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1. Introduction
Degradation is an inevitable feature of every operating system, which if not properly mitigated
can eventually lead to a loss of performance and total breakdown. Therefore, health management,
as a part of asset management, has become a highly relevant topic for modern systems design and
operation. In this paper, we deal with solid-oxide fuel cell (SOFC) systems, an exciting technology
for the conversion of the energy of chemical bonds directly into electricity and heat. Since SOFCs
are operated at high temperatures, there is no need for expensive catalysts, as is the case with
low-temperature proton exchange membrane fuel cell (PEMFC) systems. On top of that, SOFCs
can use a range of fuels, like hydrogen and methane, which makes them ideal for household
applications.

Although perceived as almost ready for the market a decade ago, the SOFCs lack sufficient
reliability and durability. Despite the vast efforts devoted to advancing the technology, market
adoption remains rather modest [1]. The main problem is still the insufficient lifespan of the cells,
and reason for that is the microstructural degradation of the cell’s components.

A number of the degradation mechanisms in fuel cells are correlated with the high temperature
at which SOFCs operate. For example, the thermal stresses caused by any mismatch in the thermal
expansion coefficients represent one of the main factors that shorten the lifespan [2]. On the other
hand, microstructural degradation is known to actively reduce the total operationing time of a
SOFC. The phenomena usually occur in the porous material of the fuel cell’s electrodes and cause
major changes to the porosity distribution of the material after long periods of operation [3,4].
Improper reaction conditions can also lead to chromium poisoning of the electrodes [5,6].

In most cases, the degradation mechanisms affect the resistance of the cell and, consequently,
the voltage, provided that the cell operates at constant current.

A pragmatic way to evaluate the degradation rate in SOFCs is to monitor the voltage drop
over time. While doing so, the users assume that the SOFC system is operating in the steady
state, i.e. at constant load, all the time. As soon as the operation becomes non-stationary, due
to the variable load and temperature conditions, this approach fails. A proper account of the
nominal system dynamics is mandatory in order not to confuse the effects due to degradation
with those caused by the varying load. Recently, the authors published a paper in which the
prediction of degradation trends and the remaining useful life (RUL) of SOFC systems under
non-stationary conditions was addressed for the first time [7]. In this study, the effects of the
degradation are aggregated in a single parameter, referred to as the area-specific resistance (ASR).
The ASR is estimated with a filtering technique and its trend is then modelled using a simple local
linear model. Even though the developed algorithm provides accurate RUL predictions, the paper
ignores the available prior knowledge about the degradation rates as a function of the operating
conditions. Therefore, to include prior knowledge is the first aim of this paper. Here, coupling
functions are used to describe the interactions between different system dynamic modes [8], in
particular the nominal dynamics and the degradation rate.

The second aim is to answer the question of whether more prior knowledge (in terms of
semi-empirical models for the degradation rate) really improves the accuracy of the predicted
degradation and, hence, the accuracy of the predicted end of life of the system. The idea is to
extend the model of nominal system dynamics with the degradation dynamics using coupling
functions that are parametrized with the unknown vector θ . The identified coupling function
provides an insight into how the dynamic properties of the SOFC system interact with the
dynamics of slowly evolving degradation phenomena on the macroscale.

The third aim of the paper comes after the technical question of which identification approach
to use. Point estimators, which evaluate only one value of an unknown parameter, are not
a satisfactory solution. It is of significant engineering value if the entire information about
the uncertain parameters is computed from the data, which inevitably calls for probabilistic
approaches. Owing to nonlinear coupling functions, the evaluation of the probability density
function (pdf) of the unknown parameters cannot be solved analytically. An alternative is to
use Monte Carlo approaches. They use sampling techniques, which approximate the true pdfs



3

royalsocietypublishing.org/journal/rsta
Phil.Trans.R.Soc.A377:20190086

................................................................

of the unknown parameters with histograms up to the desired level of precision. However, those
procedures are normally computationally exhausting. A way around this is to abandon the precise
reconstruction of the pdf and replace it with some approximate distribution, on account of the
much greater tractability. The latter is the core idea of the variational Bayesian inference approach,
which is used in this work for the identification of the nonlinear coupling functions’ parameters.
This seems to be the first such attempt in the underlying context.

The remainder of the paper is organized as follows. The second section provides a brief
overview of recent advances in the domain of degradation modelling for SOFC systems. The
third section presents the nominal dynamic model of a SOFC stack and the coupling function
that describes the slowly evolving degradation dynamics. Bayesian inference approaches for
a parameter estimation of the coupling functions are discussed in the fourth section. The
identification of a nonlinear coupling function on an experimental dataset using variational
Bayesian inference is presented in the fifth section, and a comparison with the simple linear
predictor from [7] is provided as well.

2. Solid-oxide fuel cell degradation modelling and coupling functions: state of
the art

There are many reports in the literature that target specific phenomena leading to degradation.
For instance, the widely studied are thermo-mechanical stress [9–11], nickel coarsening in the
anode [12,13], nickel oxidation [14] and interconnect oxidation [15]. These models serve their
purpose during the design stage of the SOFC system’s development, help to understand the
internal cell mechanisms, optimize the geometry, and help evaluate the impact of the operating
conditions on the integrity of the structure, durability and reliability of the system.

On the other hand, numerous durability tests have been performed. In these scenarios, the
SOFC systems were subjected to different operating conditions to invoke specific degradation
mechanisms and to study their effect on the performance. Among others, carbon deposition [16–
18] and nickel oxidation [19] have attracted the most attention. During these tests, electrochemical
impedance spectroscopy (EIS) serves as a characterization tool. The main idea of EIS is to describe
the dynamics of a nonlinear system around an operating point. To this aim, the fuel cells are
perturbed with particular waveforms that excite the local dynamics. Normally, with the use of a
programmable electronic load, the current is perturbed and the voltage response is measured. By
employing different signal-processing techniques, the phase and gain of the locally linear system
are extracted to obtain the non-parametric model in the form of a Nyquist curve [20]. The health
of the fuel cell and the occurring degradation can then be inferred from the acquired information.

There is a gap between research dealing with electrode degradation mechanisms through
detailed first-principles models and SOFC designers interested in managing the performance and
degradation processes at the system level. The former group is mainly focused on fundamental
phenomena on the nanoscale, with the aim to improve the nanostructure and electrochemical
performance of the materials. The latter group deals with the fuel-cell system’s integration, which
enables market deployment. Coupling functions offer a way to narrow the gap between the
nanostructure modelling and the macroscale models available for advanced control and condition
monitoring.

3. The nonlinear dynamic model of the solid-oxide fuel cell system

(a) System description
The system used in the study is a 10 kW SOFC system. It consists of two interconnected
modules, i.e. balance of plant (BoP) and stack module. The BoP module includes blowers, heaters,
pipes, heat exchangers, etc. The main role of the BoP is to supply the stack module with the
corresponding amount of appropriately conditioned fuel. The stack module consists of 80 fuel
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Figure 1. The SOFC power-generating unit installed at VTT (a) and its schematic representation (b) [21].
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Figure 2. Basic principles of a SOFC and its essential components.

cells, stacked one on top of another. The stack is enclosed in a thermally insulated housing since
the cells operate at high temperatures. Water–gas shift (WGS), steam-methane reforming (SMR)
and hydrogen-oxidation reactions take place inside the stack to produce heat, H2O and electrical
power. Figure 1 shows a schematic of the system on which the experiment was performed and a
photograph of the actual system. Air (containing oxygen) is fed by air blower to the cathode inlet
of the stack. Methane (natural gas, NG) is passed through a reformer in order to get hydrogen,
which is delivered to the anode inlet. The remaining fuel in the cathode outlet is recycled for the
sake of higher efficiency.

During the test, various operational parameters were manipulated for a complete
characterization of the system.

The principle of operation for a single-cell is illustrated in figure 2. The electrolyte transports
oxygen ions O2− from the cathode to the anode, while at the same time preventing direct contact
between the anode and cathode chambers. The ions are formed via the oxygen-reduction reaction
at the cathode, which is continuously fed with oxygen. On the other side, at the anode, the O2−
ions react with hydrogen in the process of hydrogen oxidation. In addition to H2O, two electrons
and some heat are released. The electrons travel through the external load to reach the cathode,
where they participate in the oxygen-reduction reaction.

Theoretically, a single SOFC’s voltage can reach 1.2 V, depending on the temperature, pressure
and gas composition. Consequently, for higher power outputs, typically several fuel cells are
connected in parallel to form a fuel cell stack.
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Since the SOFCs operate at high temperatures, the stack is usually enclosed in an insulated
housing to reduce the heat losses. The stack then connects with a BoP module, which carries out
the pre-treatment of the incoming gases. The BoP consists of different interconnected components,
such as heat-exchangers, blowers, fuel reformers, pipes, valves, etc.

(b) Nonlinear stack model
The dynamics of the stack can be described as a lumped parameter model with the energy balance
written as follows [22]:

Ks
dT
dt

= Ėin(Tin) − Ėout(T) − IU, (3.1)

where T is the outlet-gas temperature, Ėin and Ėout denote the energy flows in and out of the
stack, respectively, Ks denotes the lumped heat capacity of the stack, U is the stack voltage and I
is the load current. The energy flows Ėξ are defined as [22]:

Ėξ =
∑

i

ṅξ

i hi(T
ξ ), (3.2)

where ṅξ

i denotes the molar flow of the ith gas component, i ∈ {H2, H2O, CH4, CO, CO2, O2, N2},
at corresponding locations where ξ ∈ {in, out}, i.e. the stack inlet/outlet, and with corresponding
temperatures Tξ

i , and hi is the enthalpy of the gas.
The SMR, WGS and hydrogen-oxidation reactions are considered to be in thermodynamic

equilibrium. This assumption is easily justified and often employed in the modelling of SOFC
systems. A detailed discussion of these issues is available in [23]. Furthermore, total methane
reforming is assumed for this application [24]. In turn, the molar flow ṅ of the ith gas component
at the anode outlet ṅout

i can be calculated from the inlet molar flow ṅin
i and the extent of the SMR

x, WGS y, and the hydrogen-oxidation reactions z:

ṅout
H2O = ṅin

H2O − x − y + z

ṅout
H2

= ṅin
H2

+ 3x + y − z

ṅout
CH4

= ṅin
CH4

− x

ṅout
CO = ṅin

CO + x − y

and ṅout
CO2

= ṅin
CO2

+ y.

ṅout
N2

= ṅin
N2

z = N0I
neF

,

Kwgs(T) =
ṅout

CO2
· ṅout

H2

ṅout
CO· ṅout

H2O
,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.3)

where N0 is the number of cells, F is Faraday’s constant, ne is the number of free electrons. Kwgs is
the temperature-dependent WGS equilibrium constant:

log Kwgs = AT4 + BT3 + CT2 + DT + E. (3.4)

Details about the parameters A, B, C, D and E are discussed in [25]. Furthermore, in Kwgs from
(3.3) all the components are gases. The concentration of each gas component is assumed to be
directly proportional to its flow rates. Moreover, it can be shown that the methane-conversion
rate is nearly 100% [26], hence x = ṅin

CH4
. Therefore, to have a more simplified model, the SMR

is dropped from the equilibrium calculation. Finally, y is the only unknown and can be easily
calculated from the Kwgs equation, see [24] for details. Note that usually there is also some nitrogen
present on the fuel side. Ideally, nitrogen does not react, hence ṅout

N2
= ṅin

N2
.

The Nernst voltage of a single cell U0 is evaluated by employing [27, p. 269]:

U0 = 1.2586 − 0.000252T + RT
2F

ln
pH2 p0.5

o2

pH2O
, (3.5)

where R is the universal gas constant, pH2 , pO2 and pH2O are the hydrogen, oxygen and water-
vapour partial pressures inside the stack. The partial pressures of the gases inside the stack
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are approximated from the input/output partial pressures, which can be easily evaluated
from (3.3)

pj = 1
2

(
ṅin

j

ṅin
tot

+
ṅout

j

ṅout
tot

)
,

where j ∈ {H2, H2O} and ṅin/out
tot are the total anode inlet/outlet molar flows. On the cathode side

the oxygen partial pressure pO2 is calculated in the same manner.
The temperature variation of the lumped Ohmic ASR of a single cell can be expressed by the

second-order Steinhart–Hart equation [27,28]:

r = γ exp
[

30 000
R

(
1
T

− 1
T0

)]
, (3.6)

where γ is the ohmic ASR at the reference temperature T0.
The ASR model (3.6) is fairly simple. It only considers the ASR dependence on the temperature,

and it is only used to model the SOFC voltage dependence on the current (or Ohmic losses),
in a linear fashion in (3.7), whereas the total cell losses include the diffusion and activation
polarization losses. However, as discussed in [29], the full model of the ASR is parametrized by
many different material properties, e.g. porosity and tortuosity. Moreover, the ASR also depends
on the operating conditions, such as different gas mixtures, which are usually kept relatively
steady during the SOFC’s operating time.

Therefore, the main assumption here is that the temperature has the dominant impact on
the ASR when considering the nominal operating conditions.

The stack voltage U can be expressed as

U = N0

(
U0 − ASR · I

A

)
, (3.7)

where A is the active area of a single cell.
The lumped dynamic model of the stack reads as follows:

Ks
dT
dt

= Ėin(Tin) − Ėout(T)

− IN0

(
1.2586 − 0.000252T + RT

2F
ln

pH2 p0.5
o2

pH2O
− γ exp

[
30 000

R

(
1
T

− 1
T0

)]
· I

A

)
. (3.8)

It should be noted that in order to keep the model (3.8) straightforward, many simplifications
had to be made. Hence, only the dynamics of the thermal processes was taken into account, while
the rest was assumed to be static. The distributed nature of the process is also ignored, hence the
lumped dynamic model of the SOFC stack.

(c) Degradation dynamics and coupling functions
In [30,31], a range of durability experiments were performed on anode-supported SOFCs at
different temperatures, current densities and several values of fuel utilization (between 75%
and 85%). The test matrix enclosed the temperature points 950, 850 and 750◦C and current
densities were chosen between 0.2 and 1.9 A cm−2. Degradation rates were shown to be mainly
dependent on the cell polarization. Additional analyses revealed that cathode degradation was
the dominant contribution to the degradation at higher current densities and lower temperatures.
The anode was found to contribute more to the degradation at higher temperatures. Generally, the
degradation rates obtained were lower at higher operating temperatures, even at higher current
densities.
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From the results of the experiments published in [32] an empirical model relating the
degradation rate rd, on the one hand, and fuel utilization FU, temperature T and current density
j, on the other, was obtained:

rd(FU, T, j) = 0.59FU + 0.74
1 + e((T−1087)/(22.92))

(
e2.64j − 1

)
. (3.9)

The degradation rate rd describes the incremental increase in the Ohmic losses of the stack.
Clearly, the values of the parameters in (3.9) only hold for the specific single cell used therein.

Here, we suppose that the model can be scaled up for the stack of cells, which means the
same model structure could be used. The model parameters will be updated from data by the
optimization procedure.

Given the specifics of the experimental set-up used in this study, we do not operate with the
current density j but the current I itself. After taking into account that the fuel utilization is more-
or-less constant during the experiment, we propose the following coupling function, defined by
the vector of parameters θ = (a b c)T

rd(T, I, θ ) = a
1 + e((T−T0)/b)

(
ecI − 1

)
, (3.10)

where T0 is a known value.
The degradation model (3.10) can be coupled with the stack model (3.8) to form a coupled

dynamic nonlinear state space model

dT
dt

= f (•, γ , T) (3.11)

and
dγ

dt
= rd(•, γ , T), (3.12)

where • is used to omit an explicit listing of all the influential variables and only focus on the
coupling dependencies.

The coupled differential equations (3.11) and (3.12) describe the system’s nominal dynamics
and the hidden dynamics of the degradation, respectively.

(d) Problem statement and solution options
Let us now introduce the system state vector x = (T γ )T, the vector of inputs u = (ṅair ṅCH4 U) and
the measurable output y = T. After the discretization

dT
dt

∣∣∣∣
t=tk

≈ T(tk+1) − T(tk)
�t

and
dγ

dt

∣∣∣∣
t=tk

≈ γ (tk+1) − γ (tk)
�t

,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭ (3.13)

where �t stands for the sampling rate, we obtain the system of difference equations, which can
be represented in the most general form

xk+1 = g(xk, uk, θ ) + χk (3.14)

and

yk = h(xk, uk, θ ) + ζ k, (3.15)

where χk and ζ k are the noise terms that encompass random disturbances in the process, along
with the modelling error. Here, g(xk, uk) are nonlinear state-transition equations of the model,
and h(xk, uk) represents the nonlinear output equations. The terms χk and ζ k are the zero mean
Gaussian noise with the corresponding covariance matrices. The time step is denoted with k.
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(i) Solution option 1: combined state and parameter estimation

The essence of the idea is to take the measurable input and output realizations D =
{y1, . . . , yT, u1 · · · , uT} to evaluate the unknown vector of the parameters θ along with the hidden
states x1, . . . , xT. This way is computationally rather cumbersome. Indeed, no matter whether the
maximum likelihood or the Bayesian approach is used, the evaluation of the inevitable likelihood
is non-trivial

p(y1, . . . , yT, x1 . . . , xT|θ , x0) = p(x0|θ )
T−1∏
k=0

p(xk+1|xk, θ )
T∏

k=1

p(yk|xk, θ ). (3.16)

Since the model is nonlinear, an analytical evolution of the moments of the pdfs (as is the
case in linear models) is not possible. Instead, the conditional densities could be approximated
numerically by drawing samples from the corresponding distributions. To draw samples from the
posterior, we need only to specify a tractable calculation of the joint probability p(xk+1|xk, θ ) and
p(yk|xk, θ ). The best-known Markov chain Monte Carlo (MCMC) algorithms include, for instance,
the Metropolis–Haistings algorithm, the Gibbs sampler, slice sampling and the Hamilton Monte
Carlo [33].

Unfortunately, the Monte Carlo-based methods suffer from the curse of dimensionality. For
multi-dimensional models, the number of samples required to properly describe the shape of
the distribution function increases almost exponentially with the dimension of the model.

(ii) Solution option 2: parameter estimation

First, we will show that a simplification of the dynamical model (3.11) could reduce the
complexity of the original problem, but result in high-quality solutions. In that respect, note that
the degradation dynamics (3.12) is significantly slower than the process dynamics (3.11). Indeed,
the latter runs on an hourly scale, while the former usually takes months, which is several orders
of magnitude slower. Consequently, on the local time scale, the state of the degradation could
be considered constant. Based on that observation, the nominal dynamic model (3.8) could be
rewritten as follows:

Ks
dT
dt

=Q1(t) − γQ2(t), (3.17)

where Q1(t) and Q2(t) are expressions that can be computed from the available signals. By using
the Savitzky–Golay filter, the derivative dT/dt is estimated numerically. Hence, the evaluation of
γ on the local scale can be formulated as the least-squares problem taken on the regression

− Q2(t)γ = Ks
dT̂
dt

− Q1(t), (3.18)

from which γ can be evaluated based on samples from the local time window. Hence, we obtain
the evaluated values of the realization of the stochastic process associated with the degradation
through γ . With numerical differentiation on a slow time scale, we obtain the nonlinear regression
problem (3.18) fully defined.

4. Variational Bayesian approach to the parameter estimation of the nonlinear
coupling functions

(a) The idea
Assume D are measured data, i.e. the realization of a set of measurable random variables. In our
case, those are the estimated derivatives dγ /dt and θ is an unknown random vector (in our case
θ = (a b c)T). The Bayesian framework provides a way to elicit the full information from the data,
of course, at the expense of additional computational complexity.



9

royalsocietypublishing.org/journal/rsta
Phil.Trans.R.Soc.A377:20190086

................................................................

The distribution of unknown θ given the dataset D is evaluated by means of the Bayes rule

p(θ |D) = p(D|θ )p(θ)
p(D)

= p(D|θ )p(θ)∫
p(D|θ )p(θ )dθ

. (4.1)

The evaluation of the denominator can easily become intractable in higher-dimensional problems,
thereby rendering the computation of the exact posterior distribution practically impossible.
There are several approaches that could overcome these difficulties, the most commonly used
being MCMC and the variational Bayesian inference methods. Central to the both approaches is the
evaluation of the normalization factor p(D).

(b) Variational Bayesian methods
The main idea behind the variational methods is to find some approximation distribution1 q(θ ; λ)
as close as possible to the true posterior distribution

q(θ ; λ) ≈ p(θ |D). (4.2)

The aim is to find the setting of the parameters λ that make q as close as possible to the
posterior of interest. Obviously, the distribution q(θ ; λ) should be relatively easy and more
tractable for inference. To evaluate the dissimilarity between the two distributions q(θ ; λ) and
p(θ |D), Kullback–Leibler (KL) divergence is used [34]:

KL
(
q(θ ; λ)||p(θ |D)

)=
∫

q(θ ; λ) log
q(θ ; λ)
p(θ |D)

dθ

= −
∫

q(θ ; λ) log
p(θ |D)
q(θ ; λ)

dθ

= −
∫

q(θ ; λ) log
(

p(θ |D)
q(θ ; λ)

· p(D)
p(D)

)
dθ

= −
∫

q(θ ; λ) log
p(θ ,D)
q(θ ; λ)

dθ +
∫

q(θ ; λ) log p(D)dθ

= −
∫

q(θ ; λ) log
p(D|θ )p(θ )

q(θ )
dθ︸ ︷︷ ︸

L(λ)

+ log p(D)
∫

q(θ ; λ)dθ︸ ︷︷ ︸
1

(4.3)

= −L(λ) + log p(D), (4.4)

where L(λ) is referred to as evidence lower bound (ELBO). From (4.4), it follows that

L(λ) = log p(D) − KL
(
q(θ ; λ)||p(θ |D)

)
. (4.5)

Since the KL divergence is always ≥0 it turns out that L ≤ log p(D), i.e. L is the lower bound of
the pdf of the observations. Note that log p(D) does not depend on the variational parameters λ,
we can minimize the KL divergence (4.4) by minimizing the first expression ELBO on the right-
hand side. Note also that in the expression for ELBO p(θ ) is known prior and p(D|θ ) is the system
model, which can be easily computed by sampling from the distribution of θ and the Monte Carlo
simulation.

(c) The stochastic gradient optimization
Now we have a variational family of approximations q(θ ; λ) parametrized by λ. ELBO is
minimized using a stochastic gradient descent with adaptive and decreasing step sizes. Since the
criterion is defined on a sample of random variables, it is itself a random variable. Consequently,

1The notation q(θ ; λ) suggests that the pdf of the vector of random variables θ is parametrized by the vector of
hyperparameters λ. The term ‘hyperparameter’ is used in Bayesian statistics for a parameter of a prior distribution. Hence,
the distinction from a parameter of the underlying system (or system model) that is being studied is guaranteed.
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instead of exact gradients (as in a classic gradient descent) we use gradients approximated by
Monte Carlo methods. The approach is referred to as ADAM [35] (the acronym stands for adaptive
moment estimation).

The algorithm adaptively finds the individual learning rates for each component λ(s), s =
1, . . . , K of the vector λ by estimating the first moment m(s)

t and the second moment v
(s)
t of

the gradient. To do so, ADAM uses exponentially moving averages, computed on the gradient
evaluated on a current mini-batch:2

mt = β1mt−1 + (1 − β1)gt

and vt = β2vt−1 + (1 − β2)g2
t

⎫⎬
⎭ (4.6)

with t the number of iterations, mt and vt the estimated first and second moments and βi, i ∈
1, 2 being the parameters of the moving average. For the parameters βi, ADAM uses the default
values of 0.9 and 0.999, respectively. The initialization with m0 = 0 and v0 = 0 turns not to have an
important impact on the convergence. The vector of gradients evaluated on the data window Dw

reads as follows:
g = (g(1), . . . , g(K))T = ∇λLDw (λ). (4.7)

Since m and v are estimates of the first and second moments, it is desirable that they have the
following property:

E{mt} = E(gt)

and E{vt} = E(g2
t ).

⎫⎬
⎭ (4.8)

These are the conditions for unbiased estimates. Note that the recursion (4.6) in the case of the
first moment and at the iteration t looks as follows:

mt = (1 − β1)
t∑

i=1

βt−i
1 gi. (4.9)

However, there is some bias present in that estimate. If we take the expected values on both sides
we obtain

Eλ[mt] = (1 − β1)
t∑

i=1

βt−i
1 Eλ[gi]

≈ (1 − β1)

( t∑
i=1

βt−i
1

)
Eλ[gt]

= (1 − βt
1)Eλ[gt]. (4.10)

ADAM evaluates the estimates of the moments of the gradients with a simple bias correction

m̂t = mt

1 − βt
1

, (4.11)

and in a similar manner
v̂t = vt

1 − βt
2

. (4.12)

The algorithm adjusts the optimization step individually for each parameter

λ
(s)
t = λ

(s)
t−1 − η

m̂(s)
t√

v̂
(s)
t + η

, (4.13)

with η = 0.001 [35].
ADAM is entirely heuristic and has proved efficient in a broad range of applications. Its

implementation in Python is very simple and little computational time is needed to obtain the

2For the sake of simplicity the index (s) is omitted.
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optimal solution. However, as is the case with heuristic optimization algorithms, the convergence
might not be guaranteed in all cases. In the original paper [35], it is proven that ADAM converges
to the global minimum in the convex settings. In spite of the fact that some errors in the original
convergence analysis have been spotted afterwards by Bock et al. [36], they managed to prove that
the algorithm converges.

5. Experimental evaluation on the solid-oxide fuel cell system
The dataset D, thoroughly discussed in [24], consists of over 100 signals acquired through
the installed instrumentation. For instance, the gas composition is measured at five different
locations, at the stack inlets and outlets, in the BoP before and after the fuel reforming, etc. The
temperatures are measured at the mixture point, i.e. at the recycling point in the BoP, as well as at
the entry points to the system as a whole and the entry points to the stack.

(a) The experiment
During the experiment, the temperature varied around T0 = 1010 K, which is the constant that
appears in model (3.10). The profiles of the temperature, current and voltage shown in figure 3
clearly indicate that the system has been operating in non-stationary conditions all the time. This
profile has two distinctive features: rapid changes (on the scale of several hours) and a slow,
positive trend throughout the experiment.

The system dynamics is described by the dynamic model (3.8). Variations in the outlet-gas
temperature are due to the variations of several input variables, like load current, gas composition
at the system inlets, etc. Based on local regression (3.18), the evolution of the degradation rate
dγ /dt is evaluated and shown in figure 4. Note that the mean of the stochastic evolution of
dγ /dt is slightly positive, meaning the degradation is progressing on a broader time scale. Local
variations are due to imperfections in the nominal model (3.8).

(b) Variational Bayesian inference of the nonlinear coupling function
Let us now analyse the performance of the variational Bayesian inference of the nonlinear
coupling function.

When selecting the approximating distribution q for the posterior, we decided to treat the
parameters a, b, c as statistically independent normal variables. Hence

q(θ ; λ) =N (μa, σ 2
a ) · N (μb, σ 2

b ) · N (μc, σ 2
c ) (5.1)

with the vector of hyperparameters λ = ({μi σ 2
i , i = 1, 2, 3}T) The proposed method is numerically

implemented in Python code by using the library pyro.ai [37].
Figure 5 shows the convergence of a stochastic optimization run at a particular time point

t = 412 h. Relatively rapid convergence towards the statistical means can be observed. The
fluctuation in the parameter μb seems to indicate the relatively low sensitivity of the criterion
function L(λ) with respect to that particular parameter.

Figure 6 shows the evolution of ELBO during the optimization run, indicating extremely rapid
convergence. On a typical PC, it took about 15 s of computational time.

Let us now see the evolution of the hyperparameters λ over time (figure 7). The first two
hyperparameters μa and μb do not change significantly over time, hence the same holds true for a
and b. However, that is not the case with the parameter c, which increases with time. This could be
interpreted so that with the progressing degradation the impact of the current on the degradation
rate increases. If we want to slow down the degradation, decreasing the current could be an
option.
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Figure 3. Measured stack voltage, current and the outlet stack temperature during the experiment. (Online version in colour.)

250 500 750 1000 1250 1500 1750
time (h)

–4

–2

0

2

dg
/d

t (
×

10
−

3 )

dg
dt
mean value

Figure 4. Estimated rate of change of ASR in the SOFC stack [7]. (Online version in colour.)

(c) Comparison of the predictive performance of two degradation models
In order to analyse the benefit of nonlinear coupling functions, the results are compared with
those obtained with a simple local linear model for the dynamics of γ proposed by [7]. For the
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sake of clarity, let us denote the two models by M1 and M2 as follows:

M1: γk+1 = γk + �t
a

1 + e((Tk−T0)/b)

(
ecIk − 1

)
+ d (5.2)

and

M2: γk+1 = γk + d, (5.3)

where the stochastic term d models the trend in γ . The second model is obviously simpler and is
updated by local linear regression.
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The predictive pdf p(γt+r|Dt) is evaluated with a Monte Carlo simulation, as described in [7].
Figure 8 summarizes an important result of the paper. Figure 8a shows the predicted evaluation
of γ in the case that the degradation dynamics is modelled with M1. Figure 8b shows the results
with a simpler black-box structure M2. By taking into account that the parameters of both models
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were estimated on the same dataset, the benefit of employing a more complex structure M1 is
apparent. Namely, the model that employs prior knowledge through a coupling function (5.2)
predicts the evolution of the γ with a greater precision than the one employing (5.3). Therefore,
using the model (5.2) could improve the results obtained in [7].

A remark

Finally, it is important to stress that the successful application of the prior nonlinear coupling
function depends on whether the degradation mechanism is correctly diagnosed. If the diagnosis
turns out to be wrong, it is likely that the prediction will be poor. Therefore, we have to
discuss that aspect, which is of relevance when the application comes into play. It is known that
completely different detrimental phenomena produce similar symptoms. Hence, the first question
is whether we are able to unambiguously reveal which mechanism is exactly under way. That is
not an easy task because of

— limited capabilities of the existing diagnostic methods along with the limited standard
instrumentation accompanying the deployed systems,

— there are only a few degradation mechanisms for which phenomenological coupling
functions are available,

— often several degradation mechanisms take place at the same time, rather than only a
single one, which additionally complicates the diagnosis.

Instead of using one coupling function it might be worth thinking of using an ensemble of
candidate models and favour those that have better performance.

6. Conclusion
In this paper, a nonlinear coupling function is used to describe the link between the SOFC’s
operational dynamics and the slowly evolving degradation process. The contribution of the paper
is threefold. Firstly, it seems to be the first attempt to handle the estimation of a nonlinear
coupling function with the variational Bayesian approximation. It is demonstrated that the
approach exhibits a remarkable convergence performance at a relatively low computational load.
Computations required by the MCMC approaches would require at least an order of magnitude
more computational load for a questionable extra benefit. The positive experience seems
stimulating enough to extend the approach to other application domains with a comparable
problem setup. An example is the prognosis of the RUL of rotational drives. We showed in
our earlier work, cf. [38], that progressive damage in the contact surfaces can be modelled as
a nonlinear stochastic process.

The second contribution is related to the demonstration that the use of more prior knowledge,
even at the expense of a more complex model structure, can bring benefits in terms of a greater
accuracy for the predicted degradation trends.

The third contribution concerns the ability of the proposed algorithm to operate reliably in
non-stationary operating conditions, which is of great importance for the continuous condition
monitoring of SOFCs in realistic applications. The results based on the experimental data clearly
support the above assertions.

Our follow-up will concentrate on using several candidate models with a different structure
at the same time. Hence, it is expected that the prognostics will appear to be more robust to the
inaccurate diagnosis of the true degradation mechanism.
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