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We develop a technique for the multivariate data
analysis of perturbed self-sustained oscillators.
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This article is part of the theme issue ‘Coupling functions: dynamical interaction
mechanisms in the physical, biological and social sciences’.

1. Introduction
One of the basic problems in data analysis is to select or to eliminate a particular component of
a given time series, e.g. to remove noise or a trend, or to single out an oscillation in a certain
frequency band, etc. A whole variety of techniques has been designed to tackle this task by
means of filtering in the frequency domain, smoothing in a running window, subtracting a
fitted polynomial, and so on. Furthermore, a number of modern methods—principal component
analysis, independent mode decomposition, empirical mode decomposition [1–6]—represent a
signal of interest as a sum of modes such that (at least) dominating modes are assumed to
represent certain relevant dynamical processes. Correspondingly, some of these modes can be
analysed separately or, on the contrary, if they are considered as irrelevant, they can be subtracted
from the original data, so that the cleansed signal can be further processed.

In this publication, we elaborate on a technique for a dynamical disentanglement of different
components, designed for the analysis of signals, generated by coupled oscillatory systems. The
disentanglement task is illustrated in figure 1. We assume that a signal from an oscillatory unit,
which is driven by an observed nearly periodic signal and by other, non-observed inputs is
known (figure 1a). (We treat the unobserved input as some noise, although generally, it may
contain some regular components as well.) The technique is based on a reconstruction of the
phase dynamics of the analysed unit. The obtained equation is then used for the generation
of two new outputs. If only the observed input is used, i.e. the unobserved noise term is
omitted, then the simulated equation yields a signal representing the dynamics of the noise-
free system, i.e. the system driven by the observed input only (figure 1b). If, on the contrary,
we eliminate from the equation the observed input, then the simulations yield the noise-
induced output (figure 1c). This disentanglement procedure is neither the standard filtering
(because the preserved and eliminated components can overlap in the frequency domain), nor
the mode decomposition (because the sum of two disentangled outputs does not yield the
original signal). Here, we consider the application of this approach to cardiac and respiratory
data in humans. Our main oscillatory unit will be the cardiovascular system, and the observed
input will be respiration. As the results of the analysis, we will obtain two heart rate variability
(HRV) signals: one influenced purely by respiration, and one where the influence of respiration
is excluded.

Understanding of the cardiac dynamics in terms of coupled oscillators goes back to the
pioneering work by van der Pol & van der Mark [7]. Within the last two decades, this idea has
been widely used to address the interaction between the cardiovascular and respiratory systems
with the aim to reveal and quantify synchronization between them and to infer directionality
and strength of their coupling under different conditions in adults and infants, with application
to analysis of different sleep stages, apnoea, age-related changes, and effects of anaesthesia and
hypertension [8–18]. In this paper, we discuss how the application of the coupled oscillators
theory helps in the analysis of the main effect of the cardiorespiratory interaction, namely
modulation of the heart rate by respiration, known for about a century as respiratory sinus
arrhythmia (RSA) [19–23].

The separation and proper quantification of this respiratory component of HRV is of great
importance for both fundamental physiological research and clinical medicine [24,25], due to the
role vagal activity plays not only in cardiovascular but also in inflammatory control [26]. The
isolated immune system is over-reactive and self-propagating by its nature. Germs or degraded
cells in our body are detected by immune cells like macrophages floating in the interstitial
space of the tissue. Macrophages detecting germ intruders produce inflammatory signals such as
TNF-alpha and interleucine 1 [27], which attract other immune cells from nearby blood vessels.
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Figure 1. Schematic of the disentanglement procedure. (a) Original set-up, where two inputs influence the oscillator,
(b) reconstruction of the ‘noise-free’ dynamics and (c) reconstruction of the ‘signal-free’ dynamics. (Online version in colour.)

Without neuro-humoral control, the immune system would enter a dangerous state of generalized
inflammation, well known as ‘sepsis’ in clinical medicine.

To prevent this generalized reaction, vagal afferents (transmitting from periphery to brain)
also carry receptors for these signal substances and transmit the information on inflammation
location and strength to brain stem areas [28]. After processing this information, vagal efferents
(transmitting from brain to periphery) respond by release of acetylcholine at the location of the
inflamed tissue [26]. Nicotinergic acetylcholine receptors have been identified on the surface of
the macrophages, which downregulate the cytocine production as a response to the cholinergic
stimulation [29], thereby reducing the attraction of additional inflammatory immune cells and
downregulating immune response. This inflammatory feedback loop prevents over-activity of
the immune system enabling the brain to locally control the immune activity. Therefore, a
reduction of the vagal tone, e.g. by different forms of stress, is suspected to be related to several
chronic diseases induced by inflammation, including type 2 diabetes, ulceral colitis, Hashimoto’s
thyreoiditis and even cancer [30]. Severe reductions of vagal tone have been observed in patients
with these conditions [31–34]. The action of sympathetic activity in this system is not as well
understood as vagal contribution at the moment. Therefore, it is important to measure the vagal
component separated from the other components. Linear separation by filtering the signal can
improve the estimation of pure vagal tone, but under certain conditions may fail to do so, when
the respiratory frequency approaches other meta-cardiac cycles deriving from sympathetic origin,
like the blood pressure rhythm of 0.1 Hz.

In our previous publications [15,35], we applied the dynamical disentanglement approach to
the analysis of RSA in HRV records. In these publications, we used simultaneous measurements
of electrocardiogram (ECG) and respiratory activity in order to reconstruct the equation of the
phase dynamics of the cardiac oscillator. Next, we exploited this equation for a decomposition
of the heartbeat intervals series into respiratory-related and non-respiratory-related components.
This decomposition can be used as a general preprocessing tool for quantification of respiratory-
related HRV and, in particular, opens a new way to address the clinically important problem of
RSA quantification.

However, the results of refs. [15,35] can be considered only as a proof of principle, because they
were obtained using a continuous phase of the cardiac oscillators. Determination of such a phase
requires very clean high-quality measurements and a tedious preprocessing. Here, we suggest an
easy-to-implement practical algorithm for achieving the same goal using the information about
timing of the R-peaks only. The latter are well-defined events within each cycle of cardiac activity
and they can be readily obtained with any standard equipment. From the viewpoint of data
analysis, we deal with a relatively slow smooth signal (respiration), the phase of which can be
easily estimated, e.g. by means of the Hilbert transform, and a point process (R-peaks) with a
frequency about four times higher.
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We emphasize that although we concentrate on cardiorespiratory interaction and explain the
main idea in this context, our approach is of general use and can be applied to any weakly
perturbed self-sustained oscillators, provided the observed signals allow for phase estimation.
In particular, point processes frequently appear in neuroscience applications, and, thus, our
algorithm can be helpful in the analysis of neural data, e.g. of spiking neurons affected by a
slow observed continuous force. The restrictions here are that (i) neuronal spiking should be a
dynamical, not a stochastic process; (ii) the forcing should be weak so that the first-order phase
approximation is valid; and (iii) the variations of the instantaneous frequency of the forcing
are slow.

2. Dynamical disentanglement based on the phase dynamics modelling
Our general goal is to identify dynamical properties of an oscillatory system, related to different
influences, from the observations of its behaviour in a complex noisy environment. For example,
one can be interested in the following questions: what would be the dynamics of the system
if it were noise-free? Or how would the statistical properties of the oscillation change if one of
the external forces were switched off? We address these and similar problems using the phase
dynamics theory, see e.g. [36–38].

Consider a limit cycle oscillator, weakly perturbed by regular or stochastic known forces ηk(t),
k = 1, 2, . . . . Then, according to the theory, in the first approximation in amplitude of these forces,
the phase dynamics obeys

ϕ̇ =ω +
∑

k

Qk[ϕ, ηk(t)] + ζ (t). (2.1)

Here, ϕ(t) and ω are the phase and the natural frequency of the system, and Qk are the coupling
functions; they quantify response of the oscillator to the corresponding perturbations. The
random term ζ (t) accounts for intrinsic fluctuations of the system parameters. Note that the same
equation describes dynamics of weakly chaotic systems; in this case, ζ (t) reflects effects of chaotic
amplitude variations. In the second-order approximation in the force amplitudes, one expects the
appearance of triple terms like Q12[ϕ, η1, η2], etc [39,40], but these effects will be neglected below.

Let us suppose first that equation (2.1) is already known (practically, it is inferred from
data, as discussed below). Then, if we are interested in properties of the purely deterministic
phase dynamics, we can solve numerically equation (2.1) without the noise term ζ (t) (we speak
of the deterministic dynamics here because the forces ηk(t) are known (recorded) functions of
time, though they must not be completely regular). If the task is to analyse the response of
the oscillator to a particular external force, e.g. η1(t), then we omit in equation (2.1) the terms
ξ (t) = ∑

k>1 Qk[ϕ, ηk(t)] + ζ (t), simulate the equation

ϕ̇ =ω + Q1[ϕ, η1(t)], (2.2)

and analyse the obtained result according to a particular problem in question. This approach was
used in [41] for reconstructing the Arnold tongue of a noise-free oscillator (with strictly regular
force η1(t)) from a measurement of noisy system (where in addition to η1(t) also pure noise ζ (t)
is present). Alternatively, if we are interested in the effects of the random component ζ (t), e.g.
in properties of phase diffusion, then we have to omit the deterministic perturbations and solve
numerically

ϕ̇ =ω + ξ (t). (2.3)

In this way, we achieve the desired dynamical disentanglement. Below we apply this general idea
to the analysis of cardiorespiratory interaction.
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3. Disentanglement of the heart rate variability
In [15], we used the measurements of ECG and respiratory flow from healthy adults in order to
reconstruct the model of cardiac phase dynamics in the form

ϕ̇ =ω + Q(ϕ,ψ) + ξ (t), (3.1)

where ϕ andψ correspond to the instantaneous phases of the cardiac and the respiratory rhythms,
respectively. This equation is a particular case of equation (2.1), with η1(t) corresponding to
the respiration dynamics. Since the latter is a rhythmical process with a well-defined phase
ψ , we write the corresponding coupling function as a function of two phases, Q1(ϕ, η1(t)) =
Q(ϕ,ψ), while the contribution of other, unobserved, perturbations and of intrinsic fluctuations
is combined in the rest term ξ = ∑

k>1 Qk(ϕ, ηk(t)) + ζ (t). Practically, Q(ϕ,ψ) as a function of two
variables was constructed on a 64 × 64 equidistant grid in a domain (0, 2π ) × (0, 2π ).

Note that determination of the respiratory phase ψ is simple: since the respiratory signal looks
like a modulated and slightly distorted sine-wave, its phase can be easily estimated, e.g. by means
of the Hilbert transform. On the contrary, the ECG signal has a quite complicated form and
computations of its phase represent a non-trivial stand-alone problem, see [15]: here one needs
very high-quality data, and its processing is technically quite demanding. This fact motivates
a development of techniques operating only with point processes, namely with instants of the
R-peaks, corresponding to the peak of depolarization of the ventricles of the human heart. These
events can be easily detected and therefore are commonly used in the analysis of HRV. Since these
peaks appear once per heartbeat cycle, their continuous phase ϕ without loss of generality can be
set to zero.

First, we discuss how the disentanglement of the HRV can be performed if both continuous
phases ϕ(t) and ψ(t) are available [15]. For this goal, we note that, for a given time series ϕ(t) and
ψ(t), the coupling function in equation (3.1) can be also interpreted as a time series Q[ϕ(t),ψ(t)] =
Q(t). Correspondingly, knowledge of time series ϕ̇(t) and Q(t) yields the rest term ξ (t) = ϕ̇ − Q.
Having all these time series, we easily construct the new disentangled ones. These are the
respiratory-related (R) and the non-respiratory-related (NR) components of the instantaneous
cardiac frequency, denoted as ϕ̇(R) and ϕ̇(NR), and obtained according to equations

ϕ̇(R) =ω + Q(ϕ(R),ψ) and ϕ̇(NR) =ω + ξ (t). (3.2)

Note that this is not a simple decomposition because ϕ̇(t) �= ϕ̇(R)(t) + ϕ̇(NR)(t). In [15], we have
demonstrated that power spectrum of ϕ̇(R) nicely describes the spectral peaks corresponding to
the frequency of respiration and to the side-bands of the heart rate.

In the subsequent study [35], we extended this idea and generated artificial sequences of
heartbeat events (R-peaks) according to the conditions ϕ(R)(t(R)

k ) = 2πk and ϕ(NR)(t(NR)
k ) = 2πk, k =

1, 2, . . ., where the phases were obtained via numerical integration1 of differential equation (3.2).
The point process t(R)

k represents instants of the heart beats as they would appear if there were

no other perturbations to the cardiac oscillator, except for the respiration, while t(NR)
k represents

the HRV due to internal fluctuations and external non-respiratory rhythms, e.g. blood pressure
and blood perfusion rhythms. It has been suggested that the described disentanglement into
respiratory-related (R-HRV) and non-respiratory-related (NR-HRV) components should be used
as a generic preprocessing technique prior to a quantification of the RSA in clinical practice.
This suggestion has been supported by computation of different measures of RSA from the
original series of inter-beat intervals as well as from respiratory-related intervals T(R) = t(R)

k+1 − t(R)
k ,

see [35] for details. Note that our approach is intrinsically nonlinear, in contrast to ad hoc
techniques used for the same purpose, like adaptive filtering and least-mean-square fitting of
power spectra [42,43].

1For integration, we used the Euler scheme; for initial conditions, both ϕ(R) and ϕ(NR) we set to zero at the instant of the first
R-peak in the original dataset. Since the coupling function Q is given on a grid, spline interpolation was used to compute
Q(ϕ,ψ) for arbitrary ϕ,ψ .
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Summarizing, the disentanglement of the instantaneous cardiac frequency into R-HRV and
NR-HRV components can be easily implemented, provided the continuous phases ϕ,ψ are
known. However, as already mentioned, computation of the instantaneous cardiac phase ϕ

requires high-quality measurements, visual inspection of the data, extensive preprocessing, and
is currently solved by ad hoc, not automated, techniques only. On the other hand, determination
of the R-peaks is a standard task and can be easily accomplished. Therefore, development of
a disentanglement algorithm for the case when one observable, e.g. respiration, is continuous
and appropriate for the phase estimation, and the other one, e.g. heartbeats, is a point process,
represents an important unsolved problem. Below we present an approximate solution of this
problem.

4. Dynamical disentanglement for the point process data
Our starting point is the description of the cardiorespiratory phase dynamics in the form of
equation (3.1). We assume that the respiratory phaseψ is obtained from the respiratory time series
and that the instants tk, when the R-peaks appear in the ECG, are determined. The cardiac phase
at these instants is ϕ(tk) = 2πk. Let the inter-beat intervals be denoted as Tk = tk+1 − tk. Then,
assuming weakness of the coupling, ‖ Q ‖�ω, where ‖ · ‖ denotes the norm of the function, and
keeping in equation (3.1) only the deterministic term, we write in the first approximation

∫ tk+1

tk

dt = Tk =
∫ 2π

0

dϕ
ω + Q(ϕ,ψ)

≈ 2π
ω

− 1
ω2

∫ 2π

0
Q(ϕ,ψ)dϕ. (4.1)

Next, since the respiration is much slower than the heart rate, we assume that within the inter-beat
interval Tk, the phase ψ grows linearly in time with the frequency ω(r)

k , i.e. ψ(t) =ψk + ω
(r)
k (t − tk),

where ψk =ψ(tk). Then the integral in equation (4.1) can be approximated as

−ω−2
∫ 2π

0
Q(ϕ,ψ)dϕ = −ω−2

∫Tk

0
Q[ϕ(t),ψ(t)]dt ≈ F(ψk,ω(r)

k ).

Taking for simplicity ω
(r)
k = ψ̇(tk) = ψ̇k (corrections to this expression, due to slowness of the

respiratory phase, appear in the higher orders) and denoting T = 2π/ω, we obtain

Tk = T + F(ψk, ψ̇k) + χk, (4.2)

where F(ψk, ψ̇k) can be understood as a discrete version of the coupling function (we denote it as
the coupling map) and the rest term χk is the random component. Equation (4.2) can be considered
as a direct discrete analogue of continuous equation (3.1).

Introducing the mean respiratory frequency ω̄= 〈ω(r)
k 〉k = 〈ψ̇k〉k and expressing F(ψk,ωk) as a

Taylor-Fourier series, we finally write

Tk ≈ T +
NF∑

n=1

⎧⎨
⎩

⎡
⎣NT−1∑

m=0

an,m(ψ̇k − ω̄)m

⎤
⎦ cos(nψk) +

⎡
⎣NT−1∑

m=0

bn,m(ψ̇k − ω̄)m

⎤
⎦ sin(nψk)

⎫⎬
⎭ . (4.3)

Here, NF and NT are the orders of the Fourier and Taylor series, respectively. For a sufficiently
long series of inter-beat intervals Tk, equation (4.3) can be considered as an overdetermined linear
system for unknown parameters T, an,m, bn,m. This system can be easily solved, e.g. by mean
squares minimization.

Thus, the suggested algorithm yields a discrete dynamical model (4.2) for the inter-beat
intervals. Now this model can be used for the dynamical disentanglement. In order to construct
the respiratory-related component, we first take t(R)

1 = t1. Then, substituting ψ1, ψ̇1 in (4.3) we

obtain T(R)
1 and t(R)

2 = t(R)
1 + T(R)

1 . Next, we compute ψ(t(R)
2 ), ψ̇(t(R)

2 ) and use the model (4.3) to

obtain T(R)
2 and t(R)

3 , and so on2. For the construction of the non-respiratory-related component,

2For a high-resolution measurement phase and frequency of respiration are given as a time series with a small time step.

Therefore, their values at t(R)
2 can be obtained, e.g. by linear interpolation between two closest data points.
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Figure 2. Model phase response curve of the cardiac oscillator (a) and model respiratory force (b) are shown by bold red lines.
Dashed lines in both panels indicate the corresponding curves obtained in experiments, cf. [15]. (Online version in colour.)

we also start by assigning t(NR)
1 = t1 and then proceed as follows. Let the already determined

t(NR)
l fulfil tk < t(NR)

l < tk+1. For tk and tk+1, we compute the rest term of the model (4.3) (effective
noise), i.e. the difference between the true Tk, Tk+1 and their value predicted by equation (4.3);
these terms are χk and χk+1. Then, using linear interpolation to find the effective noise at t(NR)

l , we
obtain

t(NR)
l+1 = t(NR)

l + T + χk + χk+1 − χk

tk+1 − tk
(t(NR)

l − tk). (4.4)

The R-HRV component can be further used for an improved quantification of the RSA, while the
NR-HRV time series can be exploited for the analysis of the other sources of the HRV.

5. Testing the approach on model data
First, we verify our approach using artificially generated data with known properties. For this
goal, we use a simple phase model (3.1), where the coupling function Q(ϕ,ψ) is written in the
Winfree form, i.e. as a product of the phase sensitivity function, or phase response curve (PRC),
Z(ϕ), and forcing function I(ψ). Thus, introducing explicitly the coupling strength parameter ε,
we write

ϕ̇ =ω + εZ(ϕ)I(ψ) + ξ (t). (5.1)

Functions Z(ϕ), I(ψ) are modelled by Fourier series of order 15 and 4, respectively (figure 2), in
such a way that they resemble experimentally obtained curves, cf. [15]. Instantaneous frequency
of respiration was modelled as ψ̇ =ωr + μν, where ν is an Ornstein–Uhlenbeck process, ν̇ =
−γrν + η1. The random term ξ is given by the weighted sum of two components, i.e. of a low-pass
and of a band-pass filtered noise: ξ = λ1ζ1 + λ2ζ2, where ζ̇1 = −γ ζ1 + η2 and ζ̈2 + αζ̇2 + ω2

bpζ2 = η3.
Here, ηk are independent Gaussian white noises with zero mean: 〈ηk(t)ηj(t′)〉 = δkjδ(t − t′).

Solving stochastic differential equation (5.1), we generate the artificial series of R-peaks.
Without loss of generality, we say that these peaks occur when phase ϕ attains a multiple of 2π .
Thus, we obtain a point process tk such that ϕ(tk) = 2πk. Correspondingly, we introduce series of
RR-intervals Tk = tk+1 − tk. Similarly, solving the deterministic part of equation (5.1), i.e.

ϕ̇(R) =ω + εZ(ϕ)I(ψ), (5.2)
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Figure 3. An illustration of themodel data. Panel (a) shows an epoch of 1000 inter-beat intervals and (b) is its zoomed version,
with only 100 intervals shown. From bottom to top: artificial sequence of inter-beat intervals (black), its respiratory-related
(red) and non-respiratory-related (blue) components. The latter two curves are shifted upwards for visibility. Panel (a) clearly
shows that long-scale variability is preserved in the non-respiratory component, while in (b) one can see that variationwith the
respiration period is removed from this component. (Online version in colour.)

we generate a series of respiratory-related R-peaks, t(R)
k and corresponding intervals T(R)

k
3. Finally,

the non-respiratory-related R-peaks, t(NR)
k and the inter-beat intervals T(NR)

k are obtained via
solution of

ϕ̇(NR) =ω + ξ (t). (5.3)

Thus, the data used for the disentanglement are: the times of R-peaks, tk, and the respiratory phase
and the frequency, ψ(t) and ψ̇(t), and in particular ψ(tk) =ψk, and ψ̇(tk) = ψ̇k. Note that in this
test, two latter series are obtained from equations, while in fact respiratory phase and frequency
should be estimated from data, which will certainly introduce an additional error. The respiratory-
related and the non-respiratory-related components obtained via dynamic disentanglement shall
be compared with t(R)

k and t(NR)
k , respectively.

Here, we illustrate the model data and the disentanglement results for the following values of
the parameters: ω= 2π , ωr = 2, ε= 0.1, ωbp = 1.08π , α= 0.1, γr = 0.1, μ= 0.02, λ1 = 0.03, λ2 = 0.02.
The records used for the subsequent analysis contained about 104 inter-beat intervals, which
correspond to about 2.5 h of natural heart beat. The model data are illustrated in figure 3. Here,
we show a short epoch of the artificially generated sequences of RR-intervals. Figure 4 presents
the respiratory-related component, extracted with the help of our algorithm with NF = 8, NT = 2,
compared to the true one, i.e. generated by the model. Figure 5 illustrates the results of the
disentanglement in the frequency domain. Namely, here we present spectra of point processes
(Bartlett measure) [44]. As expected, spectral peaks induced by respiration are enhanced in the
R-component and suppressed in the NR-component.

We conclude the presentation of the technique by discussing a characterization of the quality
of disentanglement. First, we note that, as it follows from equations (5.1), (5.2), (5.3) and as
is expected for a disentanglement of independent components, Var(ϕ̇) = Var(ϕ̇(R)) + Var(ϕ̇(NR)),
where the variance is defined as Var(x(t)) = 〈(x − 〈x〉)2〉, 〈(·)〉 = T−1

Σ

∫TΣ
0 (·)dt, and TΣ is the time

interval over which the averaging is performed. We expect that a similar relation for variances
obtained from the interval series Tk, T(R)

k , T(NR)
k shall also be valid, at least approximately. To

compute the variance of the phase derivative for a point process, we consider the phase linearly
growing between the events, so that ϕ̇(t) = 2π/Tk for tk ≤ t ≤ tk+1, k = 1, . . . , N. Then, for the
variance we obtain

σ 2 = 4π2

TΣ

N∑
k=1

(
1

Tk
− N

TΣ

)2
Tk, (5.4)

3Note that although equation (5.2) represents a deterministic part of equation (5.1), it remains a stochastic equation due to the
presence in the respiratory phase ψ of an Ornstein–Uhlenbeck process component.
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Figure 4. True (blue circles) and recovered (red crosses) respiratory components of the HRV. The first one is generated by the
model,while the second one is obtained from the point process bymeans of constructing the couplingmap (4.3). (Online version
in colour.)
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Figure 5. Illustration of the disentanglement in the frequency domain. Here, we show the spectra of the point processes for the
respiratory-related component (a) and for the NR component (b). Blue solid line shows the spectrum ofmodel-generated series
of instances of R-peaks tk ; red dashed curves show the spectrum of themodel-generated series t(R)k , t(NR)k , while the black dotted
curves present the spectra of the R- and NR-components obtained from tk via disentanglement. (Online version in colour.)

where TΣ = ∑
k Tk, and similarly for the respiratory-related and non-respiratory-related

components. We checked, for different NF, NT, that indeed (σ 2
R + σ 2

NR)/σ 2 ≈ 1 (for NT ≤ 3 the
worst case was 0.97).

6. An application to human cardiorespiratory data
Now we apply our algorithm to real data. For this goal, we analysed 26 multivariate records
of ECG and respiration, registered in 17 healthy adults in supine position at rest, see [15,45,46]
for a detailed description of the subjects, experimental protocol and measurement equipment4.
Since continuous phases ϕ(t),ψ(t) obtained in [15] are available, we compare the approximate
disentanglement performed with the help of equations (4.2), (4.3) with the results obtained for
continuous phases.

In order to quantify the quality of the disentanglement, we compute (σ 2
R + σ 2

NR)/σ 2 for all
subjects with the help of equation (5.4). The results shown in figure 6 indicate that our algorithm
works quite well. Here, we used NF = 8, NT = 1; for NT > 1 the quality of the disentanglement was

4This study was performed with high-grade equipment especially developed for RR variability measurements at sampling
rate 1000 Hz and resolution 16 bit, with shielded ECG cables. Note that HRV measurements in medicine often do not meet
such standards. Low data sampling rates (less than 1000 Hz) and digital resolution (less than 12 bit) of commercial ECG
equipment, built not for precise RR interval sampling but rather for low-frequency ECG shape evaluation, introduce artificial
jitter and digitizing noise detrimental for precise variability determination.
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Figure 6. Quality of the point-process-based disentanglement for cardiorespiratory data from healthy subjects. Here, we
plot, for each experimental record, variances of the respiratory and non-respiratory-related components and their sum versus
variance of the original sequence of R-peaks. As expected for uncorrelated components, the sum of variances of disentangled
processes is very close to the variance of original data. (Online version in colour.)
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Figure 7. The efficiency of the map-based disentanglement is confirmed by plotting the variance σ 2
m of the map-cleansed

respiratory-related component versus the variance σ 2
c of the continuously-cleansed respiratory-related component. (Online

version in colour.)

bad, probably because our point process series are quite short (about 400 heartbeats). Next, we
compare the variance obtained from map-cleansed intervals with the variance for continuously
cleansed data (figure 7). Both are in a good agreement.

An example of disentanglement (for a particular recording, dataset 3) is shown in figure 8.
Here, we show the original series of RR-intervals and the two cleansed datasets, one obtained
via the disentanglement with the continuous phase and one obtained using only the R-peaks. For
better visibility, two cleansed datasets are shifted upwards by 0.2 s, their overlap indicates that
the discrete dynamical disentanglement works well.
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Figure8. Original series of RR-intervals, Tk (in seconds), of a healthy subject (red circles) and its respiratory-related component,
T (R)k , obtained either via continuous cleansing (blue diamonds) or by map cleansing (magenta squares). Both cleansed time
series are shifted upwards for visibility. (Online version in colour.)

7. Conclusion
To summarize, we have presented a general approach that allows us, by means of the
reconstruction of the dynamics of a driven oscillator, to predict its ‘virtual dynamics’ in which
some of its inputs are cut off. The described disentanglement procedure differs from known
mode decomposition algorithms, because it operates not with the given time series, but with
a reconstructed phase dynamics equation. In this paper, we focused on the extension of the
dynamical disentanglement to the case when the output of the investigated oscillator is a
sequence of events (a point process), so that its instantaneous phase can hardly be estimated,
while the observed input is a relatively slow and smooth process, suitable for the phase
estimation. (Note that the slow process need not necessarily be close to a harmonic one, as the
phase estimation works for rather complex waveforms as well). We applied this approach to
analyse human HRV, where the available time series are a respiration signal and heart beat events.
More precisely, we disentangled the respiratory-related variability, known to be mediated by the
vagus nerve only, from that due to other sources. Using both model, data as well as instantaneous
phases derived from an ECG, we have shown that our approximate procedure yields good results.

The developed technique can find applications in physiological as well as clinical studies.
Indeed, quantification of different components of HRV is already an important diagnostic and
prognostic tool in cardiology [47,48]. Several circulatory diseases show a strong difference in
prognosis depending on vagal activity. As already mentioned, the simple spectral methods
applied to RR interval analysis in many clinical studies are not performing well in separating
vagal respiratory and other components of HRV. Since our technique provides respiratory-related
variability cleansed from the effect of noise and other, unobserved rhythms, quantification of RSA
and hence vagal tone from disentangled data is more precise. Note that the information theory-
based approach has previously shown an improved capability to detect altered physiological
conditions based on HRV analysed after discounting respiratory influences from HRV [49,50].
The separation of respiratory and non-respiratory components is physiologically and clinically
especially important in the case of slow breathing (less than 0.12 Hz), where the vagal RSA
intermixes with slower rhythms like the blood pressure rhythm, which derive from sympathetic
and vagal components. Under such conditions, the two components of autonomic nervous system
activity cannot be separated with linear models [51].

In [35], we compared the performance of different RSA measures applied to original
and cleansed series. However, there the disentanglement was performed using instantaneous
continuous phases. Now we show that the practical algorithm that operates not with a continuous
ECG, but only with R-peaks, provides nearly the same results. This finding opens a further way
to practical use. We anticipate that the developed technique can also be used in neuroscience, e.g.
for analysis of spiking of sensory neurons in response to a slowly varying stimulus.

It is instructive to juxtapose the disentanglement approach described above with the methods
of decomposition in bivariate systems, e.g. spectral- [52] and information-based ones [53]. In these
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decomposition methods one does not construct new time series, but rather determines which
parts of statistical characteristics (e.g. spectral or information measures) are due to the coupling.
Potentially, the disentanglement approach could be directly compared to decomposition methods,
if one applies the spectral or information characterization to the original HRV signal and to the
disentangled signals.

As a subject of future research, we mention a case of more than one observed input.
Theoretically, it is not so difficult to perform the phase dynamics reconstruction for multivariate
data; however, data requirements increase essentially so that reconstruction of a network of more
than three oscillators becomes unfeasible, see [40]. Another interesting extension would be the
case of non-oscillatory inputs, when parameterization of these inputs by a phase does not work. A
possible solution for both problems might be reconstruction of the phase dynamics in the Winfree
form, i.e. when the coupling function can be presented as a product of the phase response curve
and of the driving signal, cf. equation (5.1). The Winfree representation can also be exploited
to tackle the disentanglement problem in the case when the driven system is represented by a
continuous signal while the observed input can be considered as a point process. The component
related to this input can be constructed by taking into account phase resetting at the instants of
spike appearance. The non-input-related, noisy, component can then be obtained in a way, similar
to that presented in this paper, using the rest term of the reconstructed Winfree-type model.
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