FIOOOResearch

F1000Research 2019, 8:1490 Last updated: 24 JAN 2020

SOFTWARE TOOL ARTICLE

'.) Check for updates

A Sequence Distance Graph framework for genome assembly
and analysis [version 1; peer review: 2 approved, 1 approved

with reservations]

Luis Yanes “*, Gonzalo Garcia Accinelli, Jonathan Wright **', Ben J. Ward,

Bernardo J. Clavijo
Earlham Institute, Norwich, Norfolk, NR4 7UZ, UK

V1 First published: 23 Aug 2019, 8:1490 (
https://doi.org/10.12688/f1000research.20233.1)

Latest published: 23 Aug 2019, 8:1490 (
https://doi.org/10.12688/f1000research.20233.1)

Abstract

The Sequence Distance Graph (SDG) framework works with genome
assembly graphs and raw data from paired, linked and long reads. It
includes a simple deBruijn graph module, and can import graphs using the
graphical fragment assembly (GFA) format. It also maps raw reads onto
graphs, and provides a Python application programming interface (API) to
navigate the graph, access the mapped and raw data and perform
interactive or scripted analyses. Its complete workspace can be dumped to
and loaded from disk, decoupling mapping from analysis and supporting
multi-stage pipelines. We present the design and

implementation of the framework, and example analyses scaffolding a short
read graph with long reads, and navigating paths in a heterozygous graph
for a simulated parent-offspring trio dataset.

SDG is freely available under the MIT license at
https://github.com/bioinfologics/sdg

Keywords
Genome graph, genome assembly

@ pylhon This article is included in the Python collection.

Open Peer Review

Reviewer Status +" " 7

Invited Reviewers

1 2 3
version 1 v vy ?
23 Aug 2019 report report report

1 Erik Garrison, University of California, Santa
Cruz, Santa Cruz, USA

2 Eric T. Dawson , National Cancer Institute,
Rockville, USA
University of Cambridge, Cambrige, UK

3 Max Alekseyev , George Washington
University, Washington, USA
Pavel Avdeyev, George Washington University,
Washington, USA

Any reports and responses or comments on the
article can be found at the end of the article.

Page 1 of 15

https://f1000research.com/articles/8-1490/v1
https://f1000research.com/articles/8-1490/v1
https://orcid.org/0000-0003-1382-0166
https://orcid.org/0000-0001-6471-8749
https://github.com/bioinfologics/sdg
https://f1000research.com/collections/python
https://f1000research.com/collections/python
https://f1000research.com/articles/8-1490/v1
https://orcid.org/0000-0001-5448-1653
https://orcid.org/0000-0002-5140-8095
https://doi.org/10.12688/f1000research.20233.1
https://doi.org/10.12688/f1000research.20233.1
http://crossmark.crossref.org/dialog/?doi=10.12688/f1000research.20233.1&domain=pdf&date_stamp=2019-08-23

FIOOOResearch F1000Research 2019, 8:1490 Last updated: 24 JAN 2020

Corresponding author: Bernardo J. Clavijo (bernardo.clavijo@earlham.ac.uk)

Author roles: Yanes L: Conceptualization, Software, Writing — Original Draft Preparation, Writing — Review & Editing; Garcia Accinelli G:
Conceptualization, Methodology, Validation, Writing — Original Draft Preparation, Writing — Review & Editing; Wright J: Validation, Writing -
Original Draft Preparation, Writing — Review & Editing; Ward BJ: Validation, Writing — Original Draft Preparation, Writing — Review & Editing;
Clavijo BJ: Conceptualization, Funding Acquisition, Methodology, Resources, Software, Validation, Writing — Original Draft Preparation, Writing —
Review & Editing

Competing interests: No competing interests were disclosed.

Grant information: This work was strategically funded by the BBSRC Core Strategic Programme Grant [BBS/E/T/000PR9818]. Work by GGA and
BJC was also partially funded by the BBSRC grant "OctoSeq: Sequencing the octoploid strawberry"[BB/N009819/1].

Copyright: © 2019 Yanes L et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

How to cite this article: Yanes L, Garcia Accinelli G, Wright J et al. A Sequence Distance Graph framework for genome assembly and
analysis [version 1; peer review: 2 approved, 1 approved with reservations] F1000Research 2019, 8:1490 (
https://doi.org/10.12688/f1000research.20233.1)

First published: 23 Aug 2019, 8:1490 (https://doi.org/10.12688/f1000research.20233.1)

Page 2 of 15

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.12688/f1000research.20233.1
https://doi.org/10.12688/f1000research.20233.1

F1000Research 2019, 8:1490 Last updated: 24 JAN 2020

Introduction

Sequence graphs are the core representation of genome assemblers'~ Their use has increased lately thanks to the
graphical fragment assembly (GFA) format for graph exchange’, tools to work with genome variation graphs’,
and sequence to graph mappers®'’ But a lack of inter operation between graph-based tools, and limited tools
for downstream graph-based analysis, contribute to a perceived complexity which maintains linear sequences
as the typical unit of exchange. This flattening of graph representations within pipelines with multiple steps,
that use different types of sequencing in an iterative fashion, produces ever-longer linear genome sequences
through an information loss process. As a result, genome assembly projects are prone to error propagation and
difficult to reproduce and control. These problems can be addressed developing graph-based frameworks to
integrate the analysis of hybrid datasets.

The Sequence Distance Graph (SDG) framework implements a SequenceDistanceGraph representation that
defines sequences in nodes and their adjacency in links, and an associated Workspace containing raw data and
mappings. This provides an integrated working environment to use multiple sources of information to navi-
gate and analyse genome graphs. Datastores allow random access to short, linked, and long read sequences on
disk. A mapper on each datastore contains methods to map the reads to the graph and access the mapping data.
KmerCounters provide functions to compute k-mer coverage over the graph from sequencing data, enabling
coverage analyses. Additional DistanceGraphs, typically representing longer-range information and differ-
ent linkage levels, define alternative topologies over the SequenceDistanceGraph nodes. Finally, a NodeView
abstraction provides a proxy to a node, with methods to navigate the graph and access its mapped data. This
comprehensive framework can be used to explore genome graphs interactively or to create processing methods
for assembly or downstream analysis.

Here we describe the SDG implementation and basic tools, providing examples of use cases that highlight its ana-
Iytic flexibility. First, we show how to create a hybrid assembly by integration of long reads linkage into a short-
read graph. Then we analyse a simulated parent-child trio and show how the coverage of the parent datasets can be
used to navigate the graph topology. These are only two of the multiple ways integrating data and genome graphs
can be used to perform simple but powerful analyses.

Methods

Implementation

The C++ core library implements SDG’s data structures and methods for WorkSpaces, graphs, datastores
and mappers. Its main goal is to provide a straightforward interface to project information from raw datasets
onto graphs, and enable easy access and analysis of the graph-data combination. It uses OpenMP for parallel
processing, and SWIG 4.0 to export a Python API to enable interactive data analysis.

The SequenceDistanceGraph class contains a vector of nodes defining DNA sequences, and a vector of
links. Every node has a positive and a negative end, and links are defined between these node ends. Links with
positive distances represent gaps between linked sequences and negative distances represent overlaps. This rep-
resentation, shown in Figure 1, is similar to those presented in 2,11 but unifies the concept of overlap and gap.
Paths can be defined as list of nodes, with the sign of the first end in the walk. Graphs can be read and written
to GFA and GFA2 files.

Node 2: |
AT eaceTta TN
ro
As 4
\ ’ 04
N 39

S
Node 1: Link (-1, -3, d=-3) Node 4: Link (-4, +5, d=10) Node 5:
+ cracaga - + TTACGAA - + cTGaTATGA ~
| —

Node 3:
AATACGGTCC ~

'

Link (+3, +4, d=-2)

Figure 1. A simple Sequence Distance Graph with 5 nodes, including links with d<0, representing overlaps, and
a link representing a gap of 10bp. Sequences appear in only one direction and their reverse complement can be
obtained by traversing the node in opposite direction, from - to +. The two largest possible paths are [1, 2, 4, 5] and
[1,-3, 4, 5], and their reverse complements [-5, -4, -2, -1] and [-5, -4, 3, -1] respectively.

Page 3 of 15

F1000Research 2019, 8:1490 Last updated: 24 JAN 2020

The DistanceGraph class contains a set of links over the nodes of a SequenceDistanceGraph object. It is used
to represent alternative sources of linkage information, such as longer range linkage produced by mapped
reads for scaffolding.

The WorkSpace contains a single SequenceDistanceGraph, multiple DistanceGraphs, datastores and map-
pers, and its structure in memory represents the status of the SDG framework. It can be dumped and loaded from
disk, providing persistence and checkpoints between different steps on SDG-based pipelines. Raw reads and
k-mer counts are kept in separate files, pointed from the WorkSpace, to avoid duplication when using multiple
WorkSpaces around the same dataset.

The DataStores and Mappers provide access and management to raw data and its mapping on the graph.
Datastores do not load read data into memory, but rather provide random access to the on-disk data. The
PairedRedMapper and LinkedReadMapper classes use a unique k-mer index to map reads to single nodes,
with single reads mapping to multiple nodes not being mapped™'’ The LongReadMapper class generates
multiple mappings from each read to nodes, using a short non-unique k-mer index (k=15 by default)’*'* Long
read mapping filtering is left to later stages of the processing.

The KmerCounters creates an index with all the k-mers at a given k up to k=31 and counts occurrences of
these k-mers on the graph, allowing then to count occurrences in datastores or fastq files. These counts, persisted
in the KmerCounter with a name, can be then accessed to perform k-mer coverage analyses. Projections of raw
k-mer coverage in the reads and the assembly over a particular sequence for a node or path, similar to those pro-
duce by the “sect” tool of K-mer Analysis Toolkit (KAT)"” are valuable for content analysis. Spectra analysis
of these frequencies can provide further insight into genome composition and representation on the assembly.

Two processing classes, LinkageUntangler and LinkageMaker, work with alternative linkage configu-
rations. The LinkageMaker is used to condense information via one of its make linkage* methods,
from evidence in the WorkSpace into links in a DistanceGraph. The LinkageUntangler class works on a
DistanceGraph to simplify, condense and/or linearise its linkage. In the second use case below it can be seen how a
combination of LinkageMaker and LinkageUntangler can be used for scaffolding with long reads.

Finally, the NodeView class, and its associated LinkViews, provide a single-entry point for node-centric analy-
ses. A NodeView from either a DistanceGraph or SequenceDistanceGraph is a wrapper containing a pointer
to the graph and a node id, and will provide access to its nodes’ previous and next linked nodes, mapped reads,
or k-mer coverage. A user with good understanding of the NodeView class should be able to access most
information in the WorkSpace through it, making it the default choice for analysing the graph.

Operation

Requirements and installation. SDG can be run on Linux and MacOS, and requires enough RAM to hold the
WorkSpace completely in memory, which will depend on the dataset. Space to hold the uncompressed sequences
on the datastores on disk will also be required.

SDG can be installed via pre-compiled binaries from https://github.com/bioinfologics/sdg/releases. The binaries
have been built using Python3 and GCC version 6 from the Ubuntu package manager for the Linux version. The
MacOS version dependencies were obtained using Homebrew (Python3, GCC-6 and SWIG). SDG can be com-
piled using CMake, Python3, SWIG version 4 and GCC version 6 onwards. Detailed instructions can be found at
https://bioinfologics.github.io/sdg/sdg/README.html#installation.

Typical workflow. Working with SDG typically involves two different stages: creating a WorkSpace with the
data and mappings, and analysing this WorkSpace. SDG includes command line tools to create DataStores,
KmerCounts, and WorkSpaces, and map reads within a WorkSpace.

» sdg-datastore: creates a Datastore from raw reads and can process paired, 10x or long reads. An output
prefix is specified as a parameter and a <prefix>.prseq, <prefix>.lrseq or <prefix>.loseq file is generated.

* sdg-kmercounter: creates a KmerCounter indexing a graph from a WorkSpace or GFA, or works
with an already generated one. A count can be added directly from raw reads or from a datastore.
The KmerCounter is persisted on file with extension ’sdgkc’.

Page 4 of 15

https://github.com/bioinfologics/sdg/releases
https://bioinfologics.github.io/sdg/sdg/README.html#installation

F1000Research 2019, 8:1490 Last updated: 24 JAN 2020

e sdg-workspace: creates a WorkSpace from a base graph or works with an already generated one.
Datastores and KmerCounters can be added. The WorkSpace is persisted on file with extension ’sdgws’.

e sdg-dbg: creates a WorkSpace from a PairedReadDatastore by building a deBruijn graph and using
this as the base graph. Counts for the k-mers from the graph and raw reads are added too.

e sdg-mapper: maps reads within a WorkSpace. An updated WorkSpace is produced and dumped to the

specified prefix.

WorkSpaces can also be instantiated with an empty graph, and the graph populated through the add node and
add_1link methods. The following example on a python session shows how the simple graph from Figure |
can be created from scratch, navigated through a NodeView instance and sequence from its paths extracted.

>>> import pysdg as SDG
version 0.1
master b4d3f02

>>> ws=SDG.
>>> ws.sdg.

1
>>>
2
>>>
3
>>>
4
>>>
5
>>>
>>>
>>>
>>>
>>>
>>>
>>>

WS

WS

WS

WS

WS

wS.

WS

wS.

WS

.sdg.
.sdg.
.sdg.
.sdg.
.sdg.
sdg.
.sdg.

sdg.
.sdg.

WorkSpace ()
add node ("CTACGGA™")

add node ("GACCTTA")
add_node ("AATACGGTCC™)
add node ("TTACGAA™")

add node ("CTGATATGA")

add link (-1, 2, -2)
add link (-1, -3, -3)
add link(-2, 4, -3)
add link(3, 4, -2)
add link(-4, 5, 10)

nv=ws.sdg.get nodeview (1)

nv

<NodeView:

Node 1 in SDG>

>>> nv.next ()

<Vector: 2

LinkViews>

>>> print (nv.next())

[
<LinkView:
<LinkView:

]

-3bp to Node -3>,
-2bp to Node 2>

>>> nv = nv.next () [0].node ()

>>> nv
<NodeView:

Node -3 in SDG>

>>> print (nv.prev())

[

<LinkView:

]

-3bp to Node 1>

>>> nv.sequence ()
'GGACCGTATT'

>>> SDG.SequenceDistanceGraphPath (ws.sdg,
'CTACGGACCGTATTACGAANNNNNNNNNNCTGATATGA'

5]) .sequence ()

Typically, as shown in Figure 2, the API is used to explore a larger WorkSpace, with the methods accessing
both in-memory and on-disk data, and modifying the status of the WorkSpace.

Example use cases
To illustrate the use of SDG, we have reproduced a short version of two examples from http://bioinfologics. github.
io/sdg_examples.

Page 5 of 15

https://bioinfologics.github.io/sdg_examples/
https://bioinfologics.github.io/sdg_examples/

F1000Research 2019, 8:1490 Last updated: 24 JAN 2020

Python interactive session RAM DISK

>>> import pysdg as SDG

>>> ws = SDG.WorkSpace() @ Persisted
>>> ws.load_from_disk(‘./persisted-workspace.sdgws') | - [workspace

>>> nv = ws.sdg.get_nodeview(1l) r N
>>> print(nv.next()) @ SDG WorkSpace

Distance
Graph(s)

< Linkview: —2bp to Node 2 >, | e
——

< LinkView: —3bp to Node -3 >
1

parcdfeads [e]
>>> nv.get_long_reads('long-reads-library-3') Detasiorets) I I
(3453,435, 345, 796..) @ —

On-disk
Read
Datastores

>>> nv.get_long_mappings('long-reads-library-3’) | TTtceee.]
<Vector: 35 LongReadMappings>

On-disk
Kmer

>>> nv.kmer_coverage("pe-reads", "library-1")]@ -------------------- —= Counts

(10,10,10,5.5,5,10,10,10...) 777

>>> kc = ws.add_kmer_counter (“pe-coverage”, 31)
>>> kc.add_count("library-1”", ["./pe_R1l.fastq", "./pe_R2.fastq"])

"""""" s Pedlibrary_R1/R2fastq

Persisted
workspace

Figure 2. Structure of a WorkSpace and access via an Python interactive session. The WorkSpace holds the
information for a project and contains the graphs, the mappers and k-mer counts. From Python, a previously saved
WorkSpace is loaded from disk (1). The NodeView object is centred on a specific node and can be used to access node
characteristics (ie. size and sequence), graph topology from the perspective of the node you are on (i.e. neighbours
in both directions (2)) and can also retrieve information projected onto the selected node (ie. mappings (3) and k-mer
coverage (4)). Operations such as adding a KmerCounter to the WorkSpace and adding a count (5) can be performed,
and the WorkSpace can be saved back to disk (6). Once loaded, the bulk of the WorkSpace is held in memory for fast
access with the raw read data from the DataStores remaining on disk accessible through random access.

>>> ws.dump_to_disk(“./persisted-kmers.sdgws”) }

All paired end datasets are available on https://zenodo.org/record/3363871#. XUwyVy2ZN24'°, and the
PacBio reads are from NCBI accession PRINA194437"7 For simplicity, we have also made the datasets
available on https://opendata.earlham.ac.uk/opendata/data/sdg_datasets/ as ready-to-use "fastq.gz’ files.

Hybrid assembly of short and long reads

This example is based on an E. coli dataset combining PacBio reads from 17 and Illumina Miseq 2x300bp reads
subsampled from a test run. It uses the long reads to scaffold a short read based graph produced by sdg-dbg.
Graphs are dumped to GFA files at different stages, and visualised using Bandage v0.8.1'%

First, we use the command line tools to create datastores for both long and short reads and an initial WorkSpace
containing a DBG assembly:

sdg-datastore make -t paired -o ecoli pe ../ecoli pe rl.fastq.gz -2 ../ecoli pe r2.fastq.gz
sdg-datastore make -t long -o ecoli pb -L ../ecoli pb all.fastqg.gz
sdg-dbg -p ecoli pe.prseq -o ecoli assm

From this point on, we use the python SDG library. First, we load the workspace, add a long read datastore
and map its reads using a k=11 index.

import pysdg as SDG

Load sdg-dbg’s workspace from disk, add the pacbio datastore
ws = SDG.WorkSpace ('ecoli assm.sdgws')

lords = ws.add long reads datastore('ecoli pb.loseq'")

Page 6 of 15

https://zenodo.org/record/3363871#.XUwyVy2ZN24
https://opendata.earlham.ac.uk/opendata/data/sdg_datasets/
http://rrwick.github.io/Bandage/

F1000Research 2019, 8:1490 Last updated: 24 JAN 2020

Map long reads
lords.mapper.k = 11
lords.mapper.map reads ()

ws.sdg.write to gfal('initial graph.gfa')
The graph, as shown in Figure 3A contains multiple unresolved repeats.

We can use the LinkageMaker to create linkage using the long reads datastore. We do this by select-
ing the nodes between which to analyse possible linkage, in this case all nodes of 1100bp or more, and then
calling the make longreads multilinkage method, with alignment filtering parameters of 1000bp and
10% id.

Im = SDG.LinkageMaker (ws.sdqg)
Im.select by size(1100)
mldg = Im.make longreads multilinkage (ws.long reads datastores[0].mapper, 1000, 10)

This multi-linkage can be collapsed using the LinkageUntangler. The make nextselected linkage
method links every selected node to its closest selected neighbours on each direction, aggregating the distances
via a simple median calculation:

lu = SDG.LinkageUntangler (mldg)
lu.select by size(1100)

ns dg = lu.make nextselected linkage ()
ns dg.write to gfal('ns collapsed.gfa')

The new graph we dumped, as shown in Figure 3B, has disconnected the repeats and introduced long read
linkage which skips over them, but it is still not fully solved. We can improve this further by getting rid of repeti-
tive nodes that will be connected to multiple neighbours, as each of them belongs in more than one place. We do
that by just turning these nodes’ selection off in the LinkageUntangler, which will then skip them in the solution.

for nv in ns dg.get all nodeviews() :
if len(nv.prev()) > 1 or len(nv.next()) > 1:
lu.selected_nodes[nv.node_id()] = False
ns nr dg = lu.make nextselected linkage ()

ns nr dg.write to gfal('ns nr final.gfa')

The last graph is now a circle, with all the repeats disconnected from any linkage.

Figure 3. Linkage at different stages of the long read scaffolding example, visualised using Bandage:
A) SequenceDistanceGraph generated by sdg-dbg from short reads, B) DistanceGraph generated after using make_
nextselected_linkage on the long read data, linking all nodes of 1100bp and more, C) DistanceGraph after eliminating
all nodes with multiple connections (repeats).

Page 7 of 15

F1000Research 2019, 8:1490 Last updated: 24 JAN 2020

Analysing a simulation of heterozygous parent-child trio with short reads

We created a simulation of a trio dataset for this example using the synthetic genome creation and sequenc-
ing package Pseudoseq.jl v0.1.0"” Chromosomes 4 and 5 of the reference genome of the yeast strain S288C were
used as templates to create a diploid, genome for each parent with 1% heterozygous sites. Each homologous
pair of chromosomes was crossed over and recombined and the child inherited one chromosome from the first
parent at random, and one chromosome from the second parent at random. Simulated paired end reads were
generated for each genome, using an average fragment length of 700bp and a read length of 250bp, and an
expected coverage of 70x with error rate was set to 0.1%.

First we used the command line tools to create a graph from the child reads using sdg-dbg, and add k-mer
counts for both parents into the datastore.

sdg-datastore make -t paired -1 child/child-pe-reads Rl.fastg.gz -2 child/
child-pe-reads R2.fastqg.gz -o child pe

sdg-dbg sdg-dbg -p child pe.prseq -o sdg child

sdg-kmercounter add -c main.sdgkc -n pl -f pl/pl-pe-reads Rl.fastg.gz -f pl/
pl-pe-reads R2.fastg.gz -o main

sdg-kmercounter add -c main.sdgkc -n p2 -f p2/p2-pe-reads Rl.fastg.gz -f p2/
p2-pe-reads R2.fastg.gz -o main

We now open the WorkSpace and use the NodeView::parallels method to look for the largest bubble
structure in the graph, which should be formed by two parallel nodes with haplotypes coming from each parent.

import pysdg as SDG
ws = SDG.WorkSpace ('sdg child.sdgws"')
#Largest node with one parallel node, and its parallel
maxbubble = 0
for nv in ws.sdg.get all nodeviews():
if nv.size() > maxbubble and len(nv.parallels()) == 1:
maxbubble=nv.size ()
bubble nvs=(nv,nv.parallels() [0])

Since each side should be a haplotype from a different parent, we should see a loss of k-mer coverage on the par-
ent that didn’t contribute that haplotype. To check this, we create a plotting function to plot the output from
the NodeView::kmer_coverage method.

def plot kcov(nv):
"77"Plot kmer coverage across the three read sets. Requires pylab.’’’
figure();suptitle ("Coverage for "+str(nv));
subplot (3,1,1);ylim((0,120))
plot (nv.kmer coverage ("main","PE"), label="child"); legend(loc=1);

(0, 120))
'main", "p2"),"blue", label="parent 2"); legend(loc=1);

subplot (3, 1, 2);ylim((0, 120))
plot (nv.kmer coverage ("main","pl"), "red", label="parent 1"); legend(loc=1);
subplot (3, 1, 3);ylim(

(

plot (nv.kmer coverage

plot kcov (bubble nvs[0])
plot kcov (bubble nvs[1])

The plots, shown in Figure 4, reflect how Node 4775 contains content inherited from parent 2 and its paral-
lel node 11414 contains content inherited from parent 1. We can create a function to extend these parent-specific
regions by walking forward and backward as long as only one link takes us to a node that is fully covered by
the content of the parent we are following.

Page 8 of 15

https://bioinfologics.github.io/Pseudoseq.jl/dev/

F1000Research 2019, 8:1490 Last updated: 24 JAN 2020

Coverage for NodeView: Node 4775 in SDG Coverage for NodeView: Node 11414 in SDG
100 —— child 100 —— child
50 LM\LJ’J\L”/\M 50 1 MMMM
01— T y 0 T T T v v T y T
0 250 500 750 1000 1250 1500 1750 2000 0 250 500 750 1000 1250 1500 1750 2000
100 —— parent 1 100 A —— parent 1
501 l 01 MIJJLH_"'IU”\/\"‘JU/\) Ul

750 1000 1250 1500 1750 2000

0 250 500
100 —— parent 2 100 — parent 2
0

o 250 500 750 1000 1250 1500 1750 2000 o 250 50!

0 250 500 750 1000 1250 1500 1750 2000

750 1000 1250 1500 1750 2000

Figure 4. Trio analysis:k-mer coverage for each side of the largest bubble structure in the child’s assembly by
each of the three read sets. Coverage drops to 0 on the opposite parent for k-mers that are unique to a parent.

def extend parent covered path(starting node, target parent) :
if ws.sdg.get nodeview(starting node) .kmer coverage ("main",
target parent).count(0) != 0O:
return SDG.SequenceDistanceGraphPath (ws.sdg, [])
p = SDG.SequenceDistanceGraphPath (ws.sdg, [starting node])
for x in [0,1]:
nv = ws.sdg.get_nodeview(p.nodes[—lﬂ
while nv.next () :
next node = 0
for nl in nv.next () :
if nl.node() .kmer coverage ("main", target parent).count (0) ==
if next node or nl.node().node id() in p.nodes:

next node = 0
break
else:
next node = nl.node () .node id()
if next node == 0: break

p.nodes.append (next node)
nv:ws.sdg.get_nodeview(next_node)
p.reverse ()
return p

pathl=extend parent covered path (11414, "pl")
path2=extend parent covered path (4775, "p2")

After using this function, pathl contains 49 nodes yielding 8672bp of sequence inherited from parent 1, and
path2 contains 139 nodes yielding 26351bp of sequence inherited from parent 2. It is important to note that the
difference in node count and sequence length arises because the extension function is haplotype-specific and
its results depend in the topology of each haplotype graph.

Summary

The Sequence Distance Graph framework provides a unified workspace for different sequencing technolo-
gies using the genome graph as the basis of integration. It enables analyses across the graph topology, the raw
data and its projections to the graph. We have shown how the NodeView class can be used through the Python
API to produce interactive analyses that are both powerful and easy to follow. We expect this will be a useful
codebase for all levels of users, not only for the construction of graph-based analysis but also for their teaching
and dissemination.

Data availability
Source data
The PacBio, E. coli reads are deposited on NCBI accession PRINA 194437 from Koren et al.'’

E. coli K12 Re-sequencing with PacBio RS and 454: Accession number PRINA194437, https://identifiers.org/ncbi/
bioproject:PRINA 194437

Page 9 of 15

https://identifiers.org/ncbi/bioproject:PRJNA194437
https://identifiers.org/ncbi/bioproject:PRJNA194437

F1000Research 2019, 8:1490 Last updated: 24 JAN 2020

Underlying data
The datasets used in the examples are available from: https://opendata.earlham.ac.uk/opendata/data/sdg_datasets/
and archived in Zenodo Zenodo: SDG Paper Datasets. http://doi.org/10.5281/zenodo.3363871'°

Data are available under the terms of the Creative Commons Zero “No rights reserved” data waiver (CCO 1.0
Public domain dedication).

Software availability
Software documentation: https://bioinfologics.github.io/sdg

Source code available from: http://github.com/bioinfologics/sdg
Archieved source code at time of publication: https://zenodo.org/record/3363165#. X Uw 1yy2ZN25%

License: MIT License

Acknowledgements

We would like to thank Richard Harrison for helpful discussions about SDG’s results and continued support
through the OctoSeq project. We thank James Cuff for input about design principles and continuous encourage-
ment. We thank Kat Hodgkinson for her feedback and patience as an early user of the rough alpha version of SDG.
We thank Camilla Ryan for enduring and joining never-ending discussions about graph representations and
the design of the framework.

References

1. Pevzner PA, Tang H, Waterman MS: An Eulerian path approach to 11. Paten B, Zerbino DR, Hickey G, et al.: A unifying model of genome
DNA fragment assembly. Proc Nat/ Acad Sci U S A. 2001; 98(17): evolution under parsimony. BMC Bioinformatics. 2014; 15(1): 206.
9748-9753. PubMed Abstract | Publisher Full Text | Free Full Text
PubMed Abstract | Publisher Full Text | Free Full Text 12, Batzoglou S, Jaffe DB, Stanley K, et al: ARACHNE: a whole-

2. Medvedev P, Brudno M: Maximum likelihood genome assembly. genome shotgun assembler. Genome Res. 2002; 12(1): 177-189.
J Comput Biol. 2009; 16(8): 1101-1116. PubMed Abstract | Publisher Full Text | Free Full Text

Publied Abstract | Publisher Full Text | Free Full Text 13, Sovi¢ I, Siki¢ M, Wilm A, et al.: Fast and sensitive mapping of

3. ButlerJ, MacGallum |, Kleber M, et al.: ALLPATHS: de novo nanopore sequencing reads with GraphMap. Nat Commun. 2016;
assembly of whole-genome shotgun microreads. Genome Res. 7: 11307.
2008; 18(5): 810-820. PubMed Abstract | Publisher Full Text | Free Full Text

PubMed Abstract | Publisher Full Text | Free Full Text . L, . .
| | 14. Paveti¢ F, Katani¢ |, Matula G, et al.: Fast and simple algorithms

4. Jackman SD, Myers EW, Gonella G: The GFA Specification. for computing both LCS, and LCS, ,. arXiv: 1705.07279 [cs], 2017.
Reference Source Reference Source ’

5 _Garrison E, Sirén J, vaak AM, et al. V_ariation g_raph t_oo_lkit_ 15. Mapleson D, Garcia Accinelli G, Kettleborough G, et al.: KAT: a
improves read mapping by representing genetic variation in the K-mer analysis toolkit to quality control NGS datasets and
reference. Nat B'OteCh"O./' 2018; 36(9): 875-879. genome assemblies. Bioinformatics. 2017; 33(4): 574-576.
Publiled Abstract | Publisher Full Text | Free Full Text PubMed Abstract | Publisher Full Text | Free Full Text

6. Rautiainen M, Makinen V, Marschall T: Bit-parallel sequence-to- . A .
graph alignment. bioRxiv. 2018; 323063. 16. \Z(grgs L, Garcia Accinelli G, Ward BJ, et al.: Sdg paper datasets.

P,Ul?IISher F‘fm Text https://zenodo.org/record/3363871
7. Sirén J, Garrison JE, Novak AM, et al.: Haplotype-aware graph . . .
indexes. bioRxiv. 2019. 17. Koren S, Harhay GP, Smith TP, et al.: Reducing assembly

Publisher Full Text complexity of microbial genomes with single-molecule

ing. G Biol. 2013; 14(9): R101.
8. Novak AM, Garrison E, Paten B: A graph extension of the sequencing. 2enome o ©

. - - PubMed Abstract | Publisher Full Text | Free Full Text
positional Burrows-Wheeler transform and its applications.
Algorithms Mol Biol. 2017; 12(1): 18. 18. Wick RR, Schultz MB, Zobel J, et al.: Bandage: interactive

PubMed Abstract | Publisher Full Text | Free Full Text visualization of de novo genome assemblies. Bioinformatics. 2015;
. ; . X . . 31(20): 3350-3352.
9. Jain C, Dllthey A, Mlsra S, et al.: Accelerating Sequence Alignment PubMed Abstract | Publisher Full Text | Free Full Text
to Graphs. bioRxiv. 2019.
Publisher Full Text 19. Ward BJ: bioinfologics/pseudoseq.jl: First release. 2019.

10. Limasset A, Flot JF, Peterlongo P: Toward perfect reads: self- Publisher Full Text

correction of short reads via mapping on de Bruijn graphs. 20. Yanes L, Garcia Accinelli G, Ward BJ, et al.: bioinfologics/sdg:
Bioinformatics. 2019; pii: btz102. Release candidate. 2019; 7.
PubMed Abstract | Publisher Full Text https://zenodo.org/record/3363165

Page 10 of 15

https://opendata.earlham.ac.uk/opendata/data/sdg_datasets/
http://dx.doi.org/10.5281/zenodo.3363871
https://creativecommons.org/publicdomain/zero/1.0/legalcode
https://bioinfologics.github.io/sdg/
https://github.com/bioinfologics/sdg
https://zenodo.org/record/3363165#.XUw1yy2ZN25
http://www.ncbi.nlm.nih.gov/pubmed/11504945
http://dx.doi.org/10.1073/pnas.171285098
http://www.ncbi.nlm.nih.gov/pmc/articles/55524
http://www.ncbi.nlm.nih.gov/pubmed/19645596
http://dx.doi.org/10.1089/cmb.2009.0047
http://www.ncbi.nlm.nih.gov/pmc/articles/3154397
http://www.ncbi.nlm.nih.gov/pubmed/18340039
http://dx.doi.org/10.1101/gr.7337908
http://www.ncbi.nlm.nih.gov/pmc/articles/2336810
https://github.com/GFA-spec/GFA-spec
http://www.ncbi.nlm.nih.gov/pubmed/30125266
http://dx.doi.org/10.1038/nbt.4227
http://www.ncbi.nlm.nih.gov/pmc/articles/6126949
http://dx.doi.org/10.1101/323063
http://dx.doi.org/10.1101/559583
http://www.ncbi.nlm.nih.gov/pubmed/28702075
http://dx.doi.org/10.1186/s13015-017-0109-9
http://www.ncbi.nlm.nih.gov/pmc/articles/5505026
http://dx.doi.org/10.1101/651638
http://www.ncbi.nlm.nih.gov/pubmed/30785192
http://dx.doi.org/10.1093/bioinformatics/btz102
http://www.ncbi.nlm.nih.gov/pubmed/24946830
http://dx.doi.org/10.1186/1471-2105-15-206
http://www.ncbi.nlm.nih.gov/pmc/articles/4082375
http://www.ncbi.nlm.nih.gov/pubmed/11779843
http://dx.doi.org/10.1101/gr.208902
http://www.ncbi.nlm.nih.gov/pmc/articles/155255
http://www.ncbi.nlm.nih.gov/pubmed/27079541
http://dx.doi.org/10.1038/ncomms11307
http://www.ncbi.nlm.nih.gov/pmc/articles/4835549
https://arxiv.org/pdf/1705.07279.pdf
http://www.ncbi.nlm.nih.gov/pubmed/27797770
http://dx.doi.org/10.1093/bioinformatics/btw663
http://www.ncbi.nlm.nih.gov/pmc/articles/5408915
https://zenodo.org/record/3363871
http://www.ncbi.nlm.nih.gov/pubmed/24034426
http://dx.doi.org/10.1186/gb-2013-14-9-r101
http://www.ncbi.nlm.nih.gov/pmc/articles/4053942
http://www.ncbi.nlm.nih.gov/pubmed/26099265
http://dx.doi.org/10.1093/bioinformatics/btv383
http://www.ncbi.nlm.nih.gov/pmc/articles/4595904
http://dx.doi.org/10.5281/zenodo.2656743
https://zenodo.org/record/3363165

FIOOOResearch F1000Research 2019, 8:1490 Last updated: 24 JAN 2020

Open Peer Review

Current Peer Review Status: v v :

Reviewer Report 24 January 2020

https://doi.org/10.5256/f1000research.22229.r55755

© 2020 Alekseyev M et al. This is an open access peer review report distributed under the terms of the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the
original work is properly cited.

? Max Alekseyev

George Washington University, Washington, DC, USA
Pavel Avdeyev
George Washington University, Washington, DC, USA

The authors describe a software package aimed at construction, storage, and manipulation of sequence

graphs. The software is publicly available on Github. While the core functionality is developed in C++, the
package also provides Python wrapper library and a command-line tool. The authors outline the software
design and provide pipelines and code examples for two different types of data.

Overall, the paper is well-written and describes potentially useful software. At the same time, the paper
lacks:
1. Comparison of (features of) the developed software and existing software such as VG toolkit
based on variation graphs (reference 5');

2. Discussion of the software applicability (e.g., will it work on large or repeat-rich genomes?), or
estimation of its running time/space complexity.
Some minor comments:
1. The use of bold font is not explained. For example, Datastores first appears in the sentence “
Datastores allow random access...” describing its features, but WHAT is Datastores?

2. Orthogonal edge routing in Fig. 1 is somewhat confusing, why not make edges curved?

References

1. Garrison E, Sirén J, Novak A, Hickey G, Eizenga J, Dawson E, Jones W, Garg S, Markello C, Lin M,
Paten B, Durbin R: Variation graph toolkit improves read mapping by representing genetic variation in the
reference. Nature Biotechnology. 2018; 36 (9): 875-879 Publisher Full Text

Is the rationale for developing the new software tool clearly explained?
Yes

Page 11 of 15

https://doi.org/10.5256/f1000research.22229.r55755
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
http://orcid.org/0000-0002-5140-8095
https://doi.org/10.1038/nbt.4227

FIOOOResearch F1000Research 2019, 8:1490 Last updated: 24 JAN 2020

Is the description of the software tool technically sound?
Yes

Are sufficient details of the code, methods and analysis (if applicable) provided to allow
replication of the software development and its use by others?
Yes

Is sufficient information provided to allow interpretation of the expected output datasets and
any results generated using the tool?
Yes

Are the conclusions about the tool and its performance adequately supported by the findings
presented in the article?
Partly

Competing Interests: No competing interests were disclosed.
Reviewer Expertise: genome assembly, comparative genomics

We confirm that we have read this submission and believe that we have an appropriate level of
expertise to confirm that it is of an acceptable scientific standard, however we have significant
reservations, as outlined above.

Reviewer Report 04 November 2019

https://doi.org/10.5256/f1000research.22229.r55323

© 2019 Dawson E. This is an open access peer review report distributed under the terms of the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original
work is properly cited.

v

Eric T. Dawson
1 Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
2 Department of Genetics, University of Cambridge, Cambrige, UK

The authors describe a framework for constructing sequence graphs, aligning reads, manipulating graph
structures, and extracting them into standard formats (e.g., GFA). This framework is available as both a
set of command line tools and a python library which wraps much of the underlying functionality. Their
implementation unifies the representation of gaps and overlaps as a single linkage type within the graph.
This is the primary theoretical advance of the work. This work is scientifically sound but its description as
written could benefit from some minor additions.

The software is freely available on GitHub and binary releases of the command line tools are provided.
These are functional on a modern linux laptop and clear examples with data are provided. The paper

includes the outputs of these examples as figures.

The python libraries rely on SWIG and are not included in the binaries. While not requisite for publication,

Page 12 of 15

https://doi.org/10.5256/f1000research.22229.r55323
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
http://orcid.org/0000-0001-5448-1653

FIOOOResearch F1000Research 2019, 8:1490 Last updated: 24 JAN 2020

providing the python libraries through pip, conda, or another package manager would increase the reach
of the framework. This would match the authors' conclusion that the sdg package provides "a useful
codebase for all levels of users."

The examples provided are clear and scientifically relevant. The graph mapping and manipulation
example using E. coli data (Figure 3) and the description of genotyping a simulated yeast trio (Figure 4)
are both realistic.

However, the authors should provide run times and machine details for these examples. Both are
relatively fast as the datasets are small. There is no need for extensive benchmarking; a footnote for each
example would address this adequately.

A brief 1-2 sentence discussion of a larger scale example the authors have attempted should also be
included.

In addition, the phrasing "simulated parent-offspring trio" in the abstract should be modified to make it
clear that the data is from yeast. As it is written the phrasing implies the framework may work on
human/animal-scale data, though no evidence of this has been provided in this version of the paper.

Lastly, a brief description of the similarities and differences between the sequence (distance) graph, the
variation graph, and the de Bruijn graph from an assembler such as ABySS should be included in the
introduction or provided by a reference. This description need not be longer than two to four sentences in
length. This should highlight the similar representations of the graphs (e.g., sequences stored in nodes
and linkages/paths described by edges) and the different amounts of information content within the graph
types. This would strengthen the critical need for the software and is partially highlighted by the example
in Figure 3.

As it stands the paper is deserving of indexing. These additions would further strengthen what is already
an excellent tool description, | hope without adding too much additional work for the authors.

Is the rationale for developing the new software tool clearly explained?
Yes

Is the description of the software tool technically sound?
Yes

Are sufficient details of the code, methods and analysis (if applicable) provided to allow
replication of the software development and its use by others?
Yes

Is sufficient information provided to allow interpretation of the expected output datasets and
any results generated using the tool?
Yes

Are the conclusions about the tool and its performance adequately supported by the findings
presented in the article?
Yes

Competing Interests: No competing interests were disclosed.

Page 13 of 15

FIOOOResearch F1000Research 2019, 8:1490 Last updated: 24 JAN 2020

Reviewer Expertise: computational biology; graph genomes; structural variant calling; bioinformatics;
cancer biology

I confirm that | have read this submission and believe that | have an appropriate level of
expertise to confirm that it is of an acceptable scientific standard.

Reviewer Report 24 September 2019

https://doi.org/10.5256/f1000research.22229.r52959

© 2019 Garrison E. This is an open access peer review report distributed under the terms of the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original
work is properly cited.

v

Erik Garrison
University of California, Santa Cruz, Santa Cruz, CA, USA

The authors demonstrate a new toolchain and data model for working with sequence graphs. This method
allows the user to dynamically interact with sequence graphs made in the process of assembly. They
provide a number of examples of the use of the method as well as code snippets to demonstrate its
functionality. The library is written in C++, but wrapped in python with SWIG, which should make it useful
to many researchers for whom C++ is difficult to use.

| find only one thing strange about the work. In the beginning, the authors indicate that there are not
interoperable methods for working with sequence graphs and alignments to them, but they have in effect
created another competing standard. Are there particular limitations with existing data models that they
hope to address with the Sequence Distance Graph framework? How is their model different than the
variation graph model, in which distances are provided by a collection of paths (or equivalently
alignments) embedded within the sequence graph?

Is the rationale for developing the new software tool clearly explained?
Yes

Is the description of the software tool technically sound?
Yes

Are sufficient details of the code, methods and analysis (if applicable) provided to allow
replication of the software development and its use by others?
Yes

Is sufficient information provided to allow interpretation of the expected output datasets and
any results generated using the tool?
Yes

Are the conclusions about the tool and its performance adequately supported by the findings
presented in the article?

Page 14 of 15

https://doi.org/10.5256/f1000research.22229.r52959
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

FIOOOResearch F1000Research 2019, 8:1490 Last updated: 24 JAN 2020

Yes
Competing Interests: No competing interests were disclosed.

I confirm that | have read this submission and believe that | have an appropriate level of
expertise to confirm that it is of an acceptable scientific standard.

The benefits of publishing with F1000Research:

® Your article is published within days, with no editorial bias
® You can publish traditional articles, null/negative results, case reports, data notes and more
)

The peer review process is transparent and collaborative
® Your article is indexed in PubMed after passing peer review

® Dedicated customer support at every stage

For pre-submission enquiries, contact research@f1000.com F-ICII) Resea rCh

Page 15 of 15

