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Abstract

Introduction—Inherited susceptibility to lung cancer risk in never smokers is poorly understood.
The major reason for this gap in knowledge is that this disease is relatively uncommon (except in
Asians), making it difficult to assemble an adequate study sample. In this study we conducted a
genome-wide association study (GWAS) on the largest, to date, set of European-descent never
smokers with lung cancer.

Methods—We conducted a two-phase (discovery and replication) GWAS in never smokers of
European descent. We further augmented the sample by performing a meta-analysis with never
smokers from the recent OncoArray study, which resulted in a total of 3,636 cases and 6,295
controls. We also compare our findings with those in smokers with lung cancer.

Results—We detected three genome-wide statistically significant SNPs rs31490 (OR 0.769, 95%
confidence interval (Cl) [0.722-0.820], p-value 5.31x10716), rs380286 (OR 0.770, 95% Cl
[0.723-0.820], p-value 4.32x10716), and rs4975616 (OR 0.778, 95% CI [0.730-0.829], p-value
1.04x10” 14). All three mapped to Chromosome 5 CLPTMIL-TERT region, previously shown to
be associated with lung cancer risk in smokers and in never smoker Asian women, and risk of
other cancers including breast, ovarian, colorectal and prostate.

Conclusions—We found that genetic susceptibility to lung cancer in never smokers is associated
to genetic variants with pan-cancer risk effects. The comparison with smokers shows that top
variants previously shown to be associated with lung cancer risk only confer risk in the presence of
tobacco exposure, underscoring the importance of gene-environment interactions in the etiology of
this disease.

Introduction

Lung cancer is the leading cause of cancer mortality worldwide, accounting for over 1
million deaths each year 1. Although most lung cancer is preventable, since the majority of
cases occur in tobacco smokers 2, around 10% of cases are seen in lifetime never-smokers.
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Even though lung cancer is diagnosed in a minority of never smokers it still ranks as the
seventh to ninth most common cause of cancer death worldwide 2.

In never smokers, lung cancer has characteristics distinct from those associated with
smoking, including different histology and mutation spectrum 3. The only well-established
risk factors for lung cancer in never smokers are exposure to radon 4, secondhand smoke and
dust 3, asbestos 6, and, notably, family history of cancer > 7:, which has provided evidence
for inherited susceptibility.

To date, genome-wide association studies (GWAS) on lung cancer has largely been focused
on ever smokers, and have identified 18 independent loci influencing risk 7 8. While several
GWAS studies in never smokers have been conducted, these have primarily been based on
Asian women 912, Several environmental risk factors for lung cancer, including cooking
fumes and air pollution, are highly prevalent in Asian populations 13, raising the possibility
of effect modification. ldentifying lung cancer susceptibility alleles among never smoking
European populations has been limited to candidate gene analyses 14 15 and small GWA
studies 16-18, Reported here are the results of a large GWAS of lung cancer in never smokers
of European descent, based on 3,636 cases and 6,295 controls.

Materials and Methods

Study design and samples

Never smokers were defined as individuals who had smoked less than 100 cigarettes over
their lifetime. The study had a discovery and a replication series, both from studies
participating in the International Lung Cancer Consortium (ILCCO; http://ilcco.iarc.fr). The
discovery series, after quality control (Appendix), comprised 1,287 cases and 1,655 controls
with European ancestry from seven centers (Table A.1). The replication series comprised
960 cases and 940 controls from 16 study centers, of which some centers (but not study
subjects) participated also in the discovery phase (Table A.2). Comprehensive details of each
series have been previously reported 17: 1923 To increase statistical power, data on never
smokers recently generated by the OncoArray lung cancer study from ILCCO 20 were also
leveraged. After excluding samples overlapping between the OncoArray and the discovery
set and between the OncoArray and the replication set, 1,149 cases and 1,144 controls from
the discovery, 1,527 cases and 4,211 controls from the OncoArray, and 960 cases and 940
controls from the replication sets were included in the final analyses. Most of the lung
cancer cases (76.7% in the discovery, 69.2% in the replication, and 63.1% in the OncoArray
sets) had histologically confirmed adenocarcinoma, followed by squamous and small cell
carcinoma (Tables A.1-A.3). Given that subtype-specific associations are likely to exist,
adenocarcinomas were also analyzed separately. Table 1 presents the demographic
characteristics of the final dataset.

Genotyping and quality control

Both cases and controls from the discovery set were genotyped using llumina Infinium
OmniExpress-24 v1.2 BeadChips, with the exception of cases and controls from Harvard
School of Public Health (HSPH), genotyped on Illumina Human660W-Quad BeadChip.
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Genotyping of the replication series for 384 selected SNPs was performed using lllumina
GoldenGate technology. Genotyping quality control and SNP selection procedures are
detailed in the Appendix. The OncoArray genotyping platform, the never smoker samples to
which it was applied, and genotyping and quality control procedures are described in the
Appendix and have been previously characterized in detail 20 24

Data analysis

Results

To harmonize data and address population stratification in the discovery set, the studies were
grouped as follows. Provided they used the same genotyping array and study participants
were from the similar geographic origin they were combined. This resulted in two groups:
UK studies and North American studies. Since the HSPH samples were genotyped on a
different platform, these were analyzed separately. Thus the following clusters were used: (i)
HSPH, (ii) UK, and (iii) North America (see Table A.4 for more detail). Three separate
GWAS analyses were ran based on the three groups. We applied logistic regression analyses
with case-control status as the outcome and the SNP genotype as a predictor to identify risk-
associated SNPs in these three groups. Additive models, with 0 for the reference allele
homozygotes, 1 for heterozygotes, and 2 for variant allele homozygotes were used.
Reference alleles were defined as in the hg19 reference genome. Age (continuous variable),
sex, secondhand smoke exposure (SHS; from any venue at any period in a lifetime),
education level, and study site within the group (if more than one site) were used as
covariates. The definition of the education variables and more information on the SHS
assessment are given in the Appendix. Missing values for SHS and education status were
treated as a separate category. To offset potential effects of population stratification within
clusters, SNP based principal components analyses (PCA) were performed 2° and the
corresponding first five principal components were included as covariates, even though the
PCA of these three GWAS clusters do not suggest population stratification (Figure A.1). An
inverse variance fixed effects meta-analysis was used to combine the results for the three
group-based GWASs 26,

A brief description of the OncoArray never smoker dataset is provided in the Appendix. To
perform the joint analysis of the discovery and the OncoArray sets, inverse variance meta-
analysis was used, whereby studies were grouped into five clusters (Discovery-North
America,Discovery-UK, OncoArray-North America, OncoArray-UK, and OncoArray-
Continental Europe), as detailed in Table A.5. This joint analysis was adjusted for age, sex,
study site within the group, and the first five principal components, but not SHS or education
level, as they were not available in the OncoArray set.

Criteria for SNP selection and the quality control procedures in the replication phase are
described in the Appendix.

We focus on the joint analysis of the discovery and OncoArray sets as having the largest
sample size (the results for the discovery set separately are presented in the Appendix,
Figure A.2 showing the Q-Q plot that demonstrates no indication of an inflation of type I
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error (A=1.005), and Table A.6 presenting the list of the top SNPs derived from the
discovery set (p<1x1074)).

Figure 1 presents the scatter plot of the -logygp-values against the chromosome position (the
so-called Manhattan plot) for the meta-analysis of the discovery and the OncoArray
samples. The analysis identified 71 genome-wide statistically significant SNPs (P<5x1078,
the accepted genome-wide level of statistical significance 27), all of them mapping to the
5p15.33 CLPTMIL-TERT region. Table A.7 presents the 229 top SNPs at P<107°. There is
also a peak on Chromosome 9 in the CDKNZA region, but none of the SNPs in this regions
attained statistical significance at the GWAS level.

The principal component analysis of the replication samples showed no differences by the
case-control status for the first five principal components (Figure A.3).

Table A.8 presents the list of nominally statistically significant (p<0.05) SNPs from the
replication analysis. The most significant SNPs, rs380286 (p=3.88x1077), rs31490
(p=4.68x10"7), and rs4975616 (p=2.50x107%) were located in the 5p15.33 (CLPTMIL-
TERT) region (Table 2). These three SNPs were significant after the Bonferroni correction
for 370 tests resulting in the p-value of 1.35x10~4 to declare significance (the FDR approach
identified the same three SNPs as statistically significant; Table A.8).

The 370 candidate SNPs selected for the replication (see Appendix for the selection criteria)
were analyzed using all three study population sets: the discovery, the replication, and the
OncoArray (total 3,636 cases and 6,295 controls). The analysis identified three SNPs
statistically significant at the genome wide level: rs380286 (P=1.6x10"14), rs31490
(P=5.1x10714), and rs4975616 (P=5.8x10"14; Table 2). These three SNPs are from the
CLPTMIL-TERT region and the association with the variant alleles was consistently
negative (OR < 1). These SNPs belong to a wide LD block corresponding to the LD Region
2 marked by rs451360 as described in 28. The very high LD between the pairs of SNPs
(0.925 for rs380286 and rs31490; 0.915 for rs380286 and rs4975616; 0.955 for rs31490 and
rs4975616) did not allow identifying the leading SNP among the three, as there was very
little variation in a SNP when the genotypes of the other two were fixed.

The results of the joint analysis of the discovery and replication sets without the OncoArray
samples are shown in the Table A.9. In brief, the same 3 SNPs from the CLPTMI1L-TERT
region were identified as genome-wide statistically significant.

Analysis of only adenocarcinoma cases produced nearly identical results, with only
CLPTMI1L-TERT region SNPs showing statistical significance (Tables A.10, A.11).

Table 3 summarizes the comparisons between our study results and previous published
findings reported in never smokers from genome-wide and candidate gene/SNP association
studies in both individuals of European descent and Asians. Our study confirmed SNPs
located in 5p15.33 (CLPTMIL-TERT)region. Notably, the direction of the association is
highly concordant among the studies for the SNPs in this region. The results for 328
(TP63) and 6022.2 (ROS1-DCBLD1)regions are suggestive in our analysis (P-values of
~104 for both these regions). The results from our study for the loci identified in the
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recently published largest-to-date lung cancer study that involved mostly smokers?C are
shown in Table A.12.

A comparison of the regional association plots for the CLPTMIL-TERT region and 15025
(CHRNAS3) region in never smokers and smokers was also performed (whereby the smokers’
data were obtained from the lung OncoArray project) (Figure 2 a,b). We found that the risk
association profile plotted as the -logyoP for the SNPs in the CLPTMI1L-TERT region in
never smokers tightly followed that in smokers (Figure 2a). By contrast, the association
profiles in the CHRNASZregion (implicated in nicotine dependence) are strikingly different
in never and ever smokers, with very high -logyoP values in smokers and a flat profile in
never smokers (Figure 2b). Analogous comparisons for two other regions, 7P63and
CDKNZA, are presented in the Figure A.4.

The analyses of associations for the 3 most statistically significant SNPs from the
CLPTMIL-TERT region stratified by the SHS exposure status are shown in the Appendix
(Table A.13). There was no indication of SNP-SHS interaction effects or a SNP effect
modification by the SHS exposure, as the interaction term was not significant for any of the
SNPs.

Discussion

This is the largest lung cancer GWAS so far conducted in never smokers of European
descent. However, only one region (CLPTMI1L-TERT) strongly associated with lung cancer
risk in this patient population was found. Our results for this region corroborate findings by
earlier studies of lung cancer in never smokers (Table 3), showing consistent direction of
effect. The 5p15.33 CLPTMIL-TERT region SNPs have also been reported to be associated
with multiple cancers including lung cancer in smokers 18, breast cancer 29, glioma 30,
nasopharyngeal cancer 31 and prostate cancer 32, TERT encodes the catalytic subunit of the
telomerase reverse transcriptase, which takes part in adding nucleotide repeats to
chromosome ends 33. While active in early development and germ cells, this gene is not
expressed in most adult tissues, resulting in a shortening of telomeres with each cell
division. When telomeres become critically short, the cell can no longer divide. However,
cancer cells can upregulate telomerase, which enables them to continue dividing 34 The
CLPTMIL gene is reported to be overexpressed in lung and pancreatic cancer where it
promotes growth and survival 35 36, Also there is a locus within the CLPTMIL gene that
serves as a binding site for ZNF148, which promotes expression of TERT 3.

Functional annotation of the top identified SNPs using Encyclopedia of DNA Elements
(ENCODE) 38 found that rs4975616 coincides with the binding site for three transcription
factors: ELF1, ZEB1 and BCLAFL. Both TERT and CLPTMIL are among the many target
genes for ELF1 and ZEB1; CLPTMIL (but not TERT) is among the target genes for
BCLAF1. According to Ensemble regulatory database 39, SNP rs31490 is located in the
region that acts as a promotor for CLPTMIL in the developing lung. In the Genotype-Tissue
Expression (GTEX) 40 all three SNPs: rs31490, rs380286, and rs4975616 are reported as
eQTLs for TERT in esophagus and CLPTMIL in skin tissue.

J Thorac Oncol. Author manuscript; available in PMC 2020 August 01.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnue Joyiny

1duosnuen Joyiny

Hung et al.

Page 6

Previously, a fine-mapping study has been conducted on this locus to deeply investigate its

association with lung cancer risk 4. The study included a limited number of never smokers
and the novel loci identified did not show a significant effect specifically in never smokers.

However, the direction of the effect was largely consistent with that in smokers, in line with
what our study reports (Figure 2a).

For other SNPs, e.g. those reported by Li et al 17, no association in our study was detected.
However, Li et al.’s study 17 used additional covariates (e.g. COPD, lung cancer family
history) to adjust for in their analyses. This may have made a comparison of their results
with our study less straightforward, because the data on these covariates were not available
from the majority of the sites participating in our study. The SNPs rs10937405 for 3928 and
rs9387478 for 6022.2, previously reported to be significant in Asian never smoking women
(Table 3), showed at best a suggestive association (P-values of ~10~# in both cases). These
two regions have been shown also to be implicated in other cancer sites. SNPs in the 7P63
region have been shown to be associated with lung adenocarcinoma in the UK population 8,
acute lymphoblastic leukemia 42, bladder cancer 43 and pancreatic cancer 44 SNPs in the
ROS1-DCBL DI region have been shown to be associated with colorectal cancer #°. This
further suggests that SNPs/regions associated with lung cancer risk in never smokers are not
specific for this type of cancer but rather have pleiotropic effects.

Our analysis was designed to control for demographic variables (age and sex, as controls
were slightly but statistically significantly younger (p<0.001) and had a higher proportion of
men than cases (p<0.001)) as well as for known and potential risk factors, specifically,
where possible, for education status and self-reported secondhand smoke exposure 46. To
account for possible population stratification, the first five principal components and the
study site were also adjusted. However, the information on radon exposure, asbestos, prior
respiratory conditions, and diet was not available from most studies. As such, these
established and putative risk factors were not accounted for in the analyses. A further
limitation is the self-reported nature of the never smoker status. Differential misreporting of
the smoking status, e.g., if a modest proportion of former or current smoker controls
reported that they have never smoked, might lead to SNPs associated with smoking appear
as protective. Unfortunately, the great majority of the participating studies did not verify it
by cotinine measurements. However, SNPs in CHRNA3-5or CYPZAG6 regions, known to be
associated with smoking 29, did not show any effect in this study (Figure 2b; Table A.11).

Latest GWASs of lung cancer in smokers have generated many more findings than did this
study, which is not surprising given that the former are much larger. Most SNPs reported as
statistically significant in smokers showed the same direction of effect in never smokers
(Table A.12). Gene-smoking interaction may be another factor contributing to the higher
number of positive findings among smokers than never smokers: some of the sequence
variations that are neutral in the absence of tobacco smoking confer risk when smoking and
the associated tissue and DNA damage are present.

High BMI1 47 and alcohol exposure 48 are common and may also explain a proportion of the
lung cancer risk in never smokers. It is possible that there are rare variants influencing risk
that could not be detected by a GWAS that focuses on common variants. Additionally, gene-
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gene interactions that are beyond the scope of this study may in part explain variability in
the incidence of lung cancer in never smokers. \ery rarely, individuals can carry inherited
mutations in 7P53increasing lung cancer risk 4°. The availability of results from our GWAS
will allow additional exposures to be studied using Mendelian Randomization approaches
(as exemplified in 59), and developing models that can identify never smokers at highest risk
for lung cancer development could improve early detection.
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Figure 1.
Manhattan plot of the association analysis of lung cancer in European ancestry never

smokers performed jointly in the discovery set and the OncoArray samples. The x-axis is
chromosomal position, and the y-axis is the statistical significance on a —logyg scale.
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Figure 2.
Regional association plots for smokers (red line) and never smokers (blue line) in

CLPTMIL-TERT region (a) and CHRNAS3-5region (b). The y axis corresponds to —log;oP
for 650 SNPs in the CLPTM1L-TERT region and —logyoP for 535 SNPs in CHRNA3-5
region. To aid visual representation we selected the 10 closest SNP and computed average —
logyoP- values.
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Characteristics of never smoking lung cancer cases and controls included in the final dataset.

Table 1.

Characteristic

Cases (n=3,636)

Controls (n=6,296)

Age, mean, SD

Sex, n, %

Histology, n, %

Male
Female
Adenocarcinoma

Squamous cell carcinoma

63.6
1,156
2,480
2,509

310

12.4
31.8
68.2
69.0

8.5

61.9
2,595
3,701
6,296
6,296

11.9
41.2
58.8
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Table 2.

Page 15

The three GWAS-significant (P<5x1078) variants for lung cancer in European ancestry never smokers, found
in the joint analysis of the original discovery set, the never smoker subset of the OncoArray set, and the
replication set (6 clusters, 3636 cases, 6295 controls), adjusted for age, sex, and the first five principal

components.
SNP ID CHR”* Position  Odds 95% ClI p-value™ Reference ~ Effect pap*  Gene
Ratio® allele allele symbol
Lower Upper
boundary boundary
1s380286 5 1320247 0.770 0.723 0.820 4.32x10716 A 0.4169  CLPTMIL
1s31490 f 5 1344458 0.769 0.722 0.820 5.31x10716 A 0.4142  CLPTMIL
rs4975616¢ 5 1315660 0.778 0.730 0.829 1.04x10714 G A 0.4005 CLPTMIL

*
Adjusted for age, gender, and the first 5 principal components; CHR, chromosome; EAF, effect allele frequency

Hk
intronic variant

7. .
splice variant

7 .
downstream gene variant
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