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An overview is given on two representative methods
of dynamical reduction known as centre-manifold
reduction and phase reduction. These theories are
presented in a somewhat more unified fashion
than the theories in the past. The target systems
of reduction are coupled limit-cycle oscillators.
Particular emphasis is placed on the remarkable
structural similarity existing between these theories.
While the two basic principles, i.e. (i) reduction of
dynamical degrees of freedom and (ii) transformation
of reduced evolution equation to a canonical form, are
shared commonly by reduction methods in general,
it is shown how these principles are incorporated
into the above two reduction theories in a coherent
manner. Regarding the phase reduction, a new
formulation of perturbative expansion is presented
for discrete populations of oscillators. The style of
description is intended to be so informal that one may
digest, without being bothered with technicalities,
what has been done after all under the word reduction.

This article is part of the theme issue ‘Coupling
functions: dynamical interaction mechanisms in the
physical, biological and social sciences’.

1. Introduction
The dynamics of nonlinear dissipative systems are
most commonly modelled mathematically with coupled
ordinary and partial differential equations [1]. The
specific forms of evolution equations are often too
complex to handle or may even be too poorly known.
Thus, the effort of reducing them to a much simpler
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form by cutting off unessential parts would be extremely important to the understanding of
nonlinear dynamical systems. We will call such work of purification dynamical reduction or simply
reduction.

It seems widely accepted today that the concept of reduction has worked as a strong
motivating force for the advancement of nonlinear science over the past half-century. As a
remarkable fact, reduction provides, besides the explanation of how this or that dynamical
behaviour observed occurs, a powerful tool for predicting utterly new types of behaviour whose
existence in nature has never been imagined before. Since the result of reduction often takes a
universal form, the predicted dynamics is also expected to appear universally. The universal form
of the reduced evolution equation also implies that seemingly unrelated phenomena occurring
in systems of completely different physical constitution may have something in common at a
deeper mathematical level. Accumulation of such findings, each of which may be a small one,
may ultimately lead to our refreshed view of nature.

Reduction is generally practicable when the dynamics of largely separated time scales coexist
in the system of concern, that is, when dynamical variables of fast motion and those of much
slower motion are coupled. Traditionally, two basic ideas have been known for the reduction of
the dynamics of this type of system. One is the idea of the so-called adiabatic elimination and the
other is that of averaging.

In adiabatic elimination, rapidly relaxing variables are eliminated by considering that they
adiabatically follow the motion of slow variables. Consequently, the system’s dynamics comes
to be confined practically to a lower-dimensional subspace spanned only by a small number
of slow variables. The broad applicability of this theoretical tool was emphasized by Hermann
Haken under the term coined by him, slaving principle, i.e. the principle that slow modes slave
fast modes [2,3].

In contrast to adiabatic elimination, the method of averaging is irrelevant to the reduction
of dynamical degrees of freedom. This method can be applied typically when rapid oscillatory
motion appears parametrically in the evolution equation governing the slow variables. Since
such fast parametric modulation should have minor effects on the slow dynamics, it may safely
be removed by time-averaging. Averaging represents a crucial tool in the asymptotic theory
of weakly nonlinear oscillations developed extensively by Russian scientists such as Krylov,
Bogoliubov and Mitropolsky [4]. We shall see in later sections that averaging is equivalent to
slightly changing the definition of slow variables.

In this article, confining our concern to limit-cycle oscillator systems [5–10], we show how the
above-described two traditional ideas of reduction can be incorporated more systematically into
the form of a single asymptotic theory. Note that, in either adiabatic elimination or averaging,
reduction is achieved most satisfactorily when the system involves special degrees of freedom
whose time evolution is extremely slow or, to put it differently, their stability is nearly neutral.
In the systematic reduction theory of our concern, which is a kind of a perturbation theory, the
unperturbed part is chosen so as to include modes with perfect neutrality. The actual system is
supposed to be a perturbed system in which the weak perturbation would cause a slow evolution
of the otherwise neutral modes.

In order that such a reduction theory may enjoy a universal applicability, these neutral modes
should also be of a universal nature. In our macroscopic and mesoscopic world, we know at least
two universal situations where neutrally stable modes emerge. The first is met at the critical point
of bifurcation where the critical eigenmodes are neutral in stability. The second is the situation
where a certain continuous symmetry inherent in the system has been broken, producing a
neutrally stable mode.1 The second type of neutral mode may be called phase in a broad sense. The
representative reduction theories making full use of these neutral modes are known, respectively,
as centre-manifold reduction and phase reduction [5–9].

1As the third possibility, conserved quantities play the role of neutral modes, because these quantities, once changed, never
recover their original value. The Enskog–Chapman theory [11] of deriving hydrodynamic equations from the Boltzmann gas
kinetic equation gives an important example of reduction theory that makes full use of the neutrality of conserved quantities.
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Fortunately, each of these theories is applicable to limit-cycle oscillator systems because in
many cases the oscillation is a result of the Hopf bifurcation and the oscillation itself breaks
the translational symmetry of time. The science of coupled oscillators is becoming a rapidly
expanding field today. Since the reduction of coupled oscillator models provides a powerful
tool for many practical purposes, reexamining its theoretical basis would be of considerable
value.

Contrary to our intuition, the reduction theory for a single oscillator system and that for multi-
oscillator systems can be formulated quite similarly [7]. In the centre-manifold reduction, the
linearized system about the fixed point right at the Hopf bifurcation is chosen as the unperturbed
system. The perturbation includes nonlinearity and the deviation from the bifurcation point, both
of which are assumed to be sufficiently small. When we proceed to systems of weakly coupled
oscillators, the coupling force from the other oscillators will simply be regarded as a sort of
perturbation acting on the oscillator in question.

In the phase reduction, the unperturbed system is given by a single limit-cycle oscillator
running along or near the closed orbit. There the phase of the oscillatory motion represents a
neutrally stable degree of freedom. Similarly to the oscillator near the Hopf bifurcation, weak
coupling force from the other oscillators and weak external drive, if necessary, are treated as
perturbation.

The fact that the unperturbed system contains a neutral mode implies that its solution as
t → ∞ includes at least one arbitrary parameter. For instance, the solution of the linearized
system at the Hopf bifurcation as t → ∞ is given by a harmonic oscillation ż = iωz, where the
complex amplitude z may be multiplied by an arbitrary complex number. For a limit-cycle motion
along the closed orbit, the phase φ changes as φ̇ =ω or φ =ωt + ψ , where the initial phase ψ is
arbitrary.

The most basic idea of reduction is to reinterpret such an arbitrary constant as a dynamical
variable, and absorb the effect of perturbation into this variable thereby causing its slow
evolution. At the same time, the unperturbed form of the solution must inevitably be changed,
but only a little. This small change modifies the dynamics of the slow variable, which in turn
produces an even smaller correction of the solution form. Such processes of mutual correction
between the solution form and the dynamics of the slow variables will repeat indefinitely. Still,
this is not our goal of reduction.

In the evolution equation of the slow variable obtained at each stage of approximation, fast
parametric oscillations will generally appear. Such a parametric modulation, which is much
faster than the slow dynamics of our concern, could be removed by time-averaging. The same
simplification of the evolution equation could be achieved more systematically through a variable
transformation called near-identity transformation.

Our goal is to put the whole of the above-stated ideas into a mathematical form. We shall see
how this can be achieved in each of the two representative theories of reduction.

Sections 2 and 3 will be devoted, respectively, to centre-manifold reduction and phase
reduction. A few comments supplementary to these sections together with a general remark on
the significance of reduction in nonlinear science will be given in the final section. In the appendix,
some recent developments in the phase-reduction theory, such as the phase–amplitude reduction,
Koopman-operator approach, and extension to non-conventional dynamical systems, are briefly
described. Throughout the present paper, we only present the main line of the theory, ignoring all
technical details.

2. Centre-manifold reduction
We begin with the centre-manifold reduction for a single oscillator, and then proceed to multi-
oscillator systems. It will be seen how the two elements of reduction, namely, the reduction of
dynamical degrees of freedom and transformation of the evolution equation to a canonical form,
are incorporated into a systematic perturbation theory.
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(a) Reduction of a single free oscillator
The situation of our concern is the neighbourhood of the Hopf bifurcation of an n-dimensional
dynamical system Ẋ = F(X) with fixed point X = 0. We separate F into an unperturbed part and
perturbation, where the former is chosen to be the linear part right at the bifurcation, and the
latter includes the remainder, that is, the system’s nonlinearity and the effect of small deviation
from the bifurcation point. Thus, the system to be reduced is written as

Ẋ = L̂0X + εL̂1X + N(X). (2.1)

For simplicity, the small deviation from the bifurcation point, represented by the second term
on the right-hand side, is given only by the linear term with small bifurcation parameter ε; the
nonlinear part of F(X) is abbreviated as N(X). These two terms constitute the perturbation acting
on the linear system at the criticality. The Jacobian L̂0 has a pair of pure imaginary eigenvalues
±iω, and the corresponding eigenvectors are denoted as u0 and ū0, respectively, where the bar
denotes complex conjugate; the real part of all the other eigenvalues are assumed negative. Thus,
the unperturbed system Ẋ = L̂0X is neutrally stable. Its solution as t → ∞, which is called the
neutral solution, is given by

X0 = A eiθu0 + Ā e−iθ ū0, (2.2)

where θ =ωt and A is an arbitrary complex amplitude. Note that eiθu0 and its complex conjugate
are the eigenfunctions of the operator L̂0 − ω(d/dθ) with zero eigenvalue. This fact will be used
later.

As was stated in the introductory section, the basic idea of reduction is to reinterpret the
arbitrary parameter A appearing in the time-asymptotic solution as a dynamical variable and try
to absorb the effect of perturbation into the slow evolution of A. At the same time, the change of
the solution form from (2.2), however small it may be, is inevitable. Thus, a small correction term
must be added to the right-hand side of (2.2) to express the true solution. The crucial assumption
here is that this correction term is given by a functional of the neutral solution. As a result, the
true solution takes the form

X = A eiθu0 + Ā e−iθ ū0 + σ (A, Ā, θ ). (2.3)

By assumption, the dependence of the small correction term σ on θ always appears as the
combination A eiθ or Ā e−iθ . Since this time-asymptotic solution is parameterized with the two
independent variables, i.e. the real and imaginary parts of A, the dynamics takes place on a
2D subspace. This subspace is the result of a slight deformation of the 2D critical eigenspace,
and is called mathematically the centre manifold [5]. Figure 1 shows the neutral solution, centre
manifold, and representation of the true solution schematically.

A few more remarks should be made on the above form of the true solution. Suppose first that
the dynamical model to be reduced is already two-dimensional as exemplified by the FitzHugh–
Nagumo oscillator and the Brusselator [6,7]. In such a case, the critical eigenspace itself spans
the full phase space. It may then seem that the correction term σ is unnecessary, and that all the
effects of perturbation can completely be absorbed into the slow evolution of A and Ā. This is true,
but the existing theories of centre-manifold reduction still assume the solution form equivalent
to (2.3) without inquiring into the dimension of the dynamical system model. There is actually
no contradiction here, because the role played by the term σ is twofold. It certainly represents a
slight deformation of the invariant space when the dimension of the dynamical system is higher
than two. But what should never be overlooked is that σ also changes the definition of A slightly
like A → A + s(A, Ā, θ ); when we have written down (2.3) with non-vanishing σ , the meaning
of A has been changed a little. This transformation of A gives an example of the near-identity
transformation. In short, for higher dimensional systems, σ plays double roles, while for two-
dimensional systems it plays a single role.

While we say that variable transformation is necessary in order that the resulting evolution
equation for A may take a canonical form, what is actually meant by canonical form? In the
present reduction theory, it means that fast parametric oscillation does not appear in the evolution



5

royalsocietypublishing.org/journal/rsta
Phil.Trans.R.Soc.A377:20190041

................................................................

X

X

(a) (b)

s (A, A
–
,q)

s(A, A
–
,q)

X0 = Aeiq u0 + A
–
e–iqu–0

X0

Figure 1. Schematic figures of a neutral solution and a centre manifold. (a) The neutral solution X0 in the two-dimensional
plane spanned by u0 and ū0, characterized by the complex amplitude A and phase θ =ωt. The centre manifold is tangent
to this plane at X= 0. (b) Representation of the true solution X on the centre manifold by using the neutral solution X0 and a
small correctionσ (A, Ā, θ ). (Online version in colour.)

equation for A, that is, θ -dependence is excluded from that equation. Since θ always appears as
the combination A eiθ or its complex conjugate, Ȧ is required to assume the form

Ȧ = G(A, Ā) = H(|A|2)A (2.4)

as long as G can be expanded in powers of A and Ā. The unknown quantities G and σ are small
because they are non-vanishing only because the perturbation is non-vanishing.

Another point to be noticed about the solution form (2.3) is that the separation between
the neutral part and the correction term σ is not unique without imposing some additional
condition. To make this separation unique, we should remember that eiθu0 and e−iθ ū0 are the zero
eigenfunctions of L̂0 − ω(d/dθ). Thus, as the most natural choice, we exclude these components
from σ ; still σ may include the vector components u0 and ū0, but only in combination with higher
harmonics eimθ (m �= ±1). This method of separation is crucial to the formulation of the present
reduction theory, because, as we see below, it enables us to achieve the two tasks, i.e. reduction of
the degrees of freedom and transformation of the reduced equation into a canonical form, at one
stroke rather than stepwise.

We are now left with the two unknown quantities G and σ , and try to find them perturbatively
by inserting (2.3) into (2.1) and using (2.4). Our direct concern is the functional form of G which
determines the reduced evolution equation; σ is necessary only for finding small, but not always
negligible, corrections to G beyond the lowest-order approximation.

When we refer to a perturbation theory, some small parameter usually appears explicitly in
the theory. Although a small parameter ε appears in (2.1) measuring the small distance from the
bifurcation point, this smallness causes small-amplitude oscillations, so that the amplitude X or
A should also be treated as a small quantity. This is, so to speak, an implicit small parameter. How
the smallness of A is related to ε is not known in advance. In some existing reduction theories,
however, the smallness ε1/2 is assigned to A a priori, but such an assignment should be justified
only a posteriori. Therefore, we have to proceed for the moment only with the assumption that
the smallness of ε and that of A are independent. Similarly, the smallness of G and σ should also
be regarded as implicit small quantities whose smallness is independent of ε at this stage of the
theory.

We now substitute (2.3) into (2.1). Since the time derivative is only through A, Ā and θ , d/dt is
replaced with ω(d/dθ) + G(d/dA) + Ḡ(d/dĀ). The equation obtained in this way can be expressed
in the concise form

G eiθu0 + Ḡ e−iθ ū0 −
(

L̂0 − ω
d

dθ

)
σ = B(A, Ā, θ ). (2.5)
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In the above equation, B is dominantly composed of the perturbation terms εL̂1X + N(X) with
X replaced with (2.3), plus, less importantly, the time-derivatives of σ through A and Ā, e.g. the
term −G(∂σ/∂A) and its complex conjugate, are also included.

We now pretend that B is a known quantity. Then, (2.5) formally represents a linear equation
for the unknowns G, Ḡ and σ with the inhomogeneous term B. Noting that eiθu0 and its
complex conjugate appearing on the left-hand side are the zero eigenfunctions of L̂0 − ω(d/dθ),
while by assumption σ is free from these components, we can find the unique solution to this
linear equation. This is achieved by decomposing σ into various eigenfunctions eimθ (ul, ūl) of
L̂0 − ω(d/dθ) with non-zero eigenvalue, where m is an integer and ul denotes the lth eigenvector
of L̂0. The equation for the zero eigenfunction components determines G and Ḡ. The result is
given by

G = 1
2π

∫ 2π

0
e−iθu∗

0B(A, Ā, θ ) dθ , (2.6)

where u∗
0 is the left eigenvector of L̂0 with eigenvalue iω, and hence, e−iθu∗

0 is the zero
eigenfunction of the adjoint operator of L̂0 − ω(d/dθ). We have assumed that the left and right
eigenvectors of L̂0 are biorthonormalized as u∗

l um = δl,m.
Up to this point, we have pretended that B is a known quantity. Actually, however, B includes

the unknowns G and σ . Still the problem can be solved iteratively. The starting point is to neglect
G and σ appearing in B as relatively small. Then, (2.5) becomes a truly linear inhomogeneous
equation from which G and σ are determined. These solutions are then inserted into B. By using
this improved B, improved G and σ are obtained. Such processes can be repeated indefinitely, by
which G and hence the reduced evolution equation is derived. It takes the form of a power series
expansion in A like

Ȧ = α0A + α1|A|2A + α2|A|4A + · · · , (2.7)

where α0 = O(ε) and αl = O(1) (l = 1, 2, . . .) are complex coefficients.
Although all calculational details are omitted here, it should be pointed out that there is no

precise correspondence between the iteration step and the resulting power of A. For instance,
when N(X) includes quadratic and cubic nonlinearity, the contribution to the cubic term |A|2A in
the Ȧ equation comes not only from the lowest-order B but also from the corrected B resulting
from the first iteration. Thus, non-vanishing σ is responsible for the correct expression of the cubic
nonlinearity in the Ȧ equation.

If we drop in (2.7) all the nonlinear terms higher than the cubic term, the so-called Stuart–
Landau equation is obtained. We find that the solution of this equation takes the scaling form
A(t) = ε1/2Ã(ε2t), implying that the first three terms on the right-hand side of (2.7) have the
same order of magnitude. Admittedly, the condition �α1 < 0 must be satisfied so that |A| may
not escape to infinity. Under this condition or, in other words, if the Hopf bifurcation is of a
supercritical type, then the contribution from the terms higher than the cubic turns out negligibly
small. Thus, unlike usual perturbation theories, the meaningful truncation of the perturbation
expansion does not result automatically, but some arguments of physical flavour are required.

(b) Reduction of a perturbed oscillator and coupled oscillators
The above arguments leading to the well-known one-oscillator model would not be of much
practical interest. Moreover, for such a one-oscillator reduction problem, far more precise
mathematical arguments could be developed [5]. By contrast, for large systems of coupled
oscillators, which are our main target of study, no mathematical theory equally rigorous to the
one-oscillator theory seems to exist. Therefore, it seems difficult to proceed further without relying
upon some unverifiable intuition.

We consider first diffusively coupled homogeneous fields of oscillators with sufficient spatial
extension described typically with reaction–diffusion equation Ẋ = F(X) + D̂∇2X, where X is
now a function of spatial coordinate r and time t, and D̂ is a matrix of diffusion coefficients.
Mathematically, how to do reduction for such systems may seem desperately difficult as
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compared with the reduction of a single oscillator. This difficulty could be imagined, e.g. from the
fact that we do not have a clear concept of infinite-dimensional centre manifold. Incidentally, the
naming ‘centre-manifold reduction’ commonly used may therefore be inappropriate for many-
oscillator problems. Instead, we sometimes used the term ‘reductive perturbation’ in the past,
although this term will not be used in this article.

From a physicist’s point of view, reduction of reaction–diffusion systems can be achieved only
by slightly modifying the reduction of single oscillator dynamics. Let us confine our arguments to
the reaction–diffusion equation. The key idea is that we still treat the problem as a one-oscillator
problem by regarding the diffusion coupling D̂∇2X as a weak perturbation acting on a local
oscillator. Here again, the assumed weakness of the diffusion coupling could only be justified
a posteriori by making use of what is expected physically, that the length scale of the spatial
variation of X will become increasingly longer as the Hopf bifurcation is approached.

We try to find the solution to the problem by generalizing the form of (2.3) and (2.4). The only
difference from those equations is that A and Ā are now functions of r and t and the unknown
quantities G and σ are assumed to depend also on various spatial derivatives of A and Ā. These
spatial derivatives may be looked upon as infinitely many parameters parameterizing the 2D
centre manifold of a local oscillator. How to solve the problem is almost the same as the above.
An equation similar to (2.5) is obtained, where the B term includes, most importantly, D̂∇2X, and
less important terms arising from the time derivatives of σ through A, Ā and their various spatial
derivatives. G and σ can be found iteratively again by starting with the B in the lowest-order
approximation which is free from the unknowns G and σ .

In the resulting Ȧ equation, the new terms ∇2A and various spatial derivatives of A higher than
the second order appear. To see how to find a meaningful truncation of this series expansion, we
have to resort to a scaling argument again. The assumed scaling form of A includes spatial scaling
as A(t, r) = ε1/2Ã(ε2t, ε1/2r). As a result, we find that the most dominant new term to be included in
the Ȧ equation is the diffusion term β∇2A. The diffusion coefficient β is a complex number given
by β = u∗

0D̂u0. In this way, the non-trivial lowest-order equation becomes the so-called complex
Ginzburg–Landau equation [7]

Ȧ = α0A + α1|A|2A + β∇2A, (2.8)

which in turn proves its consistency with the above-assumed scaling form.
Once the Stuart–Landau equation has been established as the non-trivial lowest-order

evolution equation for A, the complex Ginzburg–Landau equation results from a much easier
argument than the above: First, replace the diffusion coupling D̂∇2X with its approximation
D̂∇2X0. Then, take its inner product with u∗

0 e−iθ , i.e. the zero eigenfunction of the adjoint of
L̂0 − ω(d/dθ). Add the resulting term to the right-hand side of the Stuart–Landau equation,
producing the complex Ginzburg–Landau equation. Any other types of perturbation than the
diffusion coupling can be treated in a similar manner. As long as the lowest-order effect of the
perturbation is concerned, each perturbation can be treated independently. In this way, many
variants of the Stuart–Landau or complex Ginzburg–Landau equation could be obtained. The
practical significance of such equations is great. For instance, besides the diffusion coupling, weak
periodic forcing with nearly resonant frequency may be introduced; weak spatial heterogeneity
may also be taken into account; diffusion coupling could be replaced with weak non-local
coupling, etc [7,10,12–16].

3. Phase reduction
We now proceed to another representative theory of reduction called phase reduction, whose
broad applicability to large populations and networks of coupled oscillators is well-recognized
today [6–9].

In contrast to the centre-manifold reduction, phase reduction is applicable to general large-
amplitude oscillations far from the bifurcation point. Consider a well-developed limit-cycle
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oscillator described by a general n-dimensional dynamical system Ẋ = F(X). Its periodic motion
along the closed orbit itself is regarded as an unperturbed motion to start with. Admittedly, no
analytical solution of such a general oscillation is available. Historically, this fact might have
worked as an obstacle to hitting on the idea that this intractable mathematical object can still
be chosen as the starting point of a perturbation theory of reduction. This may partly explain the
reason why the appearance of the phase reduction theory is relatively new compared, e.g. with
the asymptotic theory of weakly nonlinear oscillations.

(a) Definition of phase
Let the time-periodic solution of Ẋ = F(X) with frequency ω be given by a 2π -periodic function
χ (φ), where the phase φ varies as φ =ωt + ψ . The initial phase ψ is an arbitrary constant. As
noted in the introductory section, when the system’s continuous symmetry has been broken, an
arbitrary parameter must appear in the mathematical expression of the symmetry-broken state.
This fact is true of the present case, because the limit-cycle oscillation breaks the translational
symmetry in time, resulting in an arbitrary parameter ψ .

In conformity to the basic idea of phase reduction, we reinterpret the arbitrary constant ψ as a
dynamical variable, and absorb the effect of perturbation into ψ(t) to cause its slow evolution.

Up to this point, the phase φ represents a one-dimensional coordinate defined along the closed
orbit C in such a way that the free motion of the oscillator on C satisfies φ̇ =ω. When the oscillator
is perturbed, however weak the perturbation may be, it will generally be kicked off the closed
orbit C. In order that the phase may still have a definite meaning, we have to extend its definition
outside C. Although we only need to define it in the vicinity of C, let us begin with its global
definition by defining a scalar field φ(X) for a general point X in the phase space [17].

The most natural and frequently used definition of φ(X) is such that the unperturbed motion of
the oscillator identically satisfies φ̇ =ω. The phase space will then be filled with an infinite family
of the (n − 1)-dimensional hypersurface of equal phase. An isophase hypersurface thus defined
is called the isochron [6,7,18,19]. The isochron of phase φ will be denoted by Iφ .

Since the time-evolution of the oscillator’s phase φ(X) is only through the evolution of X, our
unperturbed oscillator satisfies

φ̇ = gradXφ · F(X) =ω. (3.1)

The second equality of the above equation gives the identity to be satisfied by the scalar field φ(X).
Note that the vector gradXφ is vertical to Iφ along which the slope of φ is the steepest. Equation
(3.1) may, therefore, be understood as the natural requirement that the rate of change of φ must be
given by how many isochrons are crossed by the oscillator per unit time. Figure 2a schematically
shows a limit cycle and isochrons.

(b) Method I
Our goal is to reduce the perturbed equation Ẋ = F(X) + P(t) to an evolution equation of the phase
alone. The perturbation P(t) is assumed to be sufficiently weak. For most practical purposes, the
lowest-order perturbation theory would suffice. Then, a simple method of reduction, which we
call Method I, is applicable. We begin with a brief presentation of Method I, and then proceed to
a more systematic method including higher-order effects of perturbation, called Method II.

When the perturbation P is introduced, (3.1) is changed to

φ̇ = gradXφ · (F(X) + P(t)) =ω + gradXφ · P(t). (3.2)

Since our oscillator should still stay near the closed orbit C, the gradXφ vector may approximately
be evaluated at phase φ point on C or, equivalently, at the point of intersection between Iφ and
C. This intersection point is also represented by χ (φ). Thus, in what follows, when we say ‘point
χ (φ)’, it means the phase φ point on C.
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Figure 2. Schematic figures of a limit cycle and isophase hypersurfaces. (a) An isochron Iφ is an − 1-dimensional hypersurface,
which intersects with the limit cycle C at the point χ (φ). (b) An isophase Eφ used in Method II is identified with the tangent
space of Iφ at pointχ (φ). (Online version in colour.)

Let us use the symbol Z(φ) for this gradient vector evaluated at χ (φ) on C, and rewrite (3.2) as

φ̇ =ω + Z(φ) · P(t). (3.3)

The quantity Z(φ) is crucial to the study of oscillator dynamics, because it measures the sensitivity
of an oscillator to external stimuli, assumed not too strong, whatever the kind of the stimuli may
be.

We have now to specify the kind of perturbation P(t). For simplicity, let us first consider a
weakly coupled pair of identical oscillators labelled α and β. Then, P(t) represents the coupling
force V(Xα , Xβ ) acting on oscillator α. The mutual coupling is assumed symmetric only for saving
suffixes. The dynamical variables of each oscillator will be specified below by the suffixes α or β,
such as Xα , Xβ , φα and φβ . In terms of the coupling V(Xα , Xβ ), we have for oscillator α

φ̇α =ω + Z(φα) · V(Xα , Xβ ) (3.4)

and similarly for oscillator β. In what follows, we do not refer explicitly to oscillator β, because
the same argument as for oscillator α holds simply by interchanging the suffixes α and β.

Since we are only concerned with the lowest-order approximation in this subsection, V(Xα , Xβ )
may be replaced with V(χ (φα),χ (φβ )). This is a 2π -periodic function of either φα or φβ , and below
we abbreviate it as V(φα ,φβ ). In this approximation, the phase equation becomes

φ̇α =ω + Z(φα) · V(φα ,φβ ). (3.5)

The above equation combined with the similar equation for oscillator β completes the description
of the dynamics only in terms of phases.

However, this is not the end of the story. To see why, we rewrite (3.5) in terms of the slow
variables ψα,β = φα,β − ωt. We have

ψ̇α = Z(ωt + ψα) · V(ωt + ψα ,ωt + ψβ ). (3.6)

The above equation is not of a canonical form in the sense that fast oscillation appears
parametrically in the evolution equation describing slow dynamics. How to remove such fast
modulation from the evolution equation constitutes the second step of reduction. This could
be achieved by slightly changing the definition of φα,β . However, since we are only concerned
with the lowest approximation, the same results can be obtained more directly by time-averaging
[7–9,20]. Noting that, on the right-hand side of (3.6) the slow variables ψα,β approximately stay
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constant over one cycle of oscillation of frequency ω because V(Xα , Xβ ) is assumed weak, we
time-average (3.6) over this period under fixed ψα,β . The resulting equation takes the simple form

ψ̇α = Γ (ψα − ψβ ). (3.7)

The effective phase coupling Γ , which is a 2π -periodic function of the phase difference, is given by

Γ (ψα − ψβ ) = 1
2π

∫ 2π

0
Z(y + ψα) · V(y + ψα , y + ψβ ) dy. (3.8)

In terms of the original phases φα,β , (3.7) becomes

φ̇α =ω + Γ (φα − φβ ). (3.9)

Derivation of the corresponding phase equation for oscillator β is trivial. It is given by φ̇β =ω +
Γ (φβ − φα).

In the above derivation, the two oscillators were assumed identical. However, this condition
can be relaxed. Assuming that they are slightly different in nature, we put Fα,β (Xα,β ) = F(Xα,β ) +
δFα,β (Xα,β ), where δFα,β (Xα,β ) represents a small difference of the dynamical system from a
suitably defined ‘average’ system represented by F(X). How to choose this ‘average’ vector field
F(X) does not affect the final phase equation as long as δFα,β remain small. Let δFα(Xα) be included
in P(t) of oscillator α’s equation as an additional perturbation. Then, the new term

δωα(φα) ≡ Z(φα) · δFα(χ (φα)) (3.10)

must be added to the right-hand side of (3.5). Similarly to what we did for the coupling function,
δωα(φα) is time-averaged, resulting in a frequency change by a small constant from ω.

The theory developed above can easily be extended so that it may become applicable to
systems of large numbers of weakly coupled oscillators. The oscillators may be non-identical,
but only slightly. Asymmetry of mutual coupling is also allowed. The result is a popular model
of coupled phase oscillators given by [7]

φ̇α =ωα +
∑
β

Γαβ (φα − φβ ). (3.11)

See, for example, refs. [6–10,21–24] for the analysis of synchronization in systems of limit-cycle
oscillators using the phase model.

(c) Method II
In Method I, a number of approximations have been used in each step of reduction. These
approximations are allowed as long as we are concerned with the lowest-order theory. However,
by working with this sort of approach, we do not see how to generalize the theory to include
systematically higher-order effects. Thus, we now come back to the starting point and move to
a more systematic method which we call Method II. The theoretical framework of Method II
is considerably different from Method I. Instead, it bears a strong resemblance to the centre-
manifold reduction in §2.

The crucial difference from Method I is that we consider explicitly a small deviation ρ of the
state vector X from the closed orbit due to the perturbation P. Similarly to (2.3), we thus put

X(φ) = χ (φ) + ρ(φ), (3.12)

and let the above equation couple with the phase equation

φ̇ =ω + G(φ). (3.13)

The above reduction form is quite similar to (2.4). Our problem is how to determine the small
unknown quantities ρ and G as functions of the phase alone. Note that the way of splitting the
true state vector X(φ) into the reference state χ (φ) lying on the closed orbit and the deviation ρ(φ)
from this orbit is generally not unique; we have to fix from what point on C the deviation ρ should



11

royalsocietypublishing.org/journal/rsta
Phil.Trans.R.Soc.A377:20190041

................................................................

be measured. However, implicit in (3.12), it has already been assumed that X and χ have the same
phase. That is, the true state point and the reference state point lie on the same isochron Iφ . ρ may
then be regarded as purely representing amplitude disturbance and is completely free from phase
disturbance.

In order to formulate a systematic perturbation theory, however, curved hypersurfaces like
isochrons will not be an easy object to handle. Therefore the definition of isophase manifold may
desirably be changed slightly. In the new definition, the space of equal phase is identified with the
tangent space of Iφ , tangent at point χ (φ). Let this tangent space be denoted by Eφ . In order that
the disturbance vector ρ may completely be free from phase disturbance, ρ has to be so redefined
as to lie on Eφ . Figure 2b shows the isophase surface Eφ schematically.

The advantage of working with Eφ is that it spans an eigenspace defined for the linearized
system about C or, more precisely, Eφ is an (n − 1)-dimensional subspace of this eigenspace. Note
that for any φ such an eigenspace can be defined. The small-amplitude disturbance ρ(φ) may then
be decomposed into n − 1 eigenvector components.

In a similar way to (2.1), we expand F, now around χ (φ), as F(X) = F(χ (φ)) + εL̂(φ)ρ(φ) +
N(ερ(φ)), where L̂(φ) is the Jacobian of F evaluated at χ (φ) and N(ερ) represents higher-order
terms of O(ε2). The eigenspace and eigenvectors are defined for the linearized equation

ρ̇ = L̂(ωt)ρ (3.14)

about the limit-cycle solution χ (ωt). Since the Jacobian L̂ is time-periodic, using the Floquet
theorem [5], the solution ρ can be written in the form ρ(φ) = Ŝ(φ) e(φ/ω)Λ̂(0)ρ(0) or, more generally,
ρ(φ + ψ) = Ŝ(φ + ψ) e(ψ/ω)Λ̂(0)Ŝ−1(φ)ρ(φ), where Ŝ(φ) satisfies Ŝ(φ + 2π ) = Ŝ(φ) and Ŝ(0) = I. If we
make a stroboscopic observation of ρ at time interval of the period T = 2π/ω, we obtain ρ(φ +
2π ) = Ŝ(φ) eTΛ̂(0)Ŝ−1(φ)ρ(φ) = eTΛ̂(φ)ρ(φ), where Λ̂(φ) is a time-independent but φ-dependent
n × n matrix given by Λ̂(φ) = Ŝ(φ)Λ̂(0)Ŝ−1(φ). Thus, the above linear equation is transformed to an
ordinary eigenvalue problem eTΛ̂(φ)ρ(φ) = eλTρ(φ), or Λ̂(φ)ρ(φ) = λρ(φ), where λ is the eigenvalue
called the Floquet exponent. There are n eigenvalues, λ0,...,n−1. Among them, one eigenvalue is
zero and denoted as λ0 = 0. All other eigenvalues have negative real parts, Reλ1,...,n−1 < 0, because
the limit cycle is stable.

Let the eigenvectors of Λ̂(φ) be denoted by ul(φ) (l = 1, 2, . . . , n). Out of these eigenvectors,
n − 1 eigenvectors u1(φ), u2(φ), . . . , un−1(φ) with non-zero eigenvalues span Eφ . The remaining
eigenvector u0(φ) with zero eigenvalue corresponds to infinitesimal phase disturbance. The
direction of u0(φ) is tangential to the limit-cycle orbit C at χ (φ). Thus, this eigenvector is parallel
with dχ (φ)/dφ. In what follows, as a convenient choice, u0(φ) will be identified with dχ (φ)/dφ.

One may also define left-eigenvectors of Λ̂(φ), which we denote by u∗
0(φ), u∗

1(φ), u∗
2(φ), . . . ,

u∗
n−1(φ) satisfying biorthonormal relations with the right eigenvectors as u∗

l (φ)um(φ) = δl,m. It
should be noted that the sensitivity vector Z(φ) is identical with u∗

0(φ)†, where † denotes
transpose. The reason is that the orthonormal condition required for u∗

0(φ)† is also satisfied
by Z(φ). Regarding the orthogonality condition, remember that the phase gradient vector
gradXφ must be vertical to the isophase hypersurface. This means that Z(φ) is vertical to
Eφ , or Z(φ) · ul(φ) = 0 (l �= 0). Normalization condition is clearly satisfied because Z(φ) · u0(φ) =
(gradXφ)X=χ(φ) · (dX/dφ)X=χ(φ) = 1.

Another technical remark should be made. As stated above, the eigenspace is defined at each
phase on C. There is a relationship between the eigenvectors belonging to the same eigenvalue
at different φ. By choosing the zero phase φ = 0 as the reference phase, ul(φ) is given by a
transformation of ul(0) with the matrix Ŝ(φ) common to all l:

ul(φ) = Ŝ(φ)ul(0). (3.15)

Clearly, there is also a corresponding relation for the left-eigenvectors:

u∗
l (φ) = u∗

l (0)Ŝ−1(φ). (3.16)
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It can also be shown by differentiating the solution ρ(φ) that the Jacobian L̂(φ) is related to Λ̂(0)
through

Λ̂(0) = Ŝ−1(φ)
(

L(φ) − ω
d

dφ

)
Ŝ(φ). (3.17)

In the past, Method II was not formulated for multi-oscillator systems except for oscillatory
reaction–diffusion systems; space-discrete systems such as networks and populations of
oscillators were carefully avoided [7]. In discrete systems, the pair coupling, which has to be
treated as a perturbation, depends on the two-state vectors of the coupled pair like V(X, X′). This
fact seemed to make it difficult to treat the problem formally as a one-oscillator problem. As we
see later in this section, this seeming difficulty can be circumvented easily. However, before going
into this problem, we begin with an easier case to treat, because the formulation is almost the
same as for discrete systems except for one essential point.

The following example may be practically uninteresting but seems quite instructive for
illustrating the general structure of the theory. Suppose that the perturbation P(t) is simply given
by a function only of X of the oscillator of concern. This means that the nature of the oscillator
has been slightly changed. By putting P(t) = εδF(X), where δF(X) represents the change in the
oscillator dynamics, the equation to be reduced is given by

Ẋ = F(X) + εδF(X). (3.18)

We have introduced parameter ε as an indicator of the smallness of the perturbation, but we put
ε = 1 at the end of the calculation. Our goal is to find the solution of the problem in an ε-expansion
form.

As stated repeatedly, we try to solve the reduction problem in the following form:

X(t) = χ (φ) + ερ(φ), (3.19)

and
φ̇ =ω + εG(φ). (3.20)

In the above equation, ρ(φ) and G(φ) generally include higher-order corrections and can still be
expanded in powers of ε.

To determine the functional form of the unknowns ρ(φ) and G(φ), we insert (3.19) into (3.18),
and use (3.20) to replace the time-derivative with φ-derivative. With the use of the identity (3.17),
the result is concisely summarized in the form

G(φ)u0(0) −
(
Λ̂(0) − ω

d
dφ

)
Ŝ−1(φ)ρ(φ) = Ŝ−1(φ)B(φ). (3.21)

The B term consists primarily of the lowest-order perturbation δF(χ (φ)) but also includes smaller
quantities depending on ρ and G. That is,

B(φ) = δF
(
χ (φ) + ερ(φ)

) − εG(φ)
dρ(φ)

dφ
+ ε−1N(ερ(φ)). (3.22)

There is a strong similarity of (3.21) to the corresponding equation (2.5) in the centre-manifold
reduction. The only important difference between these equations is that the reduced phase
equation or G(φ) to be obtained from (3.21) does not have a canonical form yet, while in the
centre-manifold reduction the canonical form was directly obtained by solving (2.5).

Note that G(φ) appears as the coefficient of the zero eigenvector u0(0) of Λ̂(0). Note also that,
by decomposing ρ(φ) as ρ(φ) = ∑

l�=0 cl(φ)ul(φ), we have

Ŝ−1(φ)ρ(φ) =
∑
l�=0

cl(φ)Ŝ−1(φ)ul(φ) =
∑
l�=0

cl(φ)ul(0). (3.23)

Thus, if we pretend that B is a known quantity, then (3.21) represents a set of linear uncoupled
equations for the φ-dependent coefficients of the eigenvectors ul(0). The coefficient of u0(0) is
given by G(φ) which is the only quantity of our ultimate concern. Each coefficient will be found



13

royalsocietypublishing.org/journal/rsta
Phil.Trans.R.Soc.A377:20190041

................................................................

by taking the scalar product of the left eigenvector u∗
l (0) with each side of (3.21). In particular, by

taking a scalar product with u∗
0(0), G(φ) is given by

G(φ) = u∗
0(0)Ŝ−1(φ)B(φ) = u∗

0(φ)B(φ). (3.24)

Each of the other coefficients cl(φ) is given by the solution of the first-order differential equation
(
λl − ω

d
dφ

)
cl(φ) = −u∗

l (φ)B(φ). (3.25)

The above equation is solved by integration, whose solution cl(φ) must be a periodic function.
Noting that the real part of the eigenvalue λl is negative, one may easily show that the periodicity
condition can be satisfied by taking the lower limit of the integral to be −∞.

By starting with the B in the lowest approximation, which is given by B(φ) = δF(χ (φ)), the
unknowns ρ(φ) and G(φ) will be found iteratively in the form of ε-expansion. In particular, the
lowest-order G becomes G(φ) = u∗

0(φ)δF(χ (φ)), and this coincides with the result from Method I
given by (3.10). How to solve the problem to any desired order in ε by iteration will no longer
need explanation.

We are now ready to deal with populations of weakly coupled oscillators. In order to
see the source of the aforementioned difficulty about such systems and how this difficulty is
circumvented, the study of the following simple system would be sufficient. This is a pair of
identical oscillators with weak symmetric coupling, which was also studied in Method I. The
governing equation for oscillator α is given by

Ẋα = F(Xα) + εV(Xα , Xβ ) (3.26)

and similarly for oscillator β.
As a generalization of (3.19) and (3.20), it seems natural to assume the reduction form as

Xα(t) = χ (φα) + ερ(φα ,φβ ) (3.27)

and

φ̇α =ω + εG(φα ,φβ ). (3.28)

A similar reduction form is also assumed for oscillator β. The above form must satisfy (3.26). This
requirement leads to the following equation similar to (3.21):

G(φα ,φβ )u0(0) −
(
Λ̂(0) − ω

d
dφα

)
Ŝ−1(φα)ρ(φα ,φβ ) = Ŝ−1(φα)B(φα ,φβ ). (3.29)

The problem arising here is that the lowest-order B contains an unknown quantity ρ. In fact, we
have

B(φα ,φβ ) = V
(
χ (φα),χ (φβ )

) − ω
∂ρ(φα ,φβ )
∂φβ

+ O(ε) terms, (3.30)

where the ∂ρ/∂φβ term is comparable with the V term in magnitude. Thus, finding the solution
by successive iterations seems impossible. Still, G in the lowest order can be determined, because
the unwanted quantity ρ, and hence the ∂ρ/∂φβ term, contained in B, is free from the u0(0)
component.

As stated before, in phase reduction and also in centre-manifold reduction, the problem should
be treated formally as a one-oscillator problem even if we are dealing with many-oscillator
systems. In the present case, this means that no quickly changing variable other than φα must
appear in the formulation. If this is violated, then the time derivatives of ρ through such fast
variables can not be small and contribute to the lowest-order terms in B, thus making iteratively
solving the problem unfeasible from the outset.

Actually, how to circumvent this difficulty is simple. We only need to change the independent
variables from φα and φβ to φα and ψ ≡ φα − φβ . With the use of simplified notations
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ρ(φα ,ψ), G(φα ,ψ), . . . in place of ρ(φα ,φα − ψ), G(φα ,φα − ψ), . . ., we have now to find the
solution in the form

Xα(t) = χ (φα) + ερ(φα ,ψ) (3.31)

and

φ̇α =ω + εG(φα ,ψ). (3.32)

By interchanging the suffixes α and β and replacing ψ with −ψ , we have the corresponding
equations for oscillator β. As a result, in place of (3.29), we have

G(φα ,ψ)u0(0) −
(
Λ̂(0) − ω

d
dφα

)
Ŝ−1(φα)ρ(φα ,ψ) = Ŝ−1(φα)B(φα ,ψ). (3.33)

No unpleasant term appears in B now, and the lowest-order B is simply given by B(φα ,ψ) =
V(χ (α),χ (φα − ψ)). Although B still includes the time derivative of ρ through the second variable
ψ , this gives a small quantity because ψ̇ = ε(G(φα ,ψ) − G(φα − ψ , −ψ)).

In this way, G(φα ,ψ) and ρ(φα ,ψ) can be determined by successive iterations to any desired
order in ε, although all calculational details are omitted here. Coming back to the representation
in terms of the original phase variables φα and φβ , we arrive at the ε-expansion form

φ̇α =ω + εG1(φα ,φβ ) + ε2G2(φα ,φβ ) + · · · . (3.34)

Note that the above idea of treating the phase difference as a new independent variable is similar
to the past study in which we applied Method II to diffusion-coupled systems where spatial
derivatives of the phase were regarded as independent variables [7].

Although the calculation becomes even more involved, there is no essential difficulty in
extending the above-developed method to a large assembly of weakly coupled oscillators. The
only point to be noticed is that, since no fast variables other than φα must appear, we have to
introduce many ψ-variables as ψβ = φα − φβ ,ψγ = φα − φγ , . . .. The resulting phase equation in
terms of the original phases takes the form

φ̇α =ω + ε
∑
β

G1(φα ,φβ ) + ε2

⎛
⎝∑

β

G(1)
2 (φα ,φβ ) +

∑
β,γ

G(2)
2 (φα ,φβ ,φγ ) + · · ·

⎞
⎠ . (3.35)

As a non-trivial feature of the above equation, many-body coupling appears in the second and
higher-order terms. One of the ε2-order terms depends on 3 variables. Generally, the maximum
number of phase variables appearing in the coupling terms increases one by one with the
increasing power of ε.

We now move to the second step of reduction where we transform the phase equation to
a canonical form. As noted in Method I, the canonical form means that the coupling function
depends only on the phase difference. To illustrate how this is achieved, let us work with the
lowest-order phase equation for a pair of symmetrically coupled oscillators. Thus, we consider
the equation

φ̇α =ω + εG(φα ,φβ ) (3.36)

coupled with the equation for oscillator β, i.e. φ̇β =ω + εG(φβ ,φα). The essentials of the theory
could fully be explained with this example.

To transform the above coupled phase equations to a desired form, we require a near-identity
transformation from φα and φβ to new variables φ̃α and φ̃β . The new variables will be so chosen
that the coupling may become a function of the phase difference alone. Thus, in terms of the phase
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difference ψ ≡ φ̃α − φ̃β , we require for oscillator α the following reduction form similar to (3.31)
and (3.32):

φα = φ̃α + εσ (φ̃α ,ψ) (3.37)

and
˙̃
φα =ω + Γ (ψ). (3.38)

To make the above transformation unique, we impose the boundary condition σ (0,ψ) = 0 which
means that φ̃α = 0 implies φα = 0. As in the first step of reduction, working with φα and ψ and not
with φ̃α and φ̃β is crucial.

The reduction form (3.37) and (3.38) must satisfy (3.36). The result of substituting (3.37) and
(3.38) into (3.36) may be summarized as

∂σ (φ̃α)

∂φ̃α
=ω−1(−Γ (ψ) + B(φ̃α ,ψ)) (3.39)

and
B(φ̃α ,ψ) = G(φ̃α , φ̃α − ψ) + O(ε) terms. (3.40)

The quantity B consists primarily of the coupling term in the lowest-order approximation but
also contains some other terms depending on the unknown quantities. The situation is similar to
the first step, that is, if σ and Γ (ψ) are determined simultaneously from (3.39) with B supposed
known, then they must be found to any desired precision by iteration. This is in fact possible.
Note that σ is a 2π -periodic function of φ̃α , which means that it vanishes by integration over one
period. This condition determines Γ as

Γ (ψ) = 1
2π

∫ 2π

0
B(y,ψ) dy ≡ Bav(ψ). (3.41)

Then, σ (φ̃α ,ψ) is obtained by integrating the right-hand side of (3.39):

σ (φ̃α ,ψ) =ω−1
∫ φ̃α

0

(
B(y,ψ) − Bav(ψ)

)
dy. (3.42)

It is clear that, starting with the lowest-order B obtained by dropping the O(ε) terms in (3.40), we
can achieve successive approximations for σ and Γ .

This completes the second step of reduction, but only for the simple phase equation (3.36).
There are at least four conditions to be relaxed by which the formulation of the second step of
reduction can be generalized. First, higher-order terms may be included in (3.36) with which we
start. As a result, many-body coupling will necessarily be included. Second, larger assembly of
oscillators than an oscillator pair can be treated. Third, the coupling may be asymmetric. Fourth,
the oscillators may be slightly non-identical. The phase equation including all these facts will take
the form

φ̇α =ωα(φα) + ε
∑
β

Gα,β,1(φα ,φβ ) + ε2

⎛
⎝∑

β

G(1)
α,β,2(φα ,φβ ) +

∑
β,γ

G(2)
α,β,γ ,2(φα ,φβ ,φγ )

⎞
⎠ + · · · (3.43)

To integrate all such complex situations into the theory would not be a difficult matter if we do
not mind lengthy calculations. Omitting all calculational details, we arrive at the final form of
phase reduction

φ̇α =ωα + ε
∑
β

Γ1(φα − φβ ) + ε2

⎛
⎝∑

β

Γ
(1)

2 (φα − φβ ) +
∑
β,γ

G(2)
2 (φα − φβ ,φα − φγ )

⎞
⎠ + · · · . (3.44)

Finally, one may wonder if there is any practical use of the theory of higher-order phase
reduction. It seems difficult to give a definite answer as yet, but it may at least be said that the
higher-order corrections will become important when the lowest-order phase equation breaks
down. For the phase reduction of reaction–diffusion system [7], this is actually the case because
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the lowest-order equation of the Burgers type breaks down when the phase diffusion constant
ν becomes negative. As long as ν remains small negative, the next order theory which produces
the fourth-order spatial derivative of phase becomes quite meaningful. Although not confirmed
yet, a similar situation could be met in discrete assemblies of oscillators as well. Imagine either
a short-range coupled oscillator lattice or all-to-all coupled population. It may happen that the
lowest-order coupling function stays near the threshold between the in-phase and anti-phase
types. The resulting dynamical state, whatever it may be, will have a weak stability, and some
additional perturbation may easily cause a drastic change in the dynamics. It seems reasonable
to expect that the higher-order terms in the phase equation will play the role of such an extra
perturbation.

4. Concluding remarks
We have seen how the two representative theories of reduction are similar to each other in their
basic way of thinking as well as their theoretical structure. Each theory must involve two essential
steps, namely, reduction of dynamical degrees of freedom on one hand and transformation of
the reduced equation to a canonical form on the other hand. In the centre-manifold reduction,
however, these steps need not be taken one by one but could be achieved simultaneously. This
was possible because the complete set of eigenfunctions of the operator L̂0 − ωd/dθ is simply
given by the product of the eigenvectors of L̂0 and the various harmonics eimθ , thus making the
coefficients of these eigenfunctions become independent of θ . Such a nice property cannot be
expected for the phase reduction, because this theory, unlike the centre-manifold reduction, deals
with periodic orbits without high symmetry.

Another important feature common to the two reduction theories is that even when we deal
with multi-oscillator systems the theory is formulated formally as a perturbed one-oscillator
problem. Thus, when the centre-manifold reduction is applied to reaction–diffusion systems,
for example, we still imagine a two-dimensional centre manifold depending on various spatial
derivatives of the amplitude A as parameters.

Finally, a few remarks will be given on the significance of dynamical reduction from a broader
perspective of science in general. There seem to be several roles to be played by the reduction
theories for our understanding, controlling and designing systems around us. The most primitive
motivation of the reduction theories was that, when we were given a complex dynamical system
model, we expected that its analysis would become far easier by reduction. However, it is
important to notice that reduced equations are derived without knowledge of the specific form
of the original evolution equation. With the help of reduction theories, we often understand
the reason for this or that observed behaviour of complex systems for which we are unable to
construct a dynamical system model.

Predictive power of reduction is also great. Indeed, it sometimes happens that unexpectedly
new types of dynamics are discovered through the analysis of reduced equations. Such dynamical
behaviour is expected to exist universally because the reduced equations themselves are
universal. For example, we owe much to the complex Ginzburg–Landau equation and its variants
for our far deeper understanding of continuous fields of oscillators than before. Discovery of the
concept of phase turbulence is also a fruit of dynamical reduction [7].

Implicit in the above arguments, we are thinking of qualitative understanding rather than
quantitative understanding of the nature. Although quantitative validity of the reduced equations
is limited to the vicinity of exceptional situations such as the near-critical situation of bifurcation
and vanishingly small coupling strength, such restriction is not so severe for qualitative
understanding. Whenever necessary, one may come back to more realistic mathematical models.
Their analysis will become far easier with the help of the suggestions provided by the analysis
of the reduced equations. Furthermore, regarding how to control coupled oscillator systems
as desired, there may be a lot to learn from the analysis of reduced equations. This seems
true whether the coupled oscillators concerned exist as a natural system or are designed as a
man-made system.
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Appendix A
In this appendix, we briefly describe some of the recent developments in the phase-reduction
approach to limit-cycle oscillators, that is, the phase–amplitude reduction, Koopman-operator
viewpoint, and some extensions of the phase reduction to non-conventional dynamical systems.

(a) Phase–amplitude reduction
In §3, we formulated the phase reduction for weakly perturbed limit-cycle oscillators. As we
explained, the phase is the only slow variable describing the long-time asymptotic dynamics
of the oscillator. The amplitude disturbance, representing deviation of the oscillator state from
the limit cycle, was neglected in Method I or eliminated in Method II. However, when we are
interested in the transient dynamics of the oscillator at shorter timescales, such as the relaxation
dynamics to the limit cycle or small variation from the limit cycle caused by applied perturbations,
the amplitude degrees of freedom may also be important.

Recently, phase–amplitude reduction of the oscillator dynamics, which explicitly takes the
amplitude degrees of freedom into account, has been formulated [25–28]. These studies are partly
inspired by the recent development of the Koopman-operator approach to nonlinear dynamical
systems, which we briefly discuss in the next subsection, though the idea of the phase–amplitude
description of the oscillator state around a limit cycle had already been discussed, for example, in
the classical textbook of differential equations by Hale [29]. In this subsection, we briefly describe
the extension of Method I of phase reduction to phase–amplitude reduction.

First, we need to introduce the amplitude variables that describe deviations of the oscillator
state from the limit cycle C. In §3, the phase φ(X) of the oscillator state X was defined to satisfy
equation (3.1), i.e. φ̇ = F(X) · gradXφ =ω, where ω is the frequency of the oscillator. Considering
that small deviation of the unperturbed oscillator state from C decays exponentially on average,
it seems natural and convenient to introduce an amplitude function r(X) which satisfies

ṙ = F(X) · gradXr = λr (A 1)

in the basin of C, where λ is the decay rate. The amplitude r vanishes on the limit cycle, i.e.
r(χ (φ)) = 0 where χ (φ) is the point of phase φ on C. From the Floquet theory, it is expected that
λ should be equal to one of the Floquet exponents λ1,...,n−1 with negative real parts (sorted as
λ0 = 0>Re λ1 ≥ Re λ2 · · · ≥ Re λn−1) and that n − 1 such amplitude variables can be introduced.
This is actually the case as explained below. For simplicity, we assume that the Floquet exponents
are simple and real; extension to the complex case is straightforward.

Suppose that such amplitude functions rl(X) (l = 1, . . . , n − 1) exist. Then, as in §3, the
amplitude rl of a weakly perturbed oscillator Ẋ = F(X) + P(t) obeys

ṙl = gradXrl · (F(X) + P(t)) = λlrl + gradXrl · P(t) (A 2)

for each amplitude variable. Moreover, if P(t) is sufficiently weak and X stays in the close vicinity
of C, the gradient vector of rl(X) may be approximately evaluated on C in the lowest-order
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approximation. We thus obtain an approximate amplitude equation

ṙl = λlrl + Il(φ) · P(t) (A 3)

for l = 1, . . . , n − 1, where Il(φ) = gradXrl|X=χ(φ) is the gradient vector of rl evaluated at χ (φ) on
C characterizing the sensitivity of rl to external stimuli. It is important to note that Il(φ) depends
only on the phase and not on the amplitudes, because it is evaluated on the limit cycle C. Note
the similarity of equation (A 3) and the function Il(φ) for the amplitude to equation (3.3) and the
sensitivity function Z(φ) for the phase. In §3, it was shown that the sensitivity function Z(φ) of
the phase is equal to the transpose of the left eigenvector u∗

0(φ) of Λ̂(φ) associated with the zero
eigenvalue. Similarly, Il(φ) can be chosen as the lth left eigenvector of Λ̂(φ) as Il(φ) = u∗

l (φ)† as
shown below.

Let us now derive the above facts, namely, the decay rate λ of r in equation (A 1) is equal
to one of the Floquet exponents λ1,...,n−1 and Il(φ) = u∗

l (φ)† (l = 1, . . . , n − 1). Suppose that an
initial oscillator state at t = 0 is chosen as X(0) = χ (0) + ερ(0) with φ = 0, where ρ(0) = uj(0) (j =
0, . . . , n − 1) and ε is an arbitrary tiny parameter; namely, we add a tiny amplitude disturbance
to the oscillator state in the direction of jth eigenvector of Λ̂(0) with eigenvalue λl. Evolving
the oscillator without perturbation from this initial state under the linear approximation, the
oscillator state at t = φ/ω can be expressed as X(t) = χ (φ) + ερ(φ) = χ (φ) + εŜ(φ) e(φ/ω)Λ̂(0)uj(0) =
χ (φ) + εŜ(φ) eλj(φ/ω)uj(0) as in §3. Expanding r(X) in Taylor series as r(χ (φ) + ερ(φ)) = r(χ (φ)) +
gradXr|X=χ (φ) · ερ(φ) + O(ε2) = εI(φ) · ρ(φ) + O(ε2), where I(φ) = gradXr|X=χ(φ) is the gradient
of r on C, the amplitude r of X(t) can be expressed as r(X(t)) = εI(φ) · ρ(φ) + O(ε2) = εI(φ) ·
Ŝ(φ) eλj(φ/ω)uj(0) + O(ε2). On the other hand, the amplitude r should obey equation (A 1)
by assumption and thus r(X(t)) = eλtr(X(0)) = ε eλtI(0) · uj(0). Therefore, I(φ) · Ŝ(φ) eλj(φ/ω)uj(0) =
eλ(φ/ω)I(0) · uj(0) should hold for any φ within the linear approximation. This requires the
following two conditions to be satisfied: (i) I(0) · uj(0) = 0 if λ �= λj, and (ii) I(φ) · Ŝ(φ) = I(0) if
λ= λj. From the condition (i), it turns out that a non-trivial amplitude r can only be defined
when λ is equal to any of λ1,...,n−1, otherwise r takes constantly 0 for any ρ(0) within the linear
approximation. We thus assume λ= λl and denote the corresponding amplitude and gradient
as rl and Il, respectively. Then, if l �= j, Il(0) · uj(0) should be 0, and if l = j, Il(0) · ul(0) should
not be 0. These conditions can be satisfied only if we take Il(0) ∝ u∗

l (0)† for l = 1, . . . , n − 1, and
we simply adopt Il(0) = u∗

l (0)†. We then obtain Il(φ)† = Il(0)†Ŝ−1(φ), i.e. Il(φ) = u∗
l (φ)† from the

condition (ii).
It is also important that these left eigenvectors, or sensitivity functions, can be numerically

evaluated much more easily than the amplitude function itself. For the sensitivity function of the
phase, it is well known that Z(φ) = u∗

0(φ)† is a 2π -periodic solution to an adjoint linear equation
ω dZ(φ)/dφ = −L̂(φ)†Z(φ) with normalization condition Z(φ) · F(χ (φ)) =ω [21]. See also ref. [22]
for a very concise derivation and the functional forms of Z(φ) for typical bifurcations of limit
cycles. Using a similar argument, it can be shown that Il(φ) = u∗

l (φ)† is a 2π -periodic solution to
an adjoint linear equation, ω dIl(φ)/dφ = −[L̂(φ)† − λl]Il(φ) [26–28].

In many cases, the slowest-decaying amplitude associated with λ1, which dominates the
relaxation dynamics toward the limit cycle, is of interest to us. Retaining only this amplitude,
we obtain a pair of phase–amplitude equations in the lowest-order approximation as

φ̇ =ω + Z(φ) · P(t) and ṙ = λr + I(φ) · P(t), (A 4)

where the subscript 1 is dropped from the amplitude equation. At the lowest order, the phase is
not affected by the amplitude, while the amplitude is modulated by the phase.

By using the amplitude equation in addition to the phase equation, we can analyse the
dynamics of the oscillator state around the limit cycle in more detail. For example, the first-
order approximation to the oscillator state is given by X(t) = χ (φ(t)) + r(t)u1(φ(t)), which would
be useful if a more precise oscillator state than the lowest-order approximation χ (φ(t)) is required
in the analysis. We may also use the amplitude equation for suppressing deviation of the oscillator
state from the limit cycle by applying a feedback input to the oscillator in the control problem of
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synchronization [30,31]; for example, if we apply P(t) = −cu1(φ(t))r(t) with c> 0, the amplitude
dynamics is given by ṙ = (λ− c)r and r decays more quickly than the case without the feedback.
Keeping the oscillator state in the close vicinity of the limit cycle by such an additional feedback
may allow us to apply stronger input for controlling the oscillator phase to realize desirable
synchronized states.

The lowest-order formulation of the phase–amplitude reduction discussed in this subsection
corresponds to Method I in §3. Although the phase is not affected by the amplitudes at this
order, it is not the case at the second or higher orders; for stronger perturbations, more complex
dynamics caused by the interaction between the phase and amplitude are expected. Higher-order
generalization of the phase–amplitude reduction and its relation to Method II in §3 needs to be
further investigated for a more detailed analysis of the phase–amplitude dynamics.

(b) Koopman-operator viewpoint
In the previous subsection, we mentioned that the recent formulations of the phase–amplitude
reduction is closely related to the Koopman-operator approach to nonlinear dynamical systems,
which has been intensively studied by Mezić and collaborators [32,33] and has attracted much
attention. In this subsection, we discuss this relation very briefly.

Suppose a dynamical system Ẋ = F(X) with an exponentially stable limit-cycle solution. We
are usually interested in the evolution of the system state X in the basin of the limit cycle. In the
Koopman-operator approach, rather than the evolution of the system state X itself, we focus on
the evolution of the observable g, which is a smooth function that maps the system state X to a
complex value g(X). We denote by Ψ̂ τ the flow of the system, which maps a system state at time
t to a system state at time t + τ as X(t + τ ) = Ψ̂ τX(t). The evolution of an observable g from time t
to time t + τ is described as gt+τ (X) = (Ûτgt)(X) by using the Koopman operator Ûτ define by

(Ûτg)(X) = g(Ψ̂ τX). (A 5)

It can easily be shown that Û0 = I (identity), Ût+τ = ÛtÛτ , and Ût is a linear operator, i.e.
Ûτ (caga(X) + cbgb(X)) = caÛτga(X) + cbÛτgb(X), where ca,b are arbitrary constants and ga,b are two
observables. Thus, the observable obeys a linear equation even if the original dynamical system
is nonlinear; the cost is that Ûτ is now acting on an infinite-dimensional function space of
observables, in contrast to Ψ̂ τ acting on the finite-dimensional phase space of the oscillator states.

Since Uτ is a linear operator, it is useful to consider its eigenvalues and eigenfunctions.
To see the relation with the phase–amplitude reduction, it is convenient to introduce the
infinitesimal generator of Ûτ , given by Âg = limτ→+0(Ûτg − g)/τ . By expanding the flow as
Ψ̂ τX = X + τF(X)τ + O(τ 2) for small τ , we can expand the action of the Koopman operator on
g as (Ûτg)(X) = g(Ψ̂ τ (X)) = g(X) + gradXg(X) · τF(X) + O(τ 2). We thus obtain

Â = F(X) · gradX (A 6)

and the continuous evolution of the observable g is given by ġt = Âgt. Note that this generator Â of
the Koopman operator is exactly the operator that appeared in equations (3.1) and (A 1) defining
the phase and amplitude functions φ(X) and r(X).

We denote the eigenvalue and the associated eigenfunction of Â as μ and ϕμ(X),
respectively, which satisfies Âϕμ(X) =μϕμ(X). There can be infinitely many such eigenvalues
and eigenfunctions. Most importantly, it can be shown that the eigenvalue iω and the Floquet
exponents λ1,...,n−1 of the limit cycle are included in these eigenvalues and they are called the
principal eigenvalues [34,35]. We denote these eigenvalues asμ0 = iω andμl = λl (l = 1, . . . , n − 1).

By using the eigenfunctions associated with the principal eigenvalues, we can introduce new
coordinates yμ(t) = ϕμ(X(t)). It then follows that

ẏμ = Ẋ · gradXϕμ(X) = F(X) · gradXϕμ(X) = Âϕμ(X) =μϕμ(X) =μyμ, (A 7)

i.e. each yμ obeys a simple linear equation ẏμ =μyμ. Thus, the Koopman eigenfunctions give
a global linearization transformation of the system dynamics in the basin of the limit cycle.
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It is also known that analytic observables can be expanded in series by using the principal
eigenfunctions [33]. Therefore, we can reconstruct the observables, including the system state
itself, from the new variables {yμ(t)}.

The amplitude functions r1,...,n−1(X) defined in the previous subsection are actually principal
Koopman eigenfunctions associated with μ1,...,n−1. Indeed, we have Ârl(X) = F(X) · gradXrl(X) =
μlrl(X), which is equivalent to the definition equation (A 1) of rl. The phase function φ(X), which
satisfies F(X) · gradXφ(X) =ω as defined in equation (3.1), is also closely related to the principal
Koopman eigenfunction. If we consider an observable eiφ(X), we have

Â eiφ(X) = F(X) · gradX eiφ(X) = iF(X) · [gradXφ(X)] eiφ(X) = iω eiφ(X). (A 8)

Therefore, eiφ(X) is also a principal Koopman eigenfunction associated with the eigenvalue iω.
Thus, we can see a clear correspondence between the Koopman-operator approach, in

particular, the global linearization of the system dynamics using the principal Koopman
eigenfunctions, and the phase or phase–amplitude reduction of limit-cycle oscillators using the
phase and amplitude functions. Such a relation has recently been clarified by Mauroy et al. [35].
They proposed to call the level sets of the amplitude functions as isostables, which complement
the notion of the classical isochrons, i.e. the level sets of the phase function. Using the idea from
the Koopman-operator analysis, they have also proposed a convenient numerical method, called
Fourier and Laplace averages, to calculate the phase function φ(X) and amplitude functions
rl(X) [34,35]. The recent developments in the Koopman-operator approach appear to shed new
light on the conventional theories of dynamical reduction and further developments in various
related fields are expected.

(c) Generalization of phase reduction to non-conventional systems
In §3, the phase reduction is developed for limit cycles described by ordinary differential
equations. Recently, several extensions of the method to non-conventional dynamical systems
have been made. We briefly mention some such attempts here.

(i) Collective oscillations in large populations of globally coupled dynamical elements. Large
populations of coupled dynamical elements often undergo collective synchronization transition
and exhibit stable collective oscillations [7,10,18]. A system of globally coupled noisy phase
oscillators is a typical example that exhibits such a collective synchronization transition [7]. In
the large-population limit, the system is represented by a probability density function P(φ, t) of
the phase, which obeys a nonlinear Fokker–Planck equation. This equation has a stable periodic
solution satisfying P(φ, t) = P(φ, t + T) with period T, which represents collective synchronized
oscillations of the whole system. This solution can be considered a limit-cycle solution to
the nonlinear Fokker–Planck equation, which should be considered an infinite-dimensional
dynamical system. In ref. [36], an equation of the form (3.3) for the collective phase of the
nonlinear Fokker–Planck equation is obtained and synchronization between a pair of such
collectively oscillating systems is analysed. In [37], a similar phase equation is also derived for
the collective phase of a system of globally coupled noiseless phase oscillators with sinusoidal
coupling and Lorentzian frequency heterogeneity, which also exhibits collective synchronization
transition, in the large-population limit by using the Ott-Antonsen ansatz [38]. Such dynamical
reduction for collective oscillations, which we called collective phase reduction, would be useful
in analysing collective oscillations in large populations of dynamical elements at the macroscopic
level. For example, macroscopic rhythms arising in a mathematical model of neural populations
have been analysed by using a similar approach [39].

(ii) Collective oscillations in networks of coupled dynamical systems. Stable collective oscillations
in networks of coupled dynamical systems often play important functional roles in real-world
systems such as neuronal networks and power grids. When the collective oscillations correspond
to a limit-cycle orbit in the high-dimensional phase space of the network, we can develop a phase
reduction theory, namely, we can define a phase of the collective oscillation of the network and
represent the network dynamics by a single phase equation. In [40], such a phase reduction
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theory has been developed for collective oscillations in a network of coupled phase oscillators,
where the network topology can be arbitrary. The sensitivity functions of the individual elements,
characterizing how tiny perturbations applied to each element affect the collective phase of the
network, have been derived. In [41], the theory has further been generalized to arbitrary networks
of coupled heterogeneous dynamical elements, where the dynamics of individual elements can
also be arbitrary. As long as the network exhibits stable collective limit-cycle oscillations as
a whole, the network dynamics can be reduced to a single phase equation for the collective
phase and, for example, synchronization between a pair of such networks can be analysed by
using the same classical methods as those for ordinary low-dimensional oscillators. The interplay
between the individual dynamics of the elements and network topology can lead to strongly
heterogeneous sensitivities of the individual dynamical elements; for example, some special
elements in the network can possess much stronger sensitivity than the other elements. Such
information would be useful, for example, in developing a method to control the collective
oscillations of the network by external input signals.

(iii) Delay-induced oscillations. Delay differential equations are used in various fields of science
and engineering, e.g. in mathematical models of biological oscillations caused by delayed
feedback. Since delay-differential equations are infinite-dimensional dynamical systems that
depend on their past states, the conventional method of phase reduction for ordinary differential
equations cannot be used for them. In [42,43], phase reduction methods for limit-cycle oscillations
in delay-differential equations with a single delay time have been developed. The difficulty is
that the oscillator state is given by a function representing its past history and not simply by an
ordinary finite-dimensional vector. In [42] by Kotani et al., the adjoint equation for the sensitivity
function is derived on the basis of the abstract mathematical theory of functional differential
equations, while in [43] by Novičenko and Pyragas, a physically more intuitive approach has
been taken to derive the phase equation. Both of these results are consistent with each other and
enable us to reduce infinite-dimensional delay-differential equations to a one-dimensional phase
equation, thereby providing a powerful method to analyse synchronization properties of delay-
induced oscillations under weak perturbations. Though [42,43] treated oscillator models with a
single delay time, one should be able to generalize the theory to allow multiple or distributed
delay times.

(iv) Oscillations in spatially extended systems. Nonlinear oscillatory dynamics in real-world
systems often arise in spatially extended systems. The target or spiral waves in chemical or
biological systems described by reaction–diffusion equations [14] and oscillatory fluid flows
described by Navier–Stokes equations [44] are typical examples. Similar to the delay-differential
equations, these partial differential equations are also infinite-dimensional dynamical systems
and the conventional method of phase reduction cannot be applied to them; even so, as long as
the system exhibits stable limit-cycle oscillations, one should be able to assign a phase value to
the system state described by a spatially extended field variable, and derive a phase equation
describing the whole system. In [45], a phase reduction method for a fluid system has been
developed, where a phase equation describing oscillatory convection in a Hele-Shaw cell is
derived from the fluid equation, and synchronization between two coupled convection cells
are analysed. The sensitivity function for the phase is represented by a two-dimensional field
with characteristic localized structures, representing strong spatial heterogeneity of the response
properties of the oscillatory convection to applied perturbations. In [46], a general phase reduction
method for reaction–diffusion systems exhibiting rhythmic spatiotemporal dynamics has been
developed and typical rhythmic patterns, such as oscillating spots, target waves, and spiral waves
arising in the FitzHugh–Nagumo reaction–diffusion system, are analysed using the reduced
phase equation. The notion of phase functional, which generalizes the phase function in §3, is
introduced, and the sensitivity function of the phase is defined as a functional derivative of the
phase functional. An adjoint partial differential equation describing the sensitivity function of
the system is also derived. The sensitivity function exhibits strong spatial heterogeneity also in
this case, reflecting spatiotemporal structures of the rhythmic patterns. It also seems possible
to develop similar phase-reduction theories for other types of partial differential equations
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exhibiting spatiotemporally rhythmic patterns, and such theories would be useful in the analysis
and control of rhythmic spatiotemporal patterns.

(v) Hybrid nonlinear oscillators. Hybrid, or piecewise-smooth dynamical systems, consisting
of smooth dynamics described by ordinary differential equations and discontinuous jumps
connecting them, are often used in mathematical models of real-world phenomena; the simplest
example is the bouncing ball with discontinuity in the vertical velocity. Stable limit cycles can
also arise in such systems, for example, in mathematical models of passively walking robots or
electric oscillators with switching elements. The conventional phase reduction method cannot
be applied to such hybrid systems because of the discontinuity. However, again, as long as the
system exhibits stable limit-cycle oscillations, one should be able to define a phase and derive a
phase equation. In [47,48], phase equations for hybrid limit-cycle oscillators have been derived. A
generalized adjoint equation with discontinuous jumps is derived and the sensitivity function
for the phase is obtained. Due to the jumps, the sensitivity function can possess non-smooth
discontinuities, which can lead to non-trivial synchronization dynamics that cannot occur in
smooth dynamical systems.

(vi) Strongly perturbed and non-autonomous oscillators. In this article and in all generalizations
mentioned above, the property of the oscillatory system, whether it is low-dimensional or infinite-
dimensional, is assumed to be constant, namely, the limit-cycle orbit, natural frequency, and
phase sensitivity function do not vary with time. However, this may not be the case in some
realistic problems, for example, when we consider biological oscillators that are subjected to
slow but strong effect of parametric modulation due to circadian rhythms in addition to small
perturbations coming from other oscillators. In such cases, it is convenient to regard the oscillator
as a non-autonomous system whose parameter varies slowly with time while being subjected to
fast small perturbations. In [49–51], the phase reduction method has been generalized to such
non-autonomous oscillators. By considering a continuous family of limit cycles parameterized
by the slowly varying input, a closed phase equation for the oscillator can be derived, which is
characterized by the instantaneous frequency and two sensitivity functions. One of the sensitivity
functions is the ordinary phase sensitivity function to small perturbations, and the other is a
newly introduced sensitivity function to characterize the effect of deformation of the limit cycle
due to slow parametric variation. Using the extended phase equation, non-trivial synchronization
of a limit-cycle oscillator subjected to strong periodic forcing [49] and between a pair of coupled
oscillators subjected to parametric variation [51] have been analysed. As emphasized in [52],
non-autonomous systems can be crucially important in modelling real biological oscillations
and further studies into this direction, e.g. collective phase synchronization of non-autonomous
oscillators, would provide useful information for understanding real biological systems.

In this subsection, we have briefly described some of the recent extensions of the phase
reduction to non-conventional rhythmic systems. The simplicity and flexibility of the phase
reduction, whose key ideas have been discussed in the main text, allow us to extend the
method to a wide class of nonlinear oscillatory dynamical systems. Moreover, once individual
systems are reduced to phase equations, synchronization between coupled oscillatory systems
of different types, e.g. networked systems and spatially extended systems, can readily be
analysed within the framework of the phase reduction. Such an approach would be useful in
analysing complex multiscale systems consisting of oscillatory subsystems of different types like
neuronal systems. Further extensions of the phase-reduction approach would also be possible for
other classes of nonlinear oscillatory systems, including stochastic, chaotic, and even quantum
systems [53].

Finally, although not considered in the present paper, data-driven inverse-type approaches,
which infer reduced dynamical equations from experimental data without knowing the precise
mathematical models of the oscillatory phenomena, are becoming increasingly important
recently. As discussed in §4, reduced equations can often be obtained without the detailed
knowledge of individual systems in the dynamical reduction theory. This implies that one can
infer appropriate reduced equations only from the experimental data of complex oscillatory
phenomena and use them to predict their dynamics without knowing their precise physical,
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chemical, or biological origins. See, for example, refs. [54–57] for such inverse approaches to infer
reduced phase equations from complex oscillatory phenomena.
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28. Mauroy A, Mezić I. 2018 Global computation of phase-amplitude reduction for limit-cycle
dynamics. Chaos 28, 073108. (doi:10.1063/1.5030175)

29. Hale JK. 2009 Ordinary differential equations. New York, NY: Dover Publications.
30. Zlotnik A, Chen Y, Kiss IZ, Tanaka H-A, Li J-S. 2013 Optimal waveform for fast

entrainment of weakly forced nonlinear oscillators. Phys. Rev. Lett. 111, 024102. (doi:10.1103/
PhysRevLett.111.024102)

31. Monga B, Wilson D, Matchen T, Moehlis J. 2018 Phase reduction and phase-based
optimal control for biological systems: a tutorial. Biol. Cybern. 113, 11–46. (doi:10.1007/
s00422-018-0780-z)
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