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Few invertebrates can survive cryopreservation in liquid nitrogen, and the
mechanisms by which some species do survive are underexplored, despite
high application potential. Here, we turn to the drosophilid Chymomyza
costata to strengthen our fundamental understanding of extreme freeze
tolerance and gain insights about potential avenues for cryopreservation
of biological materials. We first use RNAseq to generate transcriptomes of
three C. costata larval phenotypic variants: those warm-acclimated in early
or late diapause (weak capacity to survive cryopreservation), and those
undergoing cold acclimation after diapause entry (extremely freeze tolerant,
surviving cryopreservation). We identify mRNA transcripts representing
genes and processes that accompany the physiological transition to extreme
freeze tolerance and relate cryopreservation survival to the transcriptional
profiles of select candidate genes using extended sampling of phenotypic
variants. Enhanced capacity for protein folding, refolding and processing
appears to be a central theme of extreme freeze tolerance and may allow
cold-acclimated larvae to repair or eliminate proteins damaged by freezing
(thus mitigating the toxicity of denatured proteins, endoplasmic reticulum
stress and subsequent apoptosis). We also find a number of candidate
genes (including both known and potentially novel, unannotated sequences)
whose expression profiles tightly mirror the change in extreme freeze
tolerance status among phenotypic variants.
1. Introduction
Themechanisms bywhich overwintering insects survive at sub-zero body temp-
eratures have been investigated for more than a century (see, for instance,
reviews in [1–7]). Specific molecular, biochemical and physiological adjustments
underlying this survival are typically assigned to one of three cold hardiness
‘strategies’ based on the phase behaviour of body water during cold exposure:
(i) supercooling (maintenance of body water in the liquid phase), (ii) cryoprotective
dehydration (loss of a substantial proportion of the body water by evaporation)
and (iii) freeze tolerance (conversion of body water to the solid phase—ice crys-
tals). Freeze tolerance evolved multiple times in a diverse array of insects [7,8].
Although most freeze-tolerant insects perish at temperatures below a species-
specific threshold (the lower lethal temperature; LLT) typically between −5°C
and −40°C [4,9], some insects and other invertebrates seem to have no LLT
and withstand freezing to the temperature of liquid nitrogen (−196°C), even in
a fully hydrated state; examples include the nematode Anguillula silusiae [10],
rotifer Philodina acuticornis [11], poplar sawfly Trichiocampus populi [12], malt
flyChymomyza costata [13] and leechOzobranchus jantseanus [14]. These extremely
freeze-tolerant animals may hold the key to advancing techniques in cryopreser-
vation of tissues, organs or even complex organisms [15]. More specifically for
insects, such techniques would improve the management of stock populations
for research and application [16–21].

In order to build up extreme (or high) freeze tolerance, malt fly larvae (and
other adapted insects, respectively) typically enter diapause and then undergo
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cold acclimation [7,22,23]. Diapause is a seasonal phenotype
associated with arrested development and deep metabolic
suppression [24,25], while cold acclimation further increases
resistance to environmental stress [24,26]. Both adaptive com-
plexes—diapause and cold acclimation—are based on the
massive alteration of -omic profiles from the transcriptome
[27–30], through proteome [31,32], to metabolome [33,34].
One of the key mechanisms underlying extreme freeze toler-
ance in insects is the accumulation of high concentrations of
low molecular mass cryoprotective compounds (CPs). For
instance, diapausing cold-acclimated T. populi prepupae
accumulate trehalose (up to 202 mmol kg−1 of total body
water) [12] while diapausing cold-acclimated malt fly larvae
accumulate proline (up to 339 mmol kg−1 total body water)
[23,35,36]. The CPs act through various mechanisms includ-
ing a colligative reduction in the relative amount of ice
[37,38], stabilization of lipid bilayers [39], stabilization of pro-
teins’ native structures [40,41] and/or promoting vitrification
[23,42]. It is well known in practical cryogenics that both
natural and engineered CPs facilitate the storage of cells
and tissues at ultra-low temperatures [42]. However, the
application of CPs to non-adapted (e.g. tropical) and/or
non-acclimated (e.g. non-diapause, warm-acclimated) insects
is only partially successful in improving their freeze tolerance
[23,35,43].

In insects with extreme freeze tolerance, we speculate that
CPs work in synergy with macromolecular protective sys-
tems that are seasonally stimulated. Indeed, a number of
proteins with different cryoprotective roles are specifically
enhanced in abundance during diapause and cold acclim-
ation, including ice-binding proteins, heat shock proteins
(HSPs) and late embryogenesis abundant (LEA) proteins.
IBP adsorption to ice planes slows or limits their growth
and prevents ice recrystallization damage [44,45], while
HSPs assist in protein folding, localization and degradation
[46]. Small HSPs (sHSPs) and LEA proteins act as ‘molecular
shields’ which prevent protein aggregation during desicca-
tion and freezing [47–50]. These macromolecules can also
cooperate with CPs to protect cellular and protein structure
under thermal or desiccation stress. For example, the inter-
action of sHSP p26 with trehalose significantly improves
both mammalian cell survival during drying [51] and protec-
tion/reactivation of thermally inactivated citrate synthase in
brine shrimp [52]. Cryophilic diatom-derived IBP reduces
freezing damage to human blood cells only in the presence
of glycerol [53]. LEA proteins act synergistically with treha-
lose to prevent protein aggregation during dehydration
stress [54]. Still, the role of such macromolecules in insect
extreme freeze tolerance remains unknown as they have yet
to be assessed in the few species capable of surviving deep
cryopreservation. Extremely freeze-tolerant insects may
further possess unique (novel) proteins that behave similarly
to CPs by preventing unwanted interactions between other
macromolecules, complexes and organelles in frozen (i.e.
tightly packed, dehydrated) cells.

Here, we aimed to identify candidate macromolecules
and processes that potentially contribute to the survival of
malt fly larvae in liquid nitrogen. Specifically, we employed
a non-targeted transcriptomics approach (RNAseq) to
broadly compare gene expression among three larval pheno-
types differing in freeze tolerance: larvae in early and late
diapause (under warm conditions) are moderately freeze
tolerant, while larvae that are cold-acclimated after diapause
entry develop extreme freeze tolerance (including storability
in liquid nitrogen). To validate RNAseq results and further
resolve the candidate proteins whose transcriptional patterns
most closely associate with extreme freeze tolerance, we per-
formed qPCR for select sequences over an extended sampling
plan (additional time points throughout diapause mainten-
ance and cold acclimation). The transcriptomics approach is
a rapid, sensitive and technically feasible means of compar-
ing among multiple phenotypes and time points and will
be complemented by forthcoming metabolomic and proteo-
mic studies (in preparation). Cryoprotective proteins must
be present in high abundance to act as molecular shields,
and although mRNA transcript expression does not necess-
arily reflect protein abundance [55], this rough estimate of
relative protein abundance allows us to focus on transcripts
with large fold changes across larval variants.
2. Material and methods
(a) Malt fly rearing and acclimation
We reared malt fly colonies (‘Sapporo’ strain, originating from
Japan [56]) on artificial diet in MIR 154 incubators (Sanyo Electric,
Osaka, Japan) as described previously [57]. For experiments, we
generated three different malt fly larvae phenotypic variants
(details in electronic supplementary material, figure S1) according
to our earlier protocols [22,27,58]: (1) non-diapause ‘LD’ larvae—
which pupate after approximately three weeks and emerge as
adults after approximately onemonth; (2) diapausing, warm-accli-
mated ‘SD’ larvae—which do not pupate but maintain diapause
until death; and (3) cold-acclimated ‘SDA’ larvae—which develop
extreme freeze tolerance, gradually terminate their diapause
within two months and remain in quiescence [23,35].

(b) RNAseq: library preparation, sequencing, alignment
and annotation

We used three biological replicates (each comprising 10 pooled
larvae) for transcriptome sequencing of three malt fly variants:
early diapause (SD6); late diapause (SD11) and cold acclimated
(SDA11) (see electronic supplementary material, figure S1 for
explanation). The pools of larvae were homogenized in 400 µl
RNA Blue (Top-Bio, Vestec, Czech Republic) for 30 s on ice.
Total RNA was extracted according to manufacturer’s instruc-
tions for RNA blue, treated with DNase I (Invitrogen,
ThermoFisher Scientific, Prague, Czech Republic) and diluted
to a final concentration of 0.1 µg RNA per µl in PCR Ultra
H2O. RNA quality checking, cDNA library preparation and
80 bp, single-end read sequencing on the Illumina NextSeq 500
(Illumina, San Diego, CA) were performed by the EMBL Geno-
mics Core Facility (Heidelberg, Germany). Sequencing of the
nine cDNA libraries across the three malt fly variants yielded a
total of 357 million reads with an average GC content of 47.5%.
We assessed the quality of sequenced libraries by FastQC soft-
ware (v. 0.11.5) [59] and used Trimmomatic [60] via the Galaxy
Web service [61] to remove adapter sequences and discard
sequences shorter than 36 nucleotides or containing unknown
bases. Approximately 304 million reads remained after quality
control. Through the Galaxy Web service, we used Bowtie2
[62] to align reads to a previously assembled reference malt fly
transcriptome derived from both LD and SD larvae (a full assem-
bly of 113 447 contigs, which was further refined to 21 326
non-redundant contigs [63]). Just over 99% of our reads aligned
to the full reference assembly. We then used Cufflinks [64] to
assemble transcripts (contigs) and estimate read counts. These
normalized libraries contained a total of 22 872 contigs with
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non-zero read counts (representing 86.1% of the refined reference
assembly; [63]). Libraries were further filtered to remove contigs
with low abundance (those with fewer than five read counts per
million in three of the six libraries per comparison) [65], yielding
approximately 6800 contigs per library.
ypublishing.org/journal/rspb
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(c) Differential expression analyses and annotation
We compared relative transcript abundance among malt fly
variants using the edgeR Bioconductor package [65] for R statistical
software (v. 3.2.2) [66,67]. Criteria for differential expression ana-
lyses were conservative; genes were considered to be
differentially expressed (DE) if the p-value (adjusted for false dis-
covery rate; FDR) was less than 0.05 and the absolute fold change
between treatments was greater than or equal to 4 (log2 fold
change greater than or equal to 2). Biological coefficients of vari-
ation did not exceed 0.3 (i.e. gene expression among biological
replicates varied by less than 30%). DE transcripts were annotated
with Blast2GO software (v. 4.1.9, Oracle Corp.) [68]. Putative iden-
tities were assigned by BLASTx against the non-redundant (nr)
protein database (NCBI, November 2017) (E-value threshold = 1 ×
10−3, accepting five hits for each transcript), mapped for Gene
Ontology (GO) terms and annotated (E-value threshold = 1 × 10−6).
Approximately 65% of the contigs had putative identities, 5%
were predicted or uncharacterized proteins and 30% had no puta-
tive identity. We attempted to identify the uncharacterized or
predicted proteins via a less-stringent BLASTx search against the
nr database (E-value threshold = 1, accepting 100 hits for each tran-
script) using Geneious software (v. 10.1.3, Biomatters Ltd.). In this
way, we gained putative identities for an additional 50 transcripts.
Finally, we assigned all annotated DE genes to one of 10 custom cat-
egories: ‘Development’, ‘Cuticle’, ‘Metabolism’, ‘Detoxification’,
‘Membranes’, ‘Cytoskeleton’, ‘Transcription’, ‘Protein processing’,
‘Other’ and ‘Uncharacterized’ (electronic supplementary material,
spreadsheet S1) based on functional information from the literature
and online databases (UniProt and FlyBase).

We characterized the coordinated differential expression of
pathways (functionally related gene sets) according to KEGG
(Kyoto Encylopedia of Genes and Genomes; [69]). KEGG identi-
ties for contigs were retrieved from the KEGG Automatic
Annotation Server [70] based on non-species-specific reference
pathways. Approximately 21% of the contigs with non-zero
read counts were assigned to KEGG pathways. Differential path-
way expression among malt fly variants was analysed based on
read counts for transcripts with KEGG identities using the Gen-
erally Applicable Gene-set Enrichment (GAGE) and Pathview
Bioconductor packages [71,72] in R. We accepted pathways as
DE if the FDR-adjusted p-value was less than 0.05. Because
GAGE assesses coordinated expression change, these pathway
analyses identified more DE genes relative to our more strict
criteria (greater than or equal to fourfold change) for individual
genes assessed via edgeR (above).
(d) Direct validation
Direct validation of edgeR analysis was performed (a) from the
same aliquots of total RNA samples used to generate transcrip-
tomes (technical validation) and (b) in an independent set of
new biological replicates (a new generation of flies) conditioned
exactly as in electronic supplementary material, figure S1 (bio-
logical validation). We used quantitative real-time PCR (qPCR)
on a CFX96 PCR cycler (BioRad, Philadelphia, PA, USA) to
amplify 10 select DE sequences against four reference genes
(sequences coding for Ribosomal proteins RpL32 (Rp49),
RpL19, RpS11 and RpS27A [27]) (see electronic supplementary
material, figure S2 for methods details). All PCR primer
sequences can be found in electronic supplementary material,
spreadsheet S1.
(e) Extended validation and extreme freeze tolerance
assays

An extended validation of the RNAseq results was performed
with the aim to retrieve the best candidate sequences with tran-
scriptional patterns most closely associated with extreme freeze
tolerance. For this purpose, we prepared a new, extended set of
total RNA samples from larvae representing different pheno-
types (electronic supplementary material, spreadsheet S1) in
four biological replicates, each comprised of 10 pooled larvae.
Total RNA samples were processed as described in RNASeq
(above). Next, we performed qPCR analysis (as in Direct vali-
dation, above) for an arbitrary selection of 15 candidate genes
based on results of RNAseq DE analyses (all target and PCR
primer sequences can be found in electronic supplementary
material, spreadsheet S1). (a) We took six genes coding for
HSPs (Hsp22, Lethal(2)efl, Hsp27, Hsp40, Hsp70 and Hsp83) in
order to have representatives of the most clearly upregulated
functional category 8 (Protein processing). We then took DE
sequences scoring relatively high in log fold change (logFC),
log counts per million (logCPM) and sequence length among
those upregulated in cold-acclimated larvae (SDA11) relative to
those in diapause maintenance (SD6 and SD11). This way we
added (b) four sequences, coding for Yellow d (or Major royal
jelly 1, Seq3773), Glutamic acid-rich protein (GARP, Seq93436),
Larval serum protein 2 (Lsp2, Seq55855) and Companion of
reaper (Corp, Seq5725) (functional category 9 ‘Other’), (c) four
uncharacterized protein sequences: Seq102667, Seq80983,
Seq3519 and Seq4228 and finally (d) one non-annotated (N/A)
sequence: Seq93437.

In parallel, we characterized the association between the tran-
scriptomic profiles of the 15 candidate genes (above) and larval
extreme freeze tolerance (capacity to survive after exposure to
liquid nitrogen) for select LD, SD and SDA variants (electronic
supplementary material, figure S2) using the optimum cryopre-
servation protocol described earlier [23]. Briefly, groups of
20 larvae were slowly cooled to −30°C, plunged into liquid nitro-
gen for 60 min, then returned to −30°C before rewarming to 5°C.
Thawed larvae were transferred to fresh larval diet and main-
tained thereafter at 18°C and a long-day photoperiod. Dead
larvae were removed 12 h later while all living larvae were main-
tained for a subsequent six weeks and the emergence of adult flies
was scored as the ultimate criterion of survival. For each variant,
extreme freeze tolerance was measured in 100–300 larvae and
expression of each candidate gene was measured in four larvae.
3. Results and discussion
Toour knowledge, this is the first transcriptomic characterization
of an insect capable of surviving prolonged cryopreservation
in liquid nitrogen. We used the comparative transcriptomic
approach as an hypothesis-generating first step in seeking new
candidate cryoprotectants and to further understand the physio-
logical mechanisms of extreme freeze tolerance; however, we
acknowledge that other forms of gene and protein regulation
which may be important (e.g. miRNAs or post-translational
modifications) [73] are not captured by our methods and
therefore warrant investigation in future.

(a) Differentially regulated genes and pathways
We observed fewer DE genes between early and late diapause
phenotypes (190 transcripts) than between early diapause
and cold-acclimated phenotypes (776 transcripts). A full list
of DE genes is available in electronic supplementary material,
spreadsheet S1. Of those genes with putative identities, 25 and



upregulated
(47 genes)

overlapping genes

downregulated 
(25 genes)

downregulated
(216 genes)

upregulated
(161 genes)

early 
diapause

late 
diapause

cold
acclimated

development

cuticle

metabolism

detoxification

membranes

cytoskeleton

transcription

protein processing

other

0

0

protein processing
in ER and proteasome
ribosome

metabolism

protein processing
in ER and proteasome

metabolism

ribosome

upregulated

downregulated
unchanged

KEGG pathways

early 
diapause

late 
diapause

cold
acclimated

(a) (b)

Figure 1. Summary of DE genes with putative identities (a) and select DE KEGG pathways (b) for third instar malt fly larvae in the states of late diapause or cold
acclimation relative to early diapause. Genes were sorted according to custom functional categories and the numbers of DE genes in different categories are reflected
in pie diagram size (the total number of DE genes given below). A full list of DE genes (including the description of functional categories) and KEGG pathways are
given in electronic supplementary material, spreadsheet S1 and figure S3, respectively. (Online version in colour.)

royalsocietypublishing.org/journal/rspb
Proc.R.Soc.B

286:20192019

4

47 were down- and upregulated in late diapause (respect-
ively), while 216 and 161 were down- and upregulated with
cold acclimation, respectively). Only a single DE gene
(Seq109825; downregulated but with no putative identity)
overlapped between late diapause and cold acclimation (rela-
tive to early diapause), suggesting that cold acclimation and
development of extreme freeze tolerance may involve a
unique set of physiological processes distinct from those
linked to diapause progression.

In a recent review of insect freeze tolerance, Toxopeus &
Sinclair [7] hypothesized that five broad mechanisms are
involved: (1) control of ice formation; (2) reduction of ice
content; (3) stabilization of macromolecules; (4) management
of biochemical processes/reduction of harmful metabolite
damage and (5) post-thaw repair and recovery. We did not
expect to see a reflection of mechanism 1 in this study, as
no gene annotations in the C. costata transcriptome [63] had
identifiers such as ice binding, nucleation or thermal hyster-
esis. Moreover, our knowledge suggests that C. costata has
limited capacity to control ice formation: neither supercooling
capacity nor vulnerability to ice inoculation changed much
with acclimation [23,35], and there is no sign of thermal hys-
teresis activity in larval haemolymph (V. Koštál & J. Rozsypal
2017, unpublished observations). Ice content (related to
mechanism 2) differs only slightly among C. costata larval var-
iants with decreasing temperatures (described previously by
[23]). Mechanism 3 probably involves cryoprotectant accumu-
lation as a non-colligativemeans of stabilizingmacromolecular
structures, and despite that cryoprotectant accumulation is
a hallmark of C. costata freeze tolerance [23,35], we found
little direct reflection of it in the transcriptome. Similar lack of
evidence for direct transcriptional control of cryoprotectant
synthesis (myo-inositol, proline and trehalose) was reported
for the freeze-tolerant cricket, Gryllus veletis [43]. The reasons
for such results may relate to the importance of post-
transcriptional control mechanisms [43], general problems
with interpretation of metabolism using -omics approaches
[74] and/or technical limitations such as insufficient resolution
at time and tissue levels. Mechanism 3 also includes the upre-
gulation of molecular chaperones (a common phenomenon of
insect thermal tolerance, e.g. [75,76]), which was clearly sup-
ported in the C. costata transcriptome (discussed further in
the next section). Mechanism 4 was reflected in the form of
global downregulation of processes in C. costata larvae linked
to active metabolism, including oxidative phosphorylation
(figure 1b; a full list of the pathways provided in electronic sup-
plementary material, figure S3). Still, ribosomal transcription
was generally maintained during cold acclimation (figure 1;
electronic supplementary material, figure S3–S5). The aspect
of mechanism 4 relating to the reduction of damage from
harmful metabolites showed rather a trend of downregulation
(electronic supplementary material, spreadsheet S1) and no
systematic reflection in KEGG pathways. Mechanism 5
includes some elements overlapping with mechanism 3 (e.g.
protein processing machinery), which appears to be a central
theme of the transcriptomic transformation in extremely
freeze-tolerant C. costata larvae.

Expression of genes related to the category ‘Protein pro-
cessing’ was the most contrasting between larval variants;
compared to early diapause, two genes were downregulated
in late diapause, while 15 genes were upregulated with cold
acclimation (figure 1b; electronic supplementary material,
spreadsheet S1). Some pathways appeared to be statistically
rather than biologically upregulated with progression from
early to late diapause. For example, upregulation of KEGG
pathway ko04141 (Protein processing in the endoplasmic reti-
culum) in late relative to early diapause was driven primarily
by only a few genes; secretory 61 (Sec61), translocon-associated
protein (TRAP) and Hsp70 (electronic supplementary material,
figure S6). Similarly, the upregulation of pathway ko03050
(Proteasome) during late diapause was extremely weak
(based on two genes, each in only one of the three biological
replicates; see electronic supplementary material, figure S7).
By contrast, the upregulation of both these pathways with
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cold acclimation was supported by a large number of genes
(electronic supplementary material, figures S8 and S9,
spreadsheet S1). The relevance of enhanced protein proces-
sing capabilities for extreme freeze tolerance is discussed in
detail below.

(b) Roles of protein processing in extreme cold
tolerance

As both ice formation and low temperatures threaten the
stability and function of proteins [77], extreme freeze tolerance
should largely rely on enhanced protein protection (stabiliz-
ation and chaperoning), repair (refolding) and/or
degradation of denatured or misfolded proteins. Indeed, a
growing body of literature highlights the importance of protein
management for insect freeze tolerance [7]. Based on transcrip-
tomic analysis, however, we cannot conclusively distinguish
between upregulated responses representing (i) the direct
response to proteins that failed to fold properly (or were
partially denatured) during cold acclimation, and (ii) the
removal of excess proteins that are no longer needed when
the rates of all biological processes were drastically reduced
by low temperature. We hypothesize that at least part of the
upregulation represents (iii) an ‘anticipatory’ response (i.e.
adaptive preparation for cold and freeze-dehydration stresses
most likely to be endured during the overwintering period,
which is supported by previous studies in flesh flies [78,79]).

Cold and freeze-dehydration stresses may impact the
process of nascent proteins’ folding or mature proteins’
higher-order structures, causing their misfolding or unfold-
ing, respectively. In both cases, the aberrant proteins elicit a
complex network of responses including recognition, target-
ing, transport, refolding or elimination by degradation. A
visual synthesis (based on results of DE analysis and KEGG
analysis) of this enhanced machinery accompanying cold
acclimation (i.e. acquisition of extreme freeze tolerance) is
provided in figure 2 (see also electronic supplementary
material, figure S8 for the relevant KEGG pathway). We com-
ment only briefly on the major elements of this machinery
below and provide more specific descriptions of the roles of
the individual genes in electronic supplementary material,
figure S10).

In the endoplasmic reticulum (ER), misfolded proteins
are eliminated by ER-associated degradation (ERAD). In
this process (as summarized by [80]), misfolded proteins
are exported (retrotranslocated) to the cytosol and ubiquiti-
nated, which targets them for degradation by the 26S
proteasome. Accumulation of misfolded proteins above
the ER folding capacity (ER stress) initiates the unfolded
protein response (UPR), which increases chaperone
production and either allows recovery from ER stress or
may result in apoptotic cell death. A single gene (coding
for ATF4) was downregulated among three pathways that
sense ER stress (i.e. those initiated by PERK, ATF6 and
IRE1; electronic supplementary material, figure S8). This
lack of differential expression related to actual ER stress
indirectly supports the hypothesis that anticipatory
enhancement of chaperones and other effectors of UPR
occurs to deal with misfolded protein load that likely
comes after future cold shock. Four genes upregulated in
extremely freeze-tolerant larvae encoded proteins involved
in misfolded protein recognition and targeting for ERAD:
Hsp40, ERp60, Bap31 and UGGT. Another four genes
encoded proteins involved in retrotranslocation of ERAD-
targeted proteins to the cytosol: TRAP, Sec61, OST and
Trp1 (figure 2). Cold acclimation also resulted in increased
expression of multiple genes involved in protein ubiquitina-
tion (electronic supplementary material, figure S8), as well
as genes encoding proteasome subunits (electronic
supplementary material, figure S9).

In extremely freeze-tolerant larvae, six genes encoding
chaperones involved in mature protein stabilization and
refolding were upregulated: Hsp83, Hsp70, Hsp40, BAG2
and two sHSPs (Hsp22 and Lethal(2)efl) (figure 2). Hsp70
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larvae subjected to the assay (with the number of different fly generations assayed given in parentheses). Examples of transcriptional profiles are shown for
three select sequences (b–d ). Each bar (representing a particular phenotypic variant, figure S1) is the mean ± s.d. (n = 4) relative expression of the target sequence
compared to four reference genes (via RTqPCR). The relative expression in phenotypic variant SD6 (early diapause) is arbitrarily set to 1 and the expressions in all
other variants are normalized to it. Shaded areas behind the bars indicate survival in liquid nitrogen for SD larvae (grey shading) and SDA larvae (blue shading), as
derived from (a) (note that survival was zero for non-diapause LD larvae and also SD3 larvae).
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(with co-chaperones BAG2 and Hsp40) and Hsp83 may
additionally cooperate with co-chaperone CHIP to direct sub-
strate proteins for degradation [80–86]. Similarly, the gene
coding for Chaperonin-containing T-complex 1 (CCT1),
which facilitates the folding of cytoskeletal (and other) pro-
teins [87], was also upregulated. The importance of
cytoskeletal protection and repair for maintaining cell struc-
ture, tissue integrity and transport function at low
temperatures is supported by a growing number of studies
in insects, including themalt fly [88–92]. Lethal(2)efl andmito-
chondrial Hsp22 stabilize and facilitate denatured protein
refolding, preventing protein aggregation [93,94]. Through
this enhanced protein processing, cold-acclimated malt fly
larvae likely have an improved ability to remove damaged
proteins before they reach toxic levels in the cytosol and/or
before they accumulate to levels that induce ER stress, thereby
avoiding induction of apoptotic pathways and subsequent cell
death during and after cold exposure [80]. Taken together, this
machinery is likely protective against protein crowding and
denaturation at extremely low temperatures and/or upon
cellular freeze dehydration.
(c) Candidate cryoprotective genes
Cryopreservation survival analyses (figure 3a) confirmed that
non-diapause larvae (LD3) and relatively young larvae des-
tined to diapause (SD3) have no ability to survive in liquid
nitrogen. A moderate capacity for such survival occurred in
diapause maintenance phenotypes (SD6, SD12) but was lost
with long-term maintenance (SD24). Truly extreme freeze tol-
erance (the highest capacity for survival in liquid nitrogen)
was found in cold-acclimated larvae at 12 weeks (SDA12),
which perfectly confirmed our earlier results [23,35], but
this was again partially lost with increasing time of storage
at low temperature (SDA24). Examples of transcriptional pro-
files for three selected sequences are depicted in figure 3b–d,
while all profiles are shown in electronic supplementary
material, figures S11–S13. The transcriptional profiles of
lethal(2)efl (electronic supplementary material, figure S11B)
and hsp70 (electronic supplementary material, figure S11E)
matched relatively well with extreme freeze tolerance. Among
the heat shock genes, the mitochondrial hsp22 (figure 3b)
stood out as a particularly interesting candidate considering
its 7.5-fold increase in expression with cold acclimation
(SDA9) relative to early diapause (SD6). Although expression
of hsp22 in non-diapause larvae (LD3) was also very high, the
gene need not be necessarily removed from the list of candidate
cryoprotective macromolecules. Hsp22 localizes to mitochon-
dria [92] and may play very different roles in the two distinct
physiological contexts: LD (direct development, rapid
growth, high activity) versus SDA (diapause, deep metabolic
suppression, no activity). The rapid metabolism of LD larvae
must be supported by high activity of their mitochondria,
and (in D. melanogaster) hsp22 expression is upregulated with
ageing and oxidative stress [95] as well as in response to
rising ecdysone titres just prior to pupation [96,97]. These
stimuli for hsp22 upregulation are absent in the C. costata
SDA phenotype. We also know that C. costata mitochondria
are particularly susceptible to cryoinjury in LD larvae but are
robust to freezing challenges in SDA larvae (T. Štětina & V.
Koštál 2018, unpublished results). Potentially, Hsp22 could
act (synergistically with other cryoprotectants and DE
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chaperones) in SDA larvae to preserve mitochondrial structure
during freeze-dehydration insult.

Transcriptional patterns of four other annotated but func-
tionally poorly characterized genes are shown in electronic
supplementary material, figure S12. Lsp2 was characterized
by extremely high expression in non-diapause LD3 larvae
(more than 1000-fold higher than in early diapause), corre-
sponding well to the proposed function of larval serum
proteins as amino acid stores that rapidly build up in the
haemolymph of larvae just prior to pupation [98]. Interest-
ingly, lsp2 transcripts also gradually accumulated and
reached considerably high levels (up to 100-fold) in cold-
acclimated larvae relative to those in early diapause
(electronic supplementary material, figure S12A). As ice
forms in the extracellular space of malt fly larvae [35], it is
possible that haemolymph-abundant Lsp2 protein may
somehow interfere with ice crystal growth. The expression
of Corp (which is induced by DNA damage in D. melanogaster
[99]) increased more than 10-fold in malt fly larvae upon cold
acclimation (electronic supplementary material, figure S12B).
Corp protein inhibits the pro-apoptotic activity of p53 and
may thus mitigate apoptotic cell death for cold-acclimated
larvae following a freezing challenge [99]. The transcripts of
yellow d (electronic supplementary material, figure S12C)
and GARP (electronic supplementary material, figure S12D)
showed strong and persistent upregulation response to cold
acclimation. The yellow family contains functionally poorly
characterized genes that are most likely involved in melanin
formation [100]. As development at lower temperatures
increases melanin deposition in drosophilids (e.g. [101]),
this might partially explain our results. GARP is a structural
homologue of the functionally uncharacterized D. melanoga-
ster gene CG43106 (putative GARP A0A0B4K825), but the
relevance of this protein for extreme freeze tolerance is
currently unclear.

Over half of the DE genes significantly up- or downregu-
lated with cold acclimation coded for uncharacterized
proteins or had no putative identities at all. Transcriptional
profiles of five selected unidentified candidates are shown
in electronic supplementary material, figure S13. Ideally,
this set of unidentified genes contains novel and potentially
important cryoprotectants. For instance, the uncharacterized
Seq102667 (figure 3c) showed almost a perfect match to the
profile of extreme freeze tolerance, while the unannotated
Seq93437 (figure 3d ) showed extremely strong and persistent
response to cold acclimation. For select unannotated
candidates, we are now conducting more comprehensive
searches for their putative identities, raising antibodies for
localization and quantification of gene products, and per-
forming functional validation assays (e.g. for enzyme
activity in vitro and survival of transfected cells post-freezing,
results in a forthcoming study).
4. Conclusion
The transition from moderate to extreme freeze tolerance in
malt fly larvae is accompanied by an enhanced protein
processing capacity, probably in anticipation of oncoming
cellular freeze-dehydration stress. With this ‘prophylactic’
response, cold-acclimated larvae may become better able to
both protect and stabilize proteins, and repair or eliminate
those which become damaged, thereby avoiding excessive
misfolded protein load, ER stress and associated apoptosis.
In addition to classical chaperones, we identified a number
of functionally uncharacterized sequences in which the
transcriptional profile perfectly matches the profile of larval
extreme freeze tolerance (i.e. strong upregulation in response
to cold acclimation). Identification of the protein products of
these sequences, and their functional analysis, may be crucial
for achieving not only a fundamental understanding of freeze
tolerance plasticity in insects but also for obtaining new
means of freeze tolerance manipulation for cryopreservation
of cells, tissues and whole organisms.
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