-based affinity sensor that identifies

and selects highly cytokine-secreting cells

Guozhen Liu, Christina Bursill, Sian P. Cartland, Ayad G. Anwer, Lindsay M. Parker, Kaixin
Zhang, Shilun Feng, Meng He, David W. Inglis, Mary M. Kavurma, Mark R. Hutchinson,
Ewa M. Goldys



Transparent Methods

Preparation of superparamagnetic fluorescent beads labeled with IL-6 detection
antibody

Superparamagnetic beads (SPIO) were selected for conjugation with the IL-6 antibody
(CCC). Carboxylated superparamagnetic iron oxide particles (SP10O, 1% solid, 10 mg/mL,
~0.9 um, Bangs Laboratories, USA) incorporating Dragon Green fluorophore (ex480, em520),
(1 mg) were dispersed in 1 mL of 100 mM MES buffer at pH 5.2. This dispersion was then
mixed with 3.2 mg EDC (1-ethyl-3-[3 dimethylaminopropyl]carbodiimide hydrochloride,
Thermo Scientific) and 1.8 mg NHS (N-hydroxysuccinimide) and vortexed at room
temperature for 30 min. After which the pH was adjusted to 8.0. The 20 pL anti-IL-6
monoclonal antibody catalog No. MAB406 from R&D Systems (0.5 mg mL™ in 1xPBS) was
added to the solution immediately, and stirred on a nonmagnetic mixing device for 2 h at room
temperature. The resulting antibody-beads conjugates were magnetically separated by placing
a magnet under the bottom of the reaction vessel, and the supernatant was discarded. Finally,
the antibody modified SPIO (SP1O_Ab) was separated and washed with washing buffer (0.1
M 10xPBS, pH7.4) three times. The obtained SPIO_Ab was redispersed in 0.5 mL PBS and
stored at 4 °C. The ratio equates to 10 pg antibody per mg beads. The same protocol was used

for making superparamagnetic fluorescent beads labeled with IL-1B detection antibody except

replacing anti-1L-6 monoclonal antibody by anti-IL-18 monoclonal antibody.
Sample preparation for confocal imaging and fluorescence staining

Cells were imaged using a SP2 (Leica Microsystems) confocal microscope. Cells were
harvested after two washes with PBS, then pelleted at 1200 g for 5 min. Cells were then
suspended in PBS at a density of 10° cells/mL. Cells were placed on 35 mm dishes with
coverglass bottoms and allowed to settle for 10 minutes; other than this settling they remained
suspended during imaging. Hoechst 33342 (H3570, Life Technologies, Australia) 5 pg/ml was
used for nucleus staining. Cell Mask Deep Red (C10046, Life Technologies Australia) 5 mg/ml
was used for membrane staining. For each group of control and treated cells. Spectral images
were collected at 405-nm excitation wavelength and detected in 430-470 nm emission range
for Hoechst and at 633 nm excitation wavelength and emission at 650-690 nm for Cell Mask

Deep Red. FITC and Dragon Green was detected using 488 nm excitation and 520-560 nm



emission range. Phase contrast images were collected for all groups. All samples were imaged

at the same parameters of pinhole aperture and detector voltage.
Cell biotinylation and conjugation of neutravidin

Two T75 cm? flasks of 90-95% confluent cells (107 cells each flask) were prepared. Cells
were harvested at a density of 8.5-10 x 10° cells/mL and a volume of 1 mL of cell solution was
suspended in 5 mL media. The cells were labelled with biotin using the protocol described in
Pierce® Cell Surface Protein Isolation Kit (CAS No. PIE89881, Thermo Fisher Scientific).
Specifically, the media was removed and cells were washed twice with 8 mL of ice-cold PBS
per flask. The PBS was removed within 5 s. After that, 10 mL of the ice-cold biotin solution (1
mg mL?) was added to each flask, which was then placed on a rocking platform to gently
agitate for 30 minutes at 4°C to ensure even coverage of the cells with the biotinylation solution.
500 pL of quenching solution was added to each flask to quench the reaction and the flask was
gently tipped back and forth to ensure even coverage of the solution. The cells were gently
scraped using the cell lifter into solution. The contents of two flasks were transferred to a single
50 mL conical tube. Both flasks were finally rinsed with a single 10 mL volume of tris-buffered
saline (TBS) pH 7.2 and then the rinse volume was added to the transferred cells in the conical
tube. Cells were centrifuged at 200 rcf for 6 min and supernatant was discarded. Cells were

re-dispersed in PBS at cell density of ~10° cells/mL.

The 4 pg neutravidin (Thermo Fisher Catalog number 31000) was added to each 1
mL of cell solution. To the cell pellet, 5 mL TBS was added and cells were gently pipetted up
and down twice with a serological pipette, which were centrifuged at 200 rcf for 6 min and
supernatant was discarded. The obtained cells were collected for the antibody attachment as

described below.
ONnCELISA labelling

The biotinylated cells with neutravidin added (10° cells) were resuspended in 1 mL of
gelatinous medium (25% gelatin) containing 2 pg biotinylated mouse anti-IL-6 goat 1gG4
(CAS No. BAF406 from R&D Systems) (0.5 mg mL™ in 1 x PBS) for 2 h at 37 °C. Then the
cells were washed twice in 25 mL PBS, pH 7 and the cell pellets were collected. Cells were
resuspended in 1 mL of 37°C gelatinous medium (25% gelatin). After having been exposed to

cytokines (either spiked into the medium, or secreted upon cell stimulation DG SPIO_IL-6_Ab



(10 uL per each 1 mL of cell solution at 10° cells/mL) was added to the medium and allowed
to bind. After 1 h, the cells were washed 2 times with 1 x PBS.

Calibration curve of OnCELISA for detection of cytokines

The BV2 cells were prepared with the capture antibody conjugated on the cell surface
according to the above OnCELISA protocol. Cell pellets were collected and cells were divided
into 1 mL tubes at cell density of 10 cells/mL. Recombinant mouse IL-6 (CAS No.: 406-ML)
at different concentration (from 0 to 1000 pg/mL) was externally added into individual tubes.
Each concentration was spiked into 3 tubes to provide triplicate assay readings at that
concentration. After waiting for 10 min, the cells from each tube were washed 2 times with 1
x PBS, and dispersed in 1 mL medium. The OnCELISA protocol was then completed, by
adding DGSPIO_IL-6 Ab (10 uL) to the medium and this labelled detection antibody was then
allowed to bind for 1 h. After this time, the cells were washed 2 times with 1 x PBS. Finally,
the cells from each tube were dispersed in 1 mL PBS for fluorescence reading by using
Fluorolog Tau-3 from Jobin-Yvon-Horiba. The results are plotted in Figure S3 b as average

and standard deviation of the triplicate readings at each concentration.
Sample preparation for ELISA

BD OptEIA™ Mouse IL-6 ELISA kit (CAS No. 550950, BD Bioscience, Australia) was
used to measure the concentration of IL-6 secreted by cells after LPS stimulation. For
preparation of IL-6 samples, the biotinylated cells with the density of 10°/mL were suspended
in 1 mL of warm medium containing 100 ng mL™* LPS from Escherichia coli 026:B6 (Sigma
Aldrich, Australia) to secrete IL-6 forO h, 2 h, 4 h, 6 h, 8 h, and 20 h, respectively. Supernatants
from cells were collected in duplicate, and analysis was performed according to the
manufacturer’s instructions. For control measurements, IL-6 samples secreted by the original
cells (without any functionalisation) were also prepared. All tests were performed using Nunc
MaxiSorp 96 well plates, supplied with the ELISA Kit. BMG FLUOstar Galaxy Microplate
Reader was used to measure absorbance at 450 nm. Optical density was also measured at 570

nm for wavelength correction. Results are analyzed and reported as means + standard deviation.
Magnetic sorting

A magnetic sorter PickPen (Luoyang Huier Nani Science and Technology Co. LTD) was

used to sort the cells labelled with fluorescent magnetic particles. In order to demonstrate



magnetic sorting, two suspensions of cells labeled with particles were prepared. One
suspension was washed by using a normal protocol by centrifugation and cell strainer
separation. Another suspension was washed by the application of magnetic pen in cell
suspension for 1 min, and then the tip of magnetic pen was released in a clean tube and washed

with PBS. Then the washed cells were collected for confocal imaging.
Size and zeta potential measurement

The hydrodynamic size and the zeta potential of the magnetic nanoparticles before and
after conjugations with the antibody were determined using Zeta Sizer Nano Series Nano-ZS

(Malvern Instrument, UK).

Fluorescent in situ hybridization

Primers for fluorescent in situ hybridization (FISH) were designed using Primer3 (NCBI
Nucleotide), spanning exon-exon junctions and including the functional protein coding region
of the mouse IL6 MRNA sequence (NCBI accession NM 031168). The forward primer includes
the SP6 promoter sequence (ATTTAGGTGACACTATAGAAG) at the 5 end while the
reverse primer includes the T7 promoter sequence (TAATACGACTCACTATAGGGAGA) at
the 5’ end. IL6 F Primer with SP6 at 5° end: 5S’ATTTAGGTGACACTATAGAAG-
GGGACTGATGCTGGTGACAA 3’; R Primer with T7 at 5 end:
TAATACGACTCACTATAGGGAGA-TAACGCACTAGGTTTGCCGA. Standard PCR was
performed for IL6 mMRNA using mouse BV2 cell cDNA, the resulting PCR product transcribed
was from bp 76 to bp 674 (599bp total length) of the mouse IL6 mMRNA sequence. In each 25
pL reaction tube: 12.5 uL AmpliTag Gold® 360 Master Mix (Life Technologies), 1 pL
Forward Primer, 1 puL Reverse Primer, 1 pug cDNA, 9.5 pL RNAse/DNAse free water.
Additionally, no template control and no primer control reactions were run in parallel for
comparison to IL6 PCR product. Tubes were held at 95°C for 10 min to activate the Taq
enzyme followed by 40 cycle repeats of 95°C 30 sec (denaturation), 60 °C 30 sec (annealing),
72 °C 60 sec (extension) and a final extension at 72 °C for 7 min. PCR products were purified
using a column extraction kit according to the manufacturer protocol (PureLink® PCR
Purification Kit; Life Technologies). PCR products were then run on a 2% TAE gel containing
SYBR Gold and photographed on a Genesnap gel doc (Syngene) to confirm appropriate

molecular weight and the absence of primer dimer.



Purified IL-6 PCR product was in vitro transcribed to complimentary RNA strands using
the MEGAscript® T7 Transcription Kit (AM1334; Life Technologies) according to the
manufacturer protocol using 200 ng of PCR product from each gene. Biotin-UTP and biotin-
CTP were incorporated into the IL6 cRNA probe. Sense IL6 control strands were in vitro
transcribed using the MEGAscript® SP6 Transcription Kit (AM1330; Life Technologies)
according to the manufacturer protocol. All RNA probes were purified with LiCl2 solution,
washed with EtOH, air dried and reconstituted in 40 pL of RNAse/DNAse free water. RNA
probe quality and quantity was then assessed using a Nanodrop 2000 spectrophotometer
(NanoDrop Technologies, Wilmington, DE, USA). RNA probes were run on a denaturing
formaldehyde gel with MOPS buffer using electrophoresis to confirm molecular weight and
specificity.

BV2 cells were treated with LPS (1.0 pug mL™* concentration) in 2 ml of their normal
DMEM on coverslips in 6 well plates. LPS in DMEM was removed immediately and replaced
with PBS pH 7.2 for 0 h LPS treatments. Cells inside the manufactured microchip, or on
coverslips were first washed in PBS pH 7.2 and fixed using 4% formaldehyde for 10 min and
then again washed with PBS. They were permeabilised with 70% EtOH for 30 min at 4 °C then
washed with PBT solution (PBS + 0.01% Tween-20). Pre-hybridization buffer (50%
formamide, 5 x SSC pH 7.0, 250 pug mL™ herring sperm DNA, 5% dextran sulfate, 1X
Denhardt’s solution, 0.1% Tween-20) was added to cells with 1000ng of cRNA probe and
incubated for ~16hrs in an incubator at 37 °C. Cells were washed 3x in 2X SSC buffer (sodium
citrate/NaCl solution) followed by 3 x washes in PBT solution. Samples were incubated for
lhr at room temp (~22 °C) with 2.5 pg of streptavidin-Alexafluor647 or streptavidin-
Alexafluor555 (Molecular Probes, Life Technologies). Cells were then washed 3 x 5 minutes
in PBT solution on an orbital shaker. Cells stained on coverslips or microchips were mounted
onto slides in Prolong Gold Antifade Media with DAPI dye (P 36931, Life Technologies) and
photographed with wide field (Zeiss Axioimager Z1) or confocal microscopy (Leica

Microsystems SP2).

ImageJ (http://rsb.info.nih.gov/ij) was used for FISH analysis on slides. Data were

calculated at a threshold of 10% maximum brightness intensity. All data is presented as mean
+ SEM. Data was compiled and graphed using Graphpad Prism software (Version 6.07).
Student’s t-test was used for statistical analysis between treatments where p<0.05 was

considered significant.


http://rsb.info.nih.gov/ij

Fabrication of SU-8 molds and PDMS chips with single cell wells

The procedure was based on Reference . The entire array of single cell wells was
designed to be 40.00 mm long and 0.90 mm wide. It had a rectangular array of 25 pum diameter
pillars also 25 um apart, 900 pillars along the array, 18 pillars across the array. Using this
layout pattern, 20-um thick SU-8 master molds were created on 3” wafers using standard
photolithography processes. An intermediate glass-supported PDMS (Sylgard 184 prepolymer)
mold was created from the SU-8 master. This intermediate was then treated with a 430 mtorr
oxygen plasma and silanized by soaking in isopropyl alcohol containing 1% OTS
(octadecyltrichlorosilane) for 15 min. The same PDMS prepolymer was then poured onto the
intermediate mould and cured at 65°C. The final PDMS substrate was peeled off. It had 25 pm
diameter holes and 25 pm hole-to-hole gaps, and it was abricated with depth of each hole of
20 um. Furthermore, the PDMS substrate was diced to create single rectangular microchip
units with 27 holes in one direction) and 18 holes in the perpendicular direction. The 2.5 mL
microcentrifuge tubes were filled with 1.5 mL of PDMS, which was cured. The diced PDMS
pieces containing wells were placed in the tubes and glued into place with the wells facing up.
These tubes were then treated with OTS (as above) to reduce non-specific adhesion. Following

a rinsing with isopropyl alcohol the tubes containing single-cell-wells were ready to use.
Placing single cells in wells

The microchip was mounted perpendicularly inside a 1.5 mL in an Eppendorf tube. The
cell solution 50 pL at cell density of 2 x 108/mL was placed in the tube and centrifuged for 5
minutes at 1500 rpm. This made it possible for cells to be placed individually in the wells. After
the application of OnCELISA in single cells in wells, the mounted microchip was taken out
from the tube and placed on a petri dish for confocal microscopy imaging.

Animal study protocol

Mice were bred at the Heart Research Institute Sydney, Australia. Protocols were approved by
the Sydney Local Health District Animal Ethics Committee (2014-014) (Sydney, Australia). Six-week-
old atherosclerosis-prone male apolipoprotein E”- mice were fed standard chow for 16 weeks
to develop atherosclerotic plaque in their aortic arches and descending thoracic aortae. Two
hours prior to euthanasia by cardiac exsanguination, mice were injected with LPS (100

ug/mouse) or PBS i.p. Aortae were excised. Single cell suspensions were prepared from the



aortic tissue using an enzymatic digestion containing Collagenase | and Collagenase 1X (both
from Sigma Aldrich) and then passage through a cell strainer (70 um). Cells were subjected to
the ONCELISA using antibodies raised against mice (anti-IL-6 monoclonal antibody). Cells
were subjected to flow cytometry on a BD FACSVerse (BD Biosciences) and the data was

analysed using FlowJo® software.
Statistics

One-tailed t-test was performed for the investigated groups of animals in the
atherosclerosis study. The test was applied by using software Prism. The level of statistical

significance was set at p < 0.05
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Figure S1. Demonstration of the localization of the capture antibody and detection when
combined with fluorescent magnetic beads (SP10O). a) Confocal image of the IL-6 capture
antibody in BV2 cells after treatment with FITC labeled secondary antibody. Image has been
combined with a DIC image of the same field of view. b) Confocal image of BV2 cells that
have not been incubated with the capture antibody, after treatment with FITC labeled secondary
antibody (negative control). Image has been combined with a DIC image of the same field of
view. c) Flow cytometry histograms for control BV2 cells (without the capture antibody, red
line) and IL-6 capture antibody-modified BV2 cells after treatment with FITC labeled
secondary (blue line). d) The fluorescence spectra for IL-6 only (green line), IL-6 + SPIO (red
line) and SPIO only (black line). The Dragon Green magnetic particles (SPIO), IL-6_Ab, +
SPIO_IL-6_Ab were excited at 480 nm. Related to Figure 1.
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Figure S2. Confirmation of antibody attachment to magnetic nanoparticles. The zeta potential
for magnetic nanoparticles before (0 pug/mL) and after conjugation of IL-6 antibodies at
different concentrations. The zeta potential decreases with the increase in IL-6 antibody

concentration reaching a plateau at 8 pg mL™. Related to Figure 1.
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Figure S3. a) The affinity of the IL-6 antibodies conjugated to DG SPIO_IL-6_Ab and to
MPSi_FITC_IL-6_Ab determined by the fluorescence plate reader. In this experiment 1L-6
(200 pg mLt) was added to 96 well plate followed by adding MPSi_FITC _IL-6_Ab or DG
SPIO_IL-6_Ab, and finally, the wells were washed 5 times with PBS. The ELISA Plate reader
(BMG FLUOstar Galaxy-Multi-functional Microplate Reader) was used to detect fluorescence
(excitation at 492 nm). The DG SPIO_IL-6_Ab particles show a stronger fluorescence signal
than the MPSi_FITC IL-6_Ab. b) Sensitivity and linear range of the OnCELISA assay
(functionalized cells with the capture antibody on the surface incubated with DG SPIO_IL-
6_Ab particles as the detection antibody). Based on the calibration curve of IL-6 shown in b)
the low detection limit is 0.1 pg mL and the linear range of the assay is 0.1-1000 pg mL™.
Note that this low detection limit was obtained with fluorimetry readout, and the corresponding

low detection limit using microscopy is different (higher). Related to Figure 1.
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Figure S4. Systematic control experiments confirming the importance of each constituent of
the ONCELISA. Confocal laser scanning microscopy images combined with DIC images for
control samples (blue is Hoechst nucleus staining, DG SPIO nanoparticles are shown in green).
The following controls were carried out: a) Biotinylated BV2 cells were treated with DG
SPIO_IL-6_Ab, without neutravidin. The results demonstrate only very low (< 5%) non-
specific adsorption of nanoparticles on biotinylated cell surfaces or nanoparticle uptake. b)
Biotinylated BV2 cells were treated with neutravidin, and then DG SPIO_IL-6_Ab after LPS
stimulation to verify that the presence of biotinylated anti_IL-6_Ab is vital to the function of
the prepared affinity surface. ¢) Biotinylated BV2 cells were treated with neutravidin, a
biotinylated mismatched antibody (anti IL-13_Ab), and then with DG SPIO_IL-6_Ab after
LPS stimulation. d) Biotinylated BV2 cells were treated with neutravidin, biotinylated anti_IL-
6_Ab, and then DG SPIO with a mismatched anti-chicken Ab after LPS stimulation (labelled
with Alexa Fluor® 488 conjugate) to establish the selectivity of the prepared capture surfaces.
Related to Figure 1.
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Table S1. Details for all control experiments. Related to Figure 4.

Components of ONCELISA assay

OnCELISA | Biotinylation | Neutravidin | Biotinylated | IL-6 DG SPIO_IL-
results anti IL-6 Ab 6_Ab
Control 1 Negative | Yes No No Yes | Yes
Control 2 Negative | Yes Yes No Yes | Yes
Control 3 Negative | Yes Yes Yes, but | Yes | Yes
replaced by
DG
SPIO_IL-
1B_Ab
Control 4 Negative | Yes Yes Yes Yes | Yes, but
replaced by
DG
SPIO_anti-
chicken_Ab

Table S1 details for control experiments to validate the components of the OnCELISA assay.

The results show that there is negligible non-specific adsorption of nanoparticles on

biotinylated cells. In addition, almost no labelling was observed when the biotinylated anti-I1L-

6 capture antibody was not modified on the cell surfaces, suggesting that the capture antibody

is very important to the function of the affinity surface. No fluorescence was observed after

functionalized cells were treated with the fluorescent detection antibody anti-chicken 1gG

which has no affinity to IL-6, suggesting that the capture surface is selective to IL-6. All these

controls suggest that the cells labelling is due to the affinity between IL-6 antibody and the IL-

6 secreted by cells, and not to non-specific adsorption or uptake.
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Figure S5. Confocal images for BV2 cells after treatment with OnCELISA (green) combined

with nuclear (blue) and membrane (red) staining (a) at lower magnification; (b) at higher

magnification. Related to Figure 1.



Figure S6. Consecutive Z-stack images showing the location of of OnCELISA labelling. In

this figure confocal images have been combined with DIC images of the same field of view.

Z-separation of individual images is 1.05 um. Upon inspection of consecutive images Z-1
through to Z-9 we can see Cell 1 slowly coming into focus. The image plane significantly
intersects the cell nucleus on images Z-11 to Z-19, with maximum cross-section around image
Z-15, marking the approximate center of the cell. In contrast, the OnCELISA labeling on Cell
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1 is brightest in the Image Z-9, consistent with labeling on the top or bottom of the cell. Similar
effect is seen in Cell 2 where OnCELISA labeling is observed at the beginning and at the end
of the presented Z-stack, where the cell cross-section seems to be out-of focus, but the nucleus
seems the biggest around the middle of the stack. Scale bar = 10 um. Related to Figure 1.
Vesicular model of cytokine release

The below section is to formulate a mathematical model the process of cytokine release
and determine its impact on chemical kinetics of the OnCELISA immunoassay. We intend to
establish whether OnCELISA on an individual cell detects its own cytokines, secreted from
that particular cell or whether it detects cytokines secreted from adjacent cells. To this aim, we
calculate the fraction of the cell-bound Abs in the OnCELISA assay that are able to detect its
own molecules (akin to autocrine detection), secreted by this particular cell and self-captured.
We consider a vesicular release mechanism of cytokines?, which produces short bursts of
locally high cytokine concentrations.

Cytokines are released from immune cells via diverse pathways, some of which involve
secretory vesicles 2. In our model A we assume that the 1L-6 is released from spherical secretory
vesicles with radius 7.4 that are below the optical diffraction limit (7,esic;e =0.1 um) and
that the concentration of IL-6 in such vesicles, Nygicie 1S high (Nyesicie= 10 MM, see Table S2
for summary of all numerical values used in these calculations). Once cytokines are released
from the vesicle, they form a hemispherical cloud of molecules with an average concentration
Creteasea (). In the case of diffusion in free space away from a molecular source, the average
square distance of molecules from the source over time t is Dt where D is the diffusion constant.
Therefore, the radius of the hemispherical cloud is R = v/Dt. In our simplified model we
assume that the released molecules form a uniform density hemispherical cloud of this radius.
The background cytokines produced by other cells are also present, with a uniform low
concentration, C,. The total concentration of cytokines available for binding in the cytokine
cloud is C(t) = Creeasea(t) + Cp, and outside it is Cp,. Cp, is generally small compared to
Creleasea(t) ON the timescale of single seconds considered here. In this case the released

average cytokine density in the proximity of the cell surface can be approximated by:

1 3
C(t) = ENvesicle (w) /1-1

Estimates of relevant physical constants
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Estimate of diffusion constant of IL-6 in water and in gelatin solutions. In experimental
protocols for cell-surface assays, gelatin may be used to slow down diffusion®. In this section
we estimate the diffusion constant of IL-6 in the media containing water, 25% gelatin, and 40%
gelatin respectively. To estimate this diffusion constant we used the approach in Reference®.
IL-6 is assumed to be a spherical molecule *. The diffusion of spherical molecules is given by
the Stokes-Einstein equation:

__ kpT
- 6nnr

11-2/

where T is the absolute temperature in Kelvins, r is the Stokes radius of the spherical molecule
and n is the viscosity of the solvent at the experiment temperature, in [Pa s], kg is the
Boltzmann constant. The Stokes radius is a function of molecular weight and between 4 kDa
and 40 kDa and it varies from 2 nm to 6.5 nm *. IL-6 has 24 kDa on average with 4 close forms
with 22 to 26 kDa, therefore we have taken » = 5 nm to be the Stokes radius of IL-6.

Viscosity values in gelatin solutions. Here we estimate the viscosity of gelatin solutions,
featuring in the Stokes equation. The intrinsic viscosity [n] defined as the ratio of specific

viscosity 7, to ¢, the concentration of polymer in grams per 100 cm? in the limit of small ¢ is
between 40 and 80 cm?/g,° and is usually equal to the ratio of [n] = n% ®. The specific viscosity
is obtained from relative viscosity as n, as

Nep =1y — 1 /1-3/
while relative viscosity is the ratio of the viscosity of the solution to that of the solvent.

Using the value of [n] = 50 cm®/g and the concentration of gelatin, ¢ = 25 g/100 cm? (25 %
gelatin) we get
Nsp = [nlc = 12.5, n,, = 13.5 . Using the value of viscosity of water of 0.8 mPa s 6 we obtain

the viscosity of 25% gelatin 7 =10.8 mPas. We remind that Pa = N/m?2.

For ¢ = 40 g/100 cm® (40% gelatin) we obtain n = 16 mPa s. Substituting into Equation /1-2/
we get D =4 108 cm ?/s for 25% gelatin and D = 2.5x108 cm?/s for 40% gelatin. These values
can be compared with the diffusion constant for 11-6 in water of 2.7«10”" cm?/s 7, and for GFP

in water of 8.7+10" cm?/s reported in Reference.*

Table S2. Values of parameters used in the mathematical modeling.
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Quantity Value Reference
Vsample 1cm? n/a
Neells 106 n/a
p 10 um=103cm n/a
Nyesicle 10 mM n/a
Tyesicle 0.1um n/a
D 2.5 %108 cm?/s Our estimates, see above, for
40% gelatin
VT 0.25 *103%s Francis, K.; Palsson, B. O.
Proceedings of the National
Academy of Sciences 1997,
94, 12258.

Analysis of chemical kinetics. The interaction of cytokines released from the vesicles is
further described in terms of a chemical reaction framework through capture antibody and
cytokine concentrations, kinetic rates, and binding affinity. In respect to binding kinetics, we

adapt here the model presented in Reference 8

IL-6 binding to antibodies on the cell surface is described in terms of the effective on-rate
Ko, and off-rate k,r. The number of antibody-IL-6 bonds per unit area, N(t) satisfies the

relationship &:

dl(\iit) = Kon[Nmax - N(t)] - koffN(t) 11-4]

Here, N4, 1S the maximum number of bonds given by the antibody density per unit cell area.
The on-rate K,,,, is a lumped kinetic constant K,,,, = k,, * C(t) where k,,, is the on-rate per

antibody molecule (in units of (Ms)™). The equation has the solution:

MO = e (1 - exp[~(Kon + kory)]} s

or substituting for K,

N(©) = S 1 — exp[—(C(kon + kopy)]) /1-6/
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Numerical estimates of binding kinetics. We now estimate the bond density. To this aim, we

note that the antibodies used here had the affinity constant :ﬂ in the order of 101*M™ ° . The
of f

parameter k, is taken to be in the range of 10°s™® to 10™*s™ 1. Correspondingly, ko, is in
the range of 10°% -107 (Ms)™. In the limit of large cytokine concetrations discussed here the

contribution from k¢, is negligible and N (t) can be approximated by:
N(t) ~ Nmax{1 - exp[_(c(t)kon)]} 11-71

The bond density increases exponentially with a time constant t such that 771 = C(7)k,y,. In
particular, substantial, 63% (63%= [1 - ﬂ) antibody binding is achieved after time T and higher

percentage binding is achieved for longer times. We now estimate this time constant for our
estimated cytokine concentration..

3
1 2 DT)1/2
I = - (( ) ) , /1-8/
C(kon konNyesicle \Tvesicle
Or, solving for t
T = (koanesicle)Zr'vesicle6 /1-9/

4p3

Substituting the values for 25% gelatin and taking k,,, = 10° - 10’ (Ms)™, N,zsic1e=10 mM and
vesicle radius 7,e5i0=0.1 pm and D= 4 um?/s we obtain: o, = 0.4 s and this >63% binding
will take place in the region of radius (Dt)/?=1.25 pm. For 40% gelatine we obtain 7o 4 =

1.59 s and this >63% binding will take place in the region of radius (D7)/?=1.99 um.

Conclusions: Can OnCELISA detect cytokines from other, non-secreting cells by the
virtue of their proximity to a secreting cell? With the assumptions of our model we now
answer the question whether there is cross-labeling from a secreting cell to other, potentially
non-secreting cells. Our calculations indicate that the cytokines from any adjacent cell whose
secreting vesicle is closer to the selected cell than the diffusion distance of 1.25 pum (25%
gelatin) and 2 pum (40% gelatin) will be able to attach to the antibodies at the adjacent cell and
saturate the bonds to 63% - which means that the adjacent cell will be labelled despite being
non-secreting. However, this is a relatively rare occurrence and the labelling of the non-
secreting cell touching only 1 secreting cell will remain very low. Simple geometry

considerations indicate that two spherical cells 10 um diameter and touching one another have
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a small percentage (4.8%) of their area closer than 2 um to one another (and correspondingly
less for 1.25 um diffusion distance). Labelling of the non-secreting cell would require the
appearance of the secreting vesicle in the secreting region immediately adjacent to the non-
secreting cell, and the number of such vesicles would be proportional to the area ratio (that is
scaled down by a factor of 4.8%). This means that even if the vesicle would eventually be
present within the appropriate area, the non-secreting cell would only be able to be labelled in
the small area representing 4.8% of the cell area. The situation becomes less clear-cut in the
case when there is a larger fraction of highly secreting cells. In the case of a single non-secreting
cell that is surrounded by closely packed secreting cells in the hcp lattice where each cell has
12 neighbors, over 50% of the area of the non-secreting cells could, in principle be labelled.
This may set a limit on the purity of cell subpopulations selected by using OnCELISA, but it

could be partially moderated by setting comparatively high gating limits in flow cytometry

sortlng.
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Figure S7. The progeny cells of biotinylated BV2 cells are also biotinylated. (a) control BV2
cells; (b) biotinylated BV2 cells; (c) progeny of biotinylated BV2 cells. The cells were stained
with FITC-avidin before flow cytometry measurement. Related to Figure 4.
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Figure S8. OnCELISA applied to mesenchymal stem cells (MSCs). (a-b) Confocal laser
scanning microscopy images for mesenchymal stem cells (MSCs) which have been labeled
with DG SPIO_IL-6_Ab at different magnifications. Related to Figure 1.

400 250
T, %015 ¢ } % 00l b
E 300 - } } =
o 250 ¢ P S 150 -
Q@ ~345 pg mL @
= 200 - -
5 S 100 -
c 150 - { c }
o — = -1
3 100 - 8 50 - 160 pg mL
::E, 50 1 § »
o . o
S 0 T T T T T ‘ £ 0 e — : : - . :
o 0 4 8 12 16 20 24 28 O 0 4 8 12 16 20 24 28

LPS stimulation time, h LPS stimulation time, h

Figure S9. ELISA measurements of IL-6 secreted from RAW cells (a) and MSCs (b). Related
to Figure 1.



22

Figure S10. OnCELISA can detect the secretion of IL-1p. Confocal laser scanning microscopy
images combined with DIC images for functionalized cells with 8 h LPS stimulation after
treatment with Flush Red SPIO_IL-1B_Ab at different magnifications. Related to Figure 1.

Figure S11. OnCELISA can be simultaneously used with two different colour nanoparticles

and two cytokines, IL-6 and IL-1pB. Confocal laser scanning microscopy images have been
combined with DIC images of the same field of view. Images show functionalized cells with 8
h LPS stimulation after treatment with DG SP1O_IL-6_Ab and flush red SPIO_IL-1p_Ab at

different magnifications. Related to Figure 1.
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