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A foremost challenge in modern network science is
the inverse problem of reconstruction (inference) of
coupling equations and network topology from the
measurements of the network dynamics. Of particular
interest are the methods that can operate on real
(empirical) data without interfering with the system.
One such earlier attempt (Tokuda et al. 2007 Phys. Rev.
Lett. 99, 064101. (doi:10.1103/PhysRevLett.99.064101))
was a method suited for general limit-cycle oscillators,
yielding both oscillators’ natural frequencies
and coupling functions between them (phase
equations) from empirically measured time series.
The present paper reviews the above method in a
way comprehensive to domain-scientists other than
physics. It also presents applications of the method to
(i) detection of the network connectivity, (ii) inference
of the phase sensitivity function, (iii) approximation
of the interaction among phase-coherent chaotic
oscillators, and (iv) experimental data from a forced
Van der Pol electric circuit. This reaffirms the range
of applicability of the method for reconstructing
coupling functions and makes it accessible to a much
wider scientific community.

This article is part of the theme issue ‘Coupling
functions: dynamical interaction mechanisms in the
physical, biological and social sciences’.

1. Introduction
Complex networks are representations of complex
systems, where nodes (vertices) represent the system’s
units and links (edges) represent the interactions
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among those units [1–4]. The functioning of a real network is a cumulative effect of its structure
(topology of connections among nodes/units) and dynamics (interactions/relationships among
these nodes) [3,4]. Hence, in models of real networks, nodes are often assumed to be (simple)
systems with their inherent dynamics, whereas links mediate the dynamical coupling between the
connected pairs of nodes. Using this paradigm, network science has made valuable contributions
to all scientific disciplines that involve systems composed of many units, including biology,
neuroscience, sociology, economics, etc. [1–6].

To really grasp the functioning of a real network, we need information on both its structure
and its dynamics. The inverse problem of reconstructing (or inferring) this information from the
empirical data is a foremost challenge in modern network science. Namely, understanding the
inner connectivity patterns of real networks not only enables us to grasp their operations, but
also helps in controlling and predicting their behaviour [7–19].

The problem of network reconstruction can be seen as composed of two parts. The first part
is the reconstruction of network topology, where one tries to learn which pairs of nodes are
connected and which are not. This can (in some cases) be done separately from the second part of
the problem, which is the reconstruction of the coupling functions that dictate how the connected
nodes interact. Of course, two parts of the problem are inherently related, but which one to tackle
first depends on what data are available, what assumptions can be reasonably made about the
system, and what exactly we wish to learn.

Numerous reconstruction methods have been proposed over the last decade, both in physics
[7–21] and in computer science literature [16,22–30]. While some methods tackle only one of the
two above-mentioned parts of the problem [10], other methods seek to address both parts at
the same time. In physics literature, special emphasis is put on the methods aimed at oscillatory
systems as the most researched paradigm of collective dynamics. This includes methods focused
on either topology, coupling functions or both [7,8,10,18].

On a somewhat different front, research efforts have been devoted to the problem of estimation
of phase variables and phase equations from the data [7,11,31–38]. Namely, isolated units in many
real systems exhibit oscillatory nature, in the sense that they can be well approximated as limit-
cycle oscillators (oscillator whose dynamics after transients reduces to periodic or quasi-periodic
orbit). Researchers showed that, even if the oscillatory behaviour is very stochastic, there are
robust ways to extract a well-defined phase variable for each network node, and hence reconstruct
the phase equations that describe the system dynamics. This paradigm found applications in
diverse domain sciences, notably biology and neuroscience, where many systems have this
nature. Estimating phase equations, however, is nothing but reconstructing coupling functions
from data. While such a reconstruction approach is valid only in the approximation of phase
variables, these methods require very little additional assumptions about the system. This means
they can be almost immediately applied to empirical data [7,31,36,39–41].

For a system of phase equations, a standard way to construct the coupling function is
to measure the phase sensitivity function of an individual oscillator element and obtain the
coupling function by averaging method that computes the amount of phase shift induced through
interaction with another oscillator element [42]. However, a precisely measured phase sensitivity
function is not always accessible, since it requires application of external perturbations to an
individual oscillator, which cannot always be isolated from the rest of the system [43–52].

On the other hand, as a non-invasive approach, the coupling function can be inferred directly
from time-trace data measured from coupled oscillators [7,31–36,38,40,41]. One of them is a
method by Tokuda et al. [31]: this approach used a multiple shooting method to realize robust
parameter estimation of the coupling functions. The multiple shooting provides a general
framework for fitting ordinary differential equations to recorded time-trace data. It is applicable
to any system, where the dynamics of individual nodes can be approximated as those of limit-
cycle oscillators, yielding both oscillators’ natural frequencies and coupling functions between
them (phase equations). Most importantly, the method was actually shown to operate very well
with the data from a real experiment, which highlights its potential for practical use for physics
problems and otherwise [31,40,53].
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The contribution of the present paper is twofold. First, we review this method in a way that
is understandable and approachable to communities outside physics. With this, we hope to make
our method more useful to fields such as biology and neuroscience, for which it was originally
intended. Second, we show and discuss applications of this method, specifically: (i) we use the
estimated coupling function for detecting the connectivity of oscillator networks, (ii) the method
is extended to inference of the phase sensitivity function, which is vital for phase equations,
(iii) the coupling function is estimated for coupled chaotic oscillators to demonstrate how well
the phase model approximates chaotic phase synchronization, and (iv) using an experimental
data from a system of Van der Pol electric circuits, we show how the method can be applied to
real data.

The rest of the paper is organized as follows. In the next section, we review the original method
in a comprehensive way. In §3, we discuss the problem of inferring the network connectivities. In
§4, we present further applications mentioned above. In the last section, we discuss our findings
and lay out perspectives for future work.

2. The original method
In this section, we describe the original method in a more comprehensive way than the original
literature [31] and show how it works for the case of coupled FitzHugh–Nagumo oscillators.

(a) Multiple shooting method
Our approach is based on the multiple shooting method, which has been developed in physics
and engineering to provide a general framework for fitting ordinary differential equations to
recorded time series [54]. The methodology is applicable to a situation where the system equations
are known a priori. When the equations and the recorded data are in a good quantitative
agreement, unknown parameters of the system can be precisely estimated as follows.

We consider a nonlinear system

ẋ = F(p, x), (2.1)

where x, p and F represent state variables, parameters and autonomous dynamics of the system,
respectively. The system may generate nonlinear dynamics such as limit cycles, torus, strange
attractors and transient dynamics to these attractors. Equation (2.1) may describe a variety of
systems of interest in science and engineering such as electric circuits and lasers. Empirical
data consist of oscillators’ states measured as {x(n�t)) : n = 1, . . . , M} (�t: sampling time,
M: data points). This corresponds to an experimental situation, in which the system state
(e.g. current and voltage of electric circuits, laser, etc.) is fully recorded. Then the parameter values
p that underlie the measurement data can be estimated by fitting the original equations (2.1)
to the recording data. First, time evolution of the original equations (2.1) starting from an
initial condition x(0) is denoted by φt(x(0), p). Then, at each sampling time t = i�t, the equations
must satisfy the boundary conditions: x((n + 1)�t) = φ�t(x(n�t), p). With respect to the unknown
parameters p, these nonlinear equations are solved by the generalized Newton method [55]. To
compute the gradients ∂φi/∂p, which are needed for the Newton method, variational equations
(d/dt)(∂φi/∂pj) = ∂fi/∂pj +∑N

k=1(∂fi/∂φk)(∂φk/∂pj) are solved simultaneously, where fi represents
ith equation of the original dynamics (2.1) as ẋi = fi(x, p). The evolution function φt as well as the
variational equations are integrated numerically, using whichever integration scheme (e.g. 4th-
order Runge–Kutta). It has been shown that, when the equations and the experimental data are in
good quantitative agreement, the unknown parameters can be precisely estimated for real-world
systems including electric circuits and lasers. All steps in the above computational procedure can
be realized relatively easily with standard programming knowledge.
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(b) Problem and method
Equipped with the knowledge of multiple shooting method, we now explain in detail how it
can be used for inferring the coupling functions. We begin by considering a network composed of
interacting oscillator elements. In biology, such systems include a network of circadian cells in the
suprachiasmatic nucleus [56], brain network composed of many spiking neurons [43,46], cardiac
muscle cells in the heart [57], etc. In terms of nonlinear dynamics, such systems are described as
a system of N coupled limit cycle oscillators:

ẋi = Fi(xi) + C
N

N∑
j=1,j�=i

Ti,jG(xi, xj). (2.2)

Here, xi and Fi (i = 1, 2, . . . , N) represent state variables and autonomous dynamics of the ith
oscillator element, respectively. While G represents an interaction function between the ith and jth
oscillators, the strength of their interaction is determined by the coupling constant C. The matrix
{Ti,j} describes connectivity between the oscillator elements. For simplicity, we suppose that the
connection matrix is composed of zero-or-unity elements (i.e. Ti,j = 0 or 1). We assume that,
without coupling (i.e. C = 0), individual systems (i.e. ẋi = Fi(xi)) generate periodic oscillations,
after transients. Such closed trajectories in phase space are called limit cycles, which have intrinsic
periods of τi. Equation (2.2) describes, to a good approximation, a variety of systems of interest
in biology and neuroscience. Then the theory of phase reduction [58,59] states that, as far as the
coupling strength C is weak enough, the network dynamics can be reduced to the following phase
equations:

θ̇i =ωi + C
N

N∑
j=1,j�=i

Ti,jZ(θi)G(θi, θj) =ωi + C
N

N∑
j=1,j�=i

Ti,jH(θj − θi), (2.3)

where θi represents phase of the ith oscillator and ωi gives natural frequency of the ith oscillator
(i.e. ωi = 2π/τi). Z stands for phase sensitivity function (also called ‘infinitesimal phase response
curve’), which determines the amount of phase shift induced by the interaction G with other
oscillators (we will here not go in the detail of how equation (2.3) is obtained; an interested reader
can refer to [58–60]). By averaging approximation [59], which integrates one cycle of the phase
sensitivity function Z with the interaction function G, the coupling function is derived as H(θi −
θk) = (1/2π )

∫2π
0 Z(θi + θ ′)G(θi + θ ′, θk + θ ′) dθ ′. Transformation of the original equations (2.2) and

(2.3) provides a significant reduction in the system’s dimensionality, in the sense that the original
state variables xi, which can be high-dimensional, are represented only by the single-phase
variable θi. This substantially simplifies the system’s modelling and enables its identification in a
straightforward fashion.

The individual oscillator states are simultaneously measured as {ξi(n�t) = η(xi(n�t)) : n =
1, . . . , M}N

i=1 (η: observation function, �t: sampling time, M: data points). This corresponds to
an experimental situation, under which states of individual oscillators (e.g. gene expression
levels of individual cells, membrane potentials of neurons, etc.) are recorded simultaneously. Our
purpose is to infer the phase equations from these measurement data under the conditions that
the underlying system equations (2.2) are unknown.

The phase dynamics can be reconstructed via the following steps.

(i) From the measured data {xi(t)}, phases are extracted as θi(t) = 2πk + 2π (t − tk)/(tk+1 − tk),
where tk represents the time, at which the ith signal takes its kth peak and tk≤t< tk+1
[60]. Note that this method is limited to the case of simple waveform, where a single peak
appears during one oscillation cycle.

(ii) Fit the phase equations:

θ̇i = ω̃i + C
N

N∑
j=1

T̃i,jH̃(θj − θi) (2.4)
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to the phase data {θi(t)}. Here, {ω̃i} represent approximate values for the natural
frequencies. The coupling function H̃, which is in general nonlinear and periodic with
respect to 2π , is approximated by a Fourier series of pre-selected order D as H̃(�θ ) =∑D

j=1 aj sin j�θ + bj(cos j�θ − 1). For simplicity, we consider a specific type of coupling,

under which the interaction disappears as the phase difference becomes zero, i.e. H̃(0) =
0. This type of coupling arises quite often in diffusively coupled oscillator networks
[59,61]. (Although general coupling can be also considered, more than one dataset
associated with different coupling strength is required to avoid parameter redundancy.
As a simplified demonstration, this study deals with this specific coupling.)
The unknown parameters p = {ω̃i, aj, bj} are now estimated by the above described
multiple-shooting method (the connection matrix T̃i,j and the coupling strength C = 0 are
supposed to be known here).

(iii) To avoid over-fitting of the coupling function, cross-validation is used to determine
the optimal number of Fourier components D [62]. We divide the measurement data
into two parts. For the first half data, the parameter values p are estimated. Then, the
estimated parameters are applied to the latter half data and measure the error ecv =∑

n |θ ((n + 1)�t) − φ�t(θ(n�t), p)|2, where φ�t(θ(n�t), p) represents �t-time further state
of the phase dynamics (2.4) starting from an initial condition θ (n�t). The order number
D providing the minimum error is considered as the optimum.

(c) Application to coupled FitzHugh–Nagumo oscillators
To illustrate how the method described above works, we apply the multiple shooting to a
prototypical example of weakly coupled limit cycle oscillators. In the original study [31], coupled
Rössler oscillators were analysed. As another challenging example, which has a more complex
shape of coupling function due to the nature of relaxation oscillations, we consider the following
network of FitzHugh–Nagumo (FHN) oscillators [63,64]:

v̇i = αi

(
vi − v3

i
3

− wi + I

)
+ C

N

N∑
j=1

Ti,j(xj − xi) (2.5)

and

ẇi = αiε(vi + a − byi), (2.6)

where i = 1, . . . , N. The system of FitzHugh–Nagumo oscillators can be seen as a simple model for
interacting neurons. Under the parameter setting of a = 0.7, b = 0.8, ε = 0.08, I = 0.8, individual
FHN oscillators (without coupling C = 0) gives rise to limit cycles of the slow–fast type.
Inhomogeneity parameters, which control natural periods of the individual oscillators, were set
as αi = 1 + (i − 1)�α (i = 1, . . . , N), where αi = 1 yields a natural oscillation period of 36.5.

We started with the case of N = 16. We consider all-to-all coupling matrix (Ti,j = 1). The level of
inhomogeneity was set to �α = 0.01. The multivariate data {xi(t)}16

i=1 were recorded at a coupling
strength of C = 0.01, which is in a non-synchronized regime. The sampling interval was set to be
�t = 0.004. Then, the phases {θi(t)} were extracted and down-sampled to a sampling interval of
�t = 1000 · 0.004. Total of 500 data points have been collected for the parameter estimation. As an
initial condition, the unknown parameter values were all set to be zero, i.e. ω̃i = 0, aj = bj = 0. The
500 data were divided into 250 and 250, which were used for the parameter estimation and the
cross-validation error ecv, respectively. By varying the number of Fourier components from D = 1
to D = 10, the optimal value was found to be D = 7 by the cross-validation test.

The coupling function H̃(�θ ) estimated by the present method is in good agreement with the
one computed by the adjoint method [65] (figure 1a). The error-bars were computed from inverse
of the Hessian matrix of the squared error function, under the assumption that the phase data
contain uncorrelated observational noise [66]. The estimated natural frequencies are distributed
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Figure 1. Results for anetworkofN = 16 FHNoscillators. (a) Coupling functions H̃(�θ ) estimatedby thepresentmethod (solid
red line) and the adjoint method (dashed blue line). (b) Estimated natural frequencies (ordinate) {ωi}16i=1 of FHN oscillators
versus those obtained from non-coupled simulation (abscissa). (c) Synchronization diagrams of the estimated model (solid red
line) and the original coupled oscillators (dashed blue line). (d) Dependence of estimation error on the coupling strength C used
to generatemultivariate data. The estimation error e is defined as the deviation of the estimated coupling function from the one
computedby the adjointmethod. (e) Dependenceof the estimation error on the transient time, afterwhich themultivariate data
were sampled. The coupling strengthwas set to C = 0.05. (f ) Dependence of the estimation error on thenumber of oscillatorsN.
(Online version in colour.)

on a diagonal line with the true frequencies obtained from simulations of the individual (isolated)
FHN oscillators (figure 1b). Using the estimated phase equations, a synchronization diagram of
the original coupled FHN oscillators can be recovered, where the onset of synchronization was
predicted at C = 0.046, which is very close to the real onset of C = 0.044 (figure 1c).

Next, we show how the estimation depends upon the problem setting. The primary factor
that influences the estimation results is the coupling strength C used to generate the time series.
Figure 1d shows dependence of estimation error on the coupling strength. The estimation error
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ecf is evaluated as deviation of the estimated coupling function H̃s(�θ ) from the one H̃p(�θ )
estimated by the adjoint method, i.e.

ecf =
√∫2π

0 {H̃s(�θ ) − H̃p(�θ )}2 d�θ√∫2π
0 {H̃p(�θ ) − 〈H̃p〉}2 d�θ

, (2.7)

where the denominator represents normalization factor and 〈H̃p〉 = (1/(2π))
∫2π

0 H̃p(�θ ) d�θ . As
the coupling strength is located close to the onset of synchronization, the estimation error
increases significantly (figure 1d). Under the synchronized state, phase differences between
the oscillators do not change in time �θ = const., providing no information about the phase
interaction. Increase in estimation error due to synchronized data is therefore reasonable.

Even in a synchronized regime, the coupling function can be recovered from transient
data, during which phase differences evolve (transient data often reveals far more information
about the underlying system, since it is recorded before the system ‘settled’ into its dynamical
equilibrium). To show this, the multivariate data were recorded after discarding only a short
duration of transient process that starts from a random initial condition. Transient data (time
interval of 40) were collected before the system reached the final synchronized state. Twenty
sets of such data were used for the parameter estimation. Figure 1e shows dependence of the
estimation error on the transient duration. Note that the coupling strength is set to C = 0.05, which
is in a synchronized regime. Although the error increases as the transient duration is increased,
relatively good estimation was realized for a short transient time. This suggests that, even if
the system is in synchrony with a moderate coupling, application of perturbation that kicks the
system out of synchrony is an efficient way of inferring the underlying phase dynamics.

Figure 1f shows dependence of the estimation error on the network size N, varied from 8 to
512. The level of inhomogeneity was set to �α = 0.16/N. The multivariate data {yi(t)}N

i=1 were
recorded at a coupling strength of C = 0.02, which corresponds to non-synchronized regime.
Other settings were the same as those in the case of N = 16. Surprisingly, the estimation error
remains at a low level. Even for N = 512, the coupling function H̃(�θ ) has been precisely
estimated, while the estimated natural frequencies {ωi}512

i=1 are consistent with those obtained from
the non-coupled simulations. This suggests that the system size does not impose a major limit on
the estimation of phase dynamics as far as the data contain non-synchronized phase information.

Although the coupling function has been reliably estimated for networks with all-to-all
connections (Ti,j = 1), the estimation error may increase when oscillators are heterogeneously
connected to each other. We deal with such situations in the next section.

3. Application to network inference
Although we have dealt with the case that all oscillator elements are connected to all the others in
the previous section, heterogeneous connections are more common in nature and engineering. As
another challenge of our technique [53], this section discusses a problem of inferring connectivity
of the oscillator network from the measured time series. Numerous approaches have been
proposed up to date using information transfer [67], mutual predictability [68], recurrence
properties [69], permutation-based asymmetric association measure [70], index for partial phase
synchronization [71–73] and graph theory [74]. Response properties of the network dynamics to
external stimuli have been also exploited [8,75]. For weakly coupled limit cycle oscillators, to
which phase reduction is applicable, the phase modelling approach is again quite effective for
detecting the network topology [11,53,76–78].

In our approach [53], the multiple-shooting method is again applied to fit the phase
equations (2.4) to the phase data {θi(t)}. The fitting procedure is the same as before except that the
connection matrix is estimated as the unknown parameters p = {T̃i,j}. For simplicity, the coupling
function H̃ and the natural frequencies {ωi}N

i=1 of the oscillator elements were assumed to be
known (the general case that both coupling function and connection matrix are unknown has
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Figure 2. Estimation errors of the network connectivity. (a) Percentage of non-connected pairs of oscillators is 20%. The
coupling function is composed of higher-order (D= 5) Fourier components in solid red line, while it is based on a simple sine
function in dashed blue line. (b) Percentage of non-connected pairs of oscillators is 40%. (c) Dependence of the estimation
error on data length. Percentage of non-connected pairs of oscillators is 40%, while number of the oscillators is set to N = 6
(solid red line) and N = 8 (dashed blue line). (d) Dependence of the estimation error on noise level σ , where Gaussian noise
N(0, (2πσ )2) is added to the phase data. Percentage of the non-connected pairs of oscillators is 40%, while number of the
oscillators is set to N = 6 (solid red line) and N = 8 (dashed blue line). (Online version in colour.)

been dealt with in the previous study [53]). As coefficients {aj, bj} for the coupling function, the
ones estimated in the previous section were used. Natural frequencies {ωi}N

i=1 were also obtained
from the simulations of non-coupled original equations.

As the target system, the network of FHN oscillators (2.5) and (2.6) were studied. For a network
of four (N = 4) oscillators, two defects were introduced to the connection matrix as T3,1 = T4,1 = 0
(here, defect means that one oscillator is not connected to another). The level of inhomogeneity was
set to �α = 0.04, whereas the coupling strength was C = 0.02, i.e. in a non-synchronized regime.
As in the previous section, a total of 500 data points (sampling time: 4) have been collected. By
the multiple-shooting method, the connection matrix was estimated as follows.⎛

⎜⎜⎜⎝
T̃1,2 T̃1,3 T̃1,4

T̃2,1 T̃2,3 T̃2,4

T̃3,1 T̃3,2 T̃3,4

T̃4,1 T̃4,2 T̃4,3

⎞
⎟⎟⎟⎠=

⎛
⎜⎜⎜⎝

1.11 ± 0.01 1.08 ± 0.01 1.06 ± 0.01
1.06 ± 0.02 1.04 ± 0.02 0.97 ± 0.01

−0.02 ± 0.01 1.05 ± 0.01 1.03 ± 0.01
0.04 ± 0.01 0.98 ± 0.01 1.03 ± 0.01

⎞
⎟⎟⎟⎠ .

We see that the two defects (T̃3,1, T̃4,1) were precisely identified as small values, whereas other
matrix elements pointed to almost unity.

For comprehensive analysis, the connection matrices with randomly generated defects were
estimated for variable network size from N = 2 to N = 16. For our analysis, the estimation error
was evaluated as ecm = (1/N(N − 1))

∑N
i=1

∑N
j=1,j�=i |T̆i,j − Ti,j|, where the estimated connectivity

was digitized as T̆i,j = 0 for T̃i,j < 0.5 and T̆i,j = 1 otherwise. For each setting of the network size,
five instances of connection matrices {Ti,j} were randomly generated and the average and the
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standard deviation of the estimation errors were plotted in figure 2. Panels (a) and (b) correspond
to the cases that defect ratios (i.e. percentage of zero elements in the connection matrix) are 20%
and 40%, respectively. For variable network sizes, the estimation errors ecm are almost zero except
N = 11, 12 in the case of low defect ratio. Although the errors increase for high defect ratio, their
overall level is less than 0.2.

To examine the effect of coupling function, the connection matrices were also estimated
by using a simple sine as the coupling function, i.e. H̃(�θ ) = a1 sin�θ . For small networks,
the difference was not large between the precisely estimated (higher-order) coupling function
(red solid line) and the simple sine function (blue dotted line). However, as the network size
increases, the estimation error increases much more rapidly in the sine function than in the higher-
order coupling function. This indicates that, for reliable detection of the connectivities, precisely
estimated coupling function is of significant importance.

In figure 2c, dependence of the network inference on data length M is indicated. For network
sizes of N = 6 and N = 8, we have varied the data length and studied how it affected the estimation
results of the network connectivity. The defect ratio was set to 40%. The network inference was
reliable for data length longer than 200 points (i.e. about 20 cycles). For shorter data length, the
estimation error gradually increased. It is therefore crucial to use enough data length for precisely
detecting the network connectivity.

Figure 2d shows dependence of the network inference on Gaussian noise N(0, (2πσ )2) added
to the phase data. The defect ratio and the data length were set to 40% and M = 400, respectively.
The estimation error increased gradually as the noise level was increased, where σ = 0.5% and
σ = 2% of phase noises caused severe damage to the network inference for system sizes of N = 8
and N = 6, respectively. This suggests that our estimation technique is rather sensitive to the phase
noise and, for reliable estimation of the connection matrix, phase information should be accurately
extracted from the observed time series.

4. Further applications
In this section, we discuss further applications of the multiple-shooting technique.

(a) Inferring phase sensitivity function
First, we apply the multiple-shooting method to the estimation of phase sensitivity function Z(θ ).
The phase sensitivity function Z(θ ) plays a vital role in the studies of coupled oscillators, since it
describes one of the most fundamental properties of the oscillator element [58–60]. Numerous
approaches have been proposed to estimate the phase sensitivity function from experimental
data [43–52]. As an extension of our technique, the phase sensitivity function can be recovered
from the coupling function [79]. As described earlier in the averaging approximation [59], the
coupling function is given by a convolution of the phase sensitivity function Z(θ ) and the input
waveform G(θ ) as H(θ ) = (1/2π )

∫2π
0 Z(ψ)G(θ + ψ) dψ = (Z∗G)(θ ). It is straightforward to recover

the phase sensitivity function by the spectral deconvolution [80]. Namely, in a frequency domain,
the phase sensitivity function is given as Ẑ(ω) = Ĥ(ω)/Ĝ(ω), where Ẑ(ω), Ĥ(ω) and Ĝ(ω) represent
Fourier transforms of Z, H and G, respectively. Inverse Fourier transform of Ẑ(ω) yields the
phase sensitivity Z(θ ). Figure 3a shows phase sensitivity function (solid red line) obtained by
the deconvolution of the coupling function estimated from coupled FHN oscillators (N = 16) in
§2. Compared with the one computed by the adjoint method [65] (dashed blue line), the estimated
function is somewhat deviated from the true curve. We consider that, due to the averaging
effect, where the effect of input signal is averaged over one oscillation cycle, information on the
spontaneous phase response has been lost.

To improve the situation, the phase sensitivity can be estimated more directly by using the
Winfree formula [58] as follows. For simplicity, we consider a single phase oscillator receiving lth
external force Gl(t) (l = 1, 2, . . ., L):

θ̇l =ω + Z̃(θl)Gl(t), (4.1)
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Figure 3. (a) Phase sensitivity function Z (solid red line) obtained by deconvolution of the coupling function estimated in
figure 1a. Compared is the estimate by the adjoint method (dotted black line). (b,c) Phase sensitivity functions Z obtained by
MSmethod (solid red) and the least-squaremethod (dashed blue line). Strength of the impulse is E = 0.01 in (b) and E = 0.04
in (c). (d) Dependence of the estimation errors e of MS method (solid red line) and least-square method (dashed blue line) on
strength E of the impulses injected to the FHN oscillator. (Online version in colour.)

where θl and ω represent phase and natural frequency of the oscillator. Without loss of generality,
the initial phase can be set to zero (i.e. θl(0) = 0). The external force Gl(t) is typically composed of
a short pulse, which lasts within one oscillator cycle of T = 2π/ω. The phase sensitivity function
Z̃ is described in terms of a Fourier series as Z̃(θ ) = c0 +∑D

j=1 cj sin jθ + dj cos jθ . The unknown
coefficients p = {cj, dj} can be estimated by the multiple-shooting method in a similar manner as
the estimation of coupling function. Given the external force Gl(t), the phase oscillator model (4.1)
can be integrated as φT(θl(0), Gl, p). The parameters p can be optimized in such a way that the
phase model (4.1) satisfies the boundary conditions: θl(T) = φT(θl(0), Gl, p), where θl(T) represents
the oscillator phase observed at t = T.

Below, we compare the performance of the multiple-shooting method with that of least squares
as the standard method of estimating the phase sensitivity function [43,46]. Here, the phase
model (4.1) is integrated as

∫T

0
dθl =

∫T

0
ω dt +

∫T

0
Z̃(θl)Gl(t) dt

and

θl(T) − θl(0) − 2π =
∫T

0
Z̃(ωt)Gl(t) dt,

where the oscillator phase is approximated as θl(t)≈ωt under the assumption that the external
force Gl(t) is weak in equation (4.1). By expanding the external force into Fourier series as Gl(t) =
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gl,0 +∑D
j=1 gl,j sin jωt + hl,j cos jωt, we obtain

Mp = D,

where

M =

⎡
⎢⎢⎢⎢⎣

g1,0/2 g1,1 h1,1 g1,2 h1,2 · · · g1,D h1,D
g2,0/2 g2,1 h2,1 g2,2 h2,2 · · · g2,D h2,D

...
...

...
...

...
...

...
gL,0/2 gL,1 hL,1 gL,2 hL,2 · · · gL,D hL,D

⎤
⎥⎥⎥⎥⎦ , p =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

c0
c1
d1
...

cD

dD

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, D =

⎡
⎢⎢⎢⎢⎣
�θ1
�θ2

...
�θL

⎤
⎥⎥⎥⎥⎦ .

�θl = θl(T) − θl(0) represents phase shift induced by the lth external force Gl(t). The unknown
coefficients p can be obtained as p = DM−1.

We apply the two methods to a single FHN oscillator that receives 400 random impulses
(stimulus duration: τ = 20, stimulus strength: V = 0.01, 0.02, . . . , 0.12) as external forcing G(t).
Parameter values of the FHN oscillator and the sampling time interval were set to be the same
as those in the previous sections. For simplicity, natural frequency ω and the external signal
G(t) were assumed to be known. The number of the Fourier components was set to D = 10. The
integration time was set to T = 150. For impulse strength of E = 0.01 and E = 0.04, the estimated
phase sensitivity functions are drawn in figure 3b,c, respectively. In both panels (b) and (c),
estimation results of the multiple shooting method (solid red lines) are consistent with those of
the adjoint method [65]. The least-square method (dashed blue line), on the other hand, recovered
the phase sensitivity function faithfully for a small impulse strength in (b). The estimate is,
however, deviated from the other two curves for a large impulse strength in (c). In fact, as the
impulse strength is increased, the estimation error increases much more rapidly in the least-
squares method (dashed blue line) than the multiple shooting method (solid red line) (figure 3d).
The least-squares method [43,46] assumes that phase of the oscillator evolves linearly in time
according to the natural frequency. This approximation is effective as far as the external force is
weak. If stronger perturbations are applied, inducing non-small phase shifts, this approximation
increases the estimation error. The multiple-shooting method, on the other hand, takes into
account the phase shift induced by the external perturbations by faithfully integrating the phase
equation (4.1). The estimation error has been therefore reduced by the multiple-shooting method.

(b) Chaotic phase synchronization
Next we show how the estimated coupling function can be used for modelling chaotic phase
synchronization [81]. It has been known that phases of chaotic oscillators can be synchronized
with each other, while their amplitudes remain irregular and uncorrelated. Especially for phase-
coherent chaos, in which rotation centre can be well defined, the phase dynamics can be
approximated as θ̇ =ω + Γ (A), where Γ (A) represents frequency modulation, which depends
upon oscillation amplitude A [81]. For chaotic amplitude A, the term Γ (A) can be regarded as an
effective noise. In many phase-coherent systems such as the Rössler equations [82], amplitude-
dependent frequency modulation is very small, so the noise term Γ (A) is negligible. Phase
dynamics of such a chaotic attractor become very similar to those of limit cycle oscillators.

To extract phase-interaction between chaotic oscillators, we consider two coupled Rössler
equations [82]:

ẋ1,2 = −α1,2y1,2 − z1,2,

ẏ1,2 = α1,2x1,2 + 0.15y1,2 + C(y2,1 − y1,2)

and ż1,2 = 0.2 + z1,2(x1,2 − 7).

Each Rössler oscillator gives rise to chaotic dynamics without coupling C = 0. The inhomogeneity
parameters were set as α1,2 = 1 ∓ 0.01, which yield average oscillation periods of 6.06 and 5.94,
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Figure 4. (a) Phase responses of chaotic dynamics observed fromRössler equations. By applying an impulse at variable phases,
the phase shifts were measured as the difference in timing between the following peak of y-variable and the one expected
from the average oscillation period. Bold black line represents the averaged phase response. (b) Waveforms of y-component
of the Rössler equations. Bold red line represents the averaged waveform. (c) Coupling functions H̃(�θ ) estimated by the
present method (solid red line) and one (dashed blue line) obtained as the convolution of averaged phase response curve and
the averaged waveform. (d) Synchronization diagram of the estimated phase model (solid red line) and the original coupled
Rössler equations (dashed blue line). (Online version in colour.)

respectively. The bivariate data {yi(t)}2
i=1 were simulated under coupling strength of C = 0.02,

which corresponds to the non-synchronized regime. The sampling interval was set to be�t = 0.08
for the extraction of the phases {θi(t)}. Then, to apply the multiple-shooting method, the data have
been down sampled to �t = 1000·0.08 and a total of 2000 data points were collected. The data
were divided into 1000 and 1000 points, which were used for the parameter estimation and the
cross-validation test, respectively. By varying the number of Fourier components from D = 1 to
D = 5, the optimal value was found to be D = 4. The corresponding coupling function H̃(�θ ) is
shown by the solid red line in figure 4c. The estimated function is in good agreement with the one
obtained by the convolution of averaged phase sensitivity function (figure 4a) and the averaged
input waveform (figure 4b). Using the estimated phase equations, the synchronization diagram of
the original two coupled Rössler equations can be recovered, where the onset of synchronization
was predicted at C = 0.042, which is close to the real onset of C = 0.04 (figure 4d). This suggests
that our simple method of estimating the coupling function provides a good approximation of
describing the phase dynamics of phase-coherent chaotic oscillators.

(c) Application to circuit experiment
Finally, we apply our method to experimental data generated from the Van der Pol electric
circuit [83] to demonstrate the performance of our method in a realistic experimental setting.
As shown in figure 5a, the system is based on an LC circuit, composed of an inductor (L) and a
capacitor (C1). To form a negative-resistance converter, three positive resistors (R1, R2, R3) were
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Table 1. Parameters of Van der Pol circuit.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

L 500 (mH)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

C1 2.2 (uF)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

R1 2.543 (KΩ)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

R2 62.7 (kΩ)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

R3 10 (kΩ)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

VDD 5 (V)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

VSS −5 (V)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

OPAMP LF412CN
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

C2 10 (nF)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

connected to a voltage-controlled voltage source (i.e. operational amplifier and its associated
power supplies VDD, VSS) [84]. External forcing G(t) was injected from a function generator
(Keysight 33500B) to the Van der Pol circuit through a capacitor (C2). Physical parameters of
the electric components used in the present experiment are summarized in table 1. To obtain
the phase sensitivity function, 220 impulses (stimulus duration: τ = 380 μs, stimulus strength:
V = 3 V) were randomly injected as the external force G(t). The circuit output as well as the input
impulses were simultaneously measured with a sampling frequency of 12.5 kHz. First, the phase
sensitivity function Z̃ was estimated by fitting the phase model (4.1) to the measured data with the
multiple-shooting method. Natural frequency fn = 110.5 Hz (i.e. ω= 2π fn), measured before the
stimulus experiment, was used in the phase dynamics. The number of the Fourier components was
set to D = 4. As shown in figure 5b, the estimated phase sensitivity Z̃(θ ) fits to the experimental
observation of phase response data well.

Next, a sinusoidal forcing G(t) = V sin(Ωt) (forcing frequency: 106 Hz, forcing amplitude: V =
0.6 V) was applied to the Van der Pol circuit. The circuit output as well as the forcing waveforms
were simultaneously measured with a sampling frequency of 12.5 kHz. By the multiple-shooting
method, which fits the phase equations (2.4) to the measured data, the coupling function H̃
(number of Fourier components: D = 1) was estimated. In figure 5c, the estimated coupling
function is compared with the one obtained by the averaging of the phase sensitivity function Z̃,
estimated from the impulse stimuli, and the input sine waveform G(t). Despite a slight difference
in the initial phase, the coupling functions agree quite well with each other. In figure 5d, the
estimated phase equations recovered the synchronization diagram of the experimental system,
where the onset of synchronization was predicted at V = 0.73 V, which is very close to the real
onset of V = 7 V.

5. Discussions and conclusion
The multiple-shooting method has been focused on as a non-invasive approach to estimate
coupling functions from multivariate time series measured from a real or synthetic complex
dynamical system [31]. Among various methods developed so far [7,32–36,38–41], which
are based on the Bayesian estimation and other variants, the multiple-shooting provides a
straightforward approach to fit the phase equations to phase data measured from an oscillator
network. Despite its simplicity, the method was shown to be capable of precisely estimating
the coupling function of the coupled FHN oscillators including higher-harmonic terms. The
estimation was found effective for a large network of up to 512 oscillators. Utilization of the
transient part of data successfully enlarged applicability of the estimation technique even in
a synchronized regime of coupled oscillators. The estimated coupling function was further
applied to inference of network topology and chaotic phase synchrony. Precise estimation of the
coupling functions was shown to improve the reconstruction of network topology. As another
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Figure 5. Experiment of Van der Pol oscillator circuit. (a) Schematic illustration of the Van der Pol circuit, that is composed of an
inductor (L), a capacitor (C1), three resistors (R1, R2, R3), an operational amplifier, and its associated power supplies (VDD, VSS).
External forcing is injected from a function generator (Keysight 33500B) through a capacitor (C2). (b) Phase sensitivity function
estimatedby themultiple-shootingmethod (red line) and the perturbation experiment (crosses). (c) Coupling functions H̃(�θ )
estimated by the present method (solid red line) and one (dashed blue line) obtained by the averaging of the experimentally
obtained phase sensitivity function and the sinusoidal input waveform. (d) Synchronization diagram of the estimated phase
model (solid red line) and the experimental circuit system (dashed blue line). (Online version in colour.)

intriguing issue, estimation of the phase sensitivity function was also discussed. Although the
phase sensitivity function obtained by deconvolution of the estimated coupling function was
slightly deviated from the true function, refinement has been made by extending the multiple
shooting method directly to the phase data of a driven limit cycle oscillator. Finally, efficiency of
the present approach was demonstrated with the experimental data measured from the Van der
Pol electric circuit with a sinusoidal forcing.

Beyond experimental systems in physics, chemistry and engineering, we foresee that our
method will be applicable to systems of rhythmic, interacting elements such as cellular gene
expressions in the suprachiasmatic nucleus (SCN) [56], electrical activities of cardiac pacemakers
[57], inferior olive neurons in the cerebellum [85], and can give insights useful for domain-
scientists in biology and neuroscience.

While considering our method of potentially practical use for various systems, its usefulness
is not without limitations. The main among them is the assumption that the studied system can
be approximated as a network of weakly coupled limit cycles [59]. This, however, is not true
for all systems encountered in nature. For instance, in gene regulatory networks, phases of the
clock component genes are tightly connected to each other [86]. It has been known that cortical
neurons fire with a strong synchrony during epileptic seizure [87]. Such strongly coupled systems
should be carefully distinguished and avoided as a target of modelling the phase dynamics. In
the case that the system property is not well understood, it is non-trivial to judge only from the
recorded data whether the coupling is weak enough to apply the phase modelling to the oscillator
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network. It is an important open problem to provide a criterion to assess whether the phase model
is suitable for analysing the observed time series without prior knowledge on the underlying
dynamical equations.

Another limitation is the length of the available time series: namely, experimental
measurements, for a variety of realistic reasons, could produce the data (time series) of only a very
short length. For instance, time resolved data on gene regulation are not likely to yield time series
with much more than 10 cycles. In this case, our method might be of limited use. Also, realistic
data are almost always noisy. The noise strength, depending on the experimental scenario, could
be quite severe. Especially, the phase extraction process in our modelling is rather sensitive
to noise. Temporal fluctuation and noise in natural frequencies of the oscillator elements may
also cause estimation error in the coupling functions. In this respect, noise tolerance should be
carefully examined, before the application to data contaminated with observational/dynamical
noise.

Also, networks in the real world are large and only partials of the dynamics elements are
observable. Although our method was shown to be robust against system size as far as the
oscillator elements are uniformly connected and they are desynchronized with each other, the
effect of unobserved oscillator states should be examined carefully. Heterogeneity and hierarchy
in the coupling functions may require further extension of the present approach.

Finally, we conclude the paper with a brief discussion of how our method’s performance
compares to the performance of other methods that reconstruct coupling functions in oscillatory
systems. Unfortunately, such comparison is not simple to make, since various available methods
depart from very different hypotheses and knowledge about the system. Stronger hypotheses
lead to better inferences, but the information on whether the hypotheses are met is not always
available. This renders any independent comparison of reconstruction methods difficult. One
could argue that methods aimed at only network topology are more useful and precise, but such
methods neglect the entire dynamical nature of many real networks. On the other hand, certain
methods give excellent results, but are limited to dynamical systems with specific properties. In
fact, our method belongs to this category, since it assumes the limit cycle nature of the individual
units. Furthermore, methods can be divided into invasive ones (that interfere with system’s
ongoing dynamics) and non-invasive ones (that do not). Again, their real merits are hard to
compare, since invasive methods, although often non practical, will almost always give better
results. Therefore, we here conclude that our reconstruction concept, although limited by the
assumption of limit cycles, is a promising—and above all practical—approach implementable in
real experiments.
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