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Animal populations will mediate the response of global biodiversity to
environmental changes. Population models are thus important tools for
both understanding and predicting animal responses to uncertain future
conditions. Most approaches, however, are correlative and ignore the individ-
ual-level mechanisms that give rise to population dynamics. Here, we assess
several existing population modelling approaches and find limitations
to both ‘correlative’ and ‘mechanistic’ models. We advocate the need for a
standardized mechanistic approach for linking individual mechanisms
(physiology, behaviour, and evolution) to population dynamics in spatially
explicit landscapes. Such an approach is potentiallymore flexible and informa-
tive than current population models. Key to realizing this goal, however,
is overcoming current data limitations, the development and testing of eco-
evolutionary theory to represent interactions between individualmechanisms,
and standardized multi-dimensional environmental change scenarios which
incorporate multiple stressors. Such progress is essential in supporting
environmental decisions in uncertain future conditions.
1. Introduction
Animal responses to environmental change have wide-ranging consequences
for global biodiversity and ecosystem functioning, through altered species
interactions, richness, community composition, and the transfer of energy and
nutrients [1]. Yet, much remains unknown about the selective nature of environ-
mental changes and the interactive effects of multiple stressors [2]. An urgent
challenge is thus to better understand the mechanisms underpinning animal
population responses to environmental change in order to better anticipate the
effects of novel future conditions [3].

Disentangling the mechanisms that give rise to population responses is a mul-
tifaceted challenge. The urgency of understanding this complexity is likely
responsible for the many correlative approaches to ecological forecasting [4].
Yet, such approaches cannot reliably extrapolate outside of the observed environ-
mental range [5,6] and fail to represent key biological and ecological mechanisms
that mediate species responses in heterogeneous landscapes [7]. Population
dynamics, however, are primarily determined by interactions between individuals
with each other and their environment [8]. Accounting for these individual-level
mechanisms therefore has the potential to better describe divergent shifts in
species abundances and distributions in response to environmental changes.

Multiple stressors often interact with individual-level mechanisms to
cause nonlinear population responses and may have additive, exacerbating, or
alleviating effects [9]. For instance, many species experience phenological and
geographical range shifts consistent with climate changes over time [10], while
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rapid and widespread declines of other species are being
driven by habitat loss and fragmentation, overexploitation,
invasive species, andpollution [11].Honeybee colony collapses
across the Northern Hemisphere, for example, have been
attributed to the combined spread of invasive parasitic mites,
exposure to harmful pesticides [12], climatic changes, and
habitat fragmentation [13]. Population responses to environ-
mental changes are thus dependent on individual exposure
to multiple stressors in spatially explicit landscapes. Although
correlative models often account for heterogeneous environ-
ments, they cannot fully represent the interactive effects of
multiple stressors at the individual level.

Mechanistic models which incorporate individual-level
mechanisms are ideal for generating more informed pre-
dictions of population responses to novel environmental
changes. However, little progress has beenmade in developing
an approach that is bothmechanistic (captures themechanisms
driving population dynamics in spatially explicit landscapes)
and general (can be applied to various species and environ-
mental scenarios). Here, we first discuss the importance of
individualmechanisms (physiology, behaviour, and evolution)
in driving population dynamics and then evaluate the ability of
several existing population modelling approaches to predict
population responses to novel environmental change. We
suggest the need to work towards a standardized mechanistic
approach so that individual mechanisms inform predictions
at the population level. We then review the availability of
quantitative methods for the representation of these individual
mechanisms in population models. Finally, we discuss current
limitations to developing such an approach and how these
could be addressed.
2. Importance of individual-level mechanisms in
driving population dynamics

Ecology typically describes individual variation according
to species’ physiological and behavioural traits [14–16]. Physi-
ology explains the phenotypic plasticity of life-history traits in
response to environmental variables. For instance, trade-offs
between individual traits (e.g. growth and reproduction) occur
in response to changing food availability, quality, and tempera-
ture by altering energy acquisition and expenditure [17].
Behaviour then relates individuals of varying physiology to
their position in the landscape and interactions with other indi-
viduals. Movement is key, as how individuals move across
landscapes to fulfil their needs dictate their exposure to adverse
conditions (e.g. predation, pollution, drought) [11]. The physio-
logical state of individuals alsoplays acentral role inbehavioural
mechanisms, for instance, by trading-off high-quality resources
for other factors such as finding a mate or avoiding predation.

Plastic effects through altered physiology and behaviour
have been widely attributed to population responses under
environmental change [18], but genetic effects play an impor-
tant role for many species [19]. That is, genetic interactions
between fitness-related traits and the direction of selection
across multiple traits constrain an individual’s potential for
evolutionary adaptation [20]. Rapid evolutionary change has
been shown for a number of taxa exposed to novel environ-
mental conditions [21], short-lived species experiencing rapid
changes [22], species unable to disperse to favourable habitats
[23], and at landscape scales [24]. Physiology, behaviour, and
evolution thus need to be understood together to build a
comprehensive understanding of how individuals respond to
their environment, and how individual responses translate
into population-level effects.

Under future environmental changes, physiology descri-
bes the sensitivity of species to stressors, behaviour describes
species’ exposures to those stressors, and evolution descri-
bes the potential variation of individual responses. Interactions
between individual mechanisms within the landscape then
describe how collective populations either acclimatize to small
shifts in environmental conditions, shift their distributions,
or decline in response to larger changes. Population ecology
has classically understood these individual-level mechanisms
using a top-down approach, whereby demographic rates
are related to environmental (e.g. temperature) or population-
level (e.g. density) variables. More recently, however, mechanis-
tic population models have been developed that use these
individual-level mechanisms to predict population-level effects
in a bottom-up approach.
3. Existing population modelling approaches
Population modelling approaches are often reviewed in iso-
lation because they integrate different levels of biological
organization and ecological scales, but progress in population
modelling will rely on a combination of features from differ-
ent approaches. In this section, we review several modelling
approaches commonly used to predict population responses
to environmental changes. Most modelling approaches have
been developed to answer different ecological or evolution-
ary questions, and so each method reviewed here is suited
to its overarching purpose. Our focus, however, is on their
ability to integrate individual-level mechanisms and extrap-
olate across taxa and environmental scenarios in spatially
explicit landscapes, to provide informed predictions under
environmental change.

(a) Demographic models
Demographic population models, such as Matrix Population
Models (MPMs), have played a key role in the development
of ecological and evolutionary theory since their conception
[25]. By linking individual variation in species to changes in
survival and reproduction rates, MPMs provided a basis for
understanding how population dynamics shifted with demo-
graphic traits (e.g. birth and death rates, intrinsic growth rate)
[26] and population density [27]. Over the last few decades,
MPMs have become increasingly powerful with advances
in computational and statistical approaches in ecology [28].
Integral projection models (IProjMs), for instance, include
both continuous (e.g. mass) and discreet state variables (e.g.
life stage) to more accurately represent population structure
[29], whereas Integrated Population Models (IPopMs) can
combine individual- and population-level data to better esti-
mate the influence of individual variation on demographic
rates [30]. Classical demographic models are nevertheless
based on statistical relationships between demographic rates
and environmental conditions, making them more suited to
understanding species dynamics under current environ-
mental conditions than predicting population responses to
novel environments in the future [5]. That is, because the
representation of demography in response to environmental
variables is constrained by the input data, they cannot
reliably extrapolate outside of the environmental and/or



Table 1. Summary of modelling approaches typically used in predicting animal population responses to environmental change. Different approaches are
categorized according to their ability to describe the individual-level mechanisms (physiology, behaviour, and evolution) that drive population responses to
environmental changes in spatially explicit landscapes.

modelling approach
spatially
explicit

vital
rates

individual
variation physiology behaviour evolution examples

demographic models

matrix population

models (MPMs)

N Y N N N N Crouse et al. [36]

mechanistic MPMs N Y N N N Y De Vries & Caswell [37]

integrated population

models (IPopMs)

N Y N Y N Y Schaub et al. [38]

mechanistic IPopMs N Y Y Y N Y Plard et al. [35]

integral projection

models (IProjMs)

N Y Y Y N Y Smallegange et al. [33,34], Ozgul

et al. [18], Coulson et al. [39]

species distribution models (SDMs)

classical SDMs Y N N N N N Elith & Leathwick [40]

process-based SDMs Y Y Y Y N Y Buckley [41], Kearney et al. [42],

Fordham et al. [43]

dynamic range

models

Y Y N N Y N Zurell et al. [44]

individual-based models (IBMs)

classical IBMs Y Y Y N Y N Liu et al. [45], Becher et al. [46]

mechanistic IBMs Y Y Y Y Y Y Bocedi et al. [47], Galic et al. [48],

Johnston et al. [49], Boyd

et al. [50]
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stressor scenario in which the data were collected. It is also
often necessary to parametrize MPMs for different population
(e.g. pre- and post-breeding), environmental, or management
scenarios because the fundamental relationships between
environmental fluctuations, demographic rates, and popu-
lations are not integrated [31]. Inclusion of the mechanisms
that underpin demographic rates thus allows for the represen-
tation of both a greater range of environmental conditions and
species traits in MPMs.

Demographic models show improved predictions when
incorporating physiological and evolutionary processes [32].
Mechanistic IProjMs, for instance, increasingly combine
energy budget models to describe individual life histories
[33,34]. Because IProjMs can also account for multiple continu-
ous state variables, trait distributions at the population level
can change, either plastically or evolutionarily, according to
shifts in individual life cycles and inheritance functions [18].
IProjMs have more recently been combined with IPopMs
to provide better estimates of individual-level traits and
population-level density dependence from multiple data
sources [35]. Still, model predictions are informed by the
population data, limiting predictions of population respon-
ses to novel environmental conditions in the future for
which data do not yet exist. Demographic models are also lim-
ited to representing immigration and emigration rates in
homogeneous environments, and so cannot incorporate
individual-level behavioural decisions in spatially explicit
landscapes (table 1).
(b) Species distribution models
Classical Species Distribution Models (SDMs, also known as
niche models, climate envelope models, and habitat models)
were developed to better understand the relationships
between species distributions and environmental variables
in spatially explicit landscapes [40]. Classical SDMs typically
infer species’ ecological niches, using statistical relationships,
from their distributions across reference landscapes for which
abiotic conditions (e.g. temperature, precipitation, soil type)
are known. Models are then coupled with environmental
change forecasts to project future species distributions [51].
The relative ease of building SDMs makes them popular
tools in predicting the distributions of species under climate
changes [52,53], conservation planning [54], and invasive
species risk assessments [55] at landscape scales. However,
the relationships between species abundances and distri-
butions, on which classical SDMs are built, will likely vary
outside of the spatial and/or temporal extents of the data
to which they were fitted. Projecting population dynamics
into the future with classical SDMs is therefore problematic
due to the potential for environmental variables and species
distributions to covary in novel ways [51]. Future species
distributions will also be strongly influenced by species be-
haviour and landscape factors which limit dispersal of
metapopulation dynamics (e.g. habitat fragmentation) [56].
As such, classical SDM predictions in novel environmental
conditions are associated with high uncertainty [57]. These
limitations of classical SDMs, alongside other caveats,
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have been reviewed previously [58,59] and has led to the
development of process-based SDMs.

Process-based SDMs aim to address the shortcomings
of classical SDMs by incorporating additional processes such
as demographic rates, physiological and behavioural con-
straints to movement, connectivity between suitable patches,
and population dynamics [60–62]. For a number of species,
both correlative and mechanistic SDMs have been developed
and often give comparable predictions of future distribu-
tions under climate change [61,63]. Other mechanistic SDMs,
however, have identified important processes for accurately
predicting species abundances and distributions. Amechanistic
SDMdeveloped to predict historical changes in the distribution
of the mosquito Aedes aegypti across Australia, for instance,
found that the incorporation of evolution in egg desiccation
resistance was key to predicting species distribution shifts
under climate change [42]. Similarly, the range dynamics of
the widespread North American lizard, Sceloporus undulates,
were better predicted when individual bioenergetics were
incorporated in a process-based SDM [41]. Most process-
based SDMs, however, focus on processes linked to species
demographic rates rather than behaviour.

Dynamic range models (DRMs) have recently been
introduced to address the lack of behaviour in SDMs, by
incorporating the effects of dispersal on species abundance
and distribution alongside population demography [64].
That is, species abundance and distribution data are used
to estimate statistical relationships between environmental
variables and demographic rates, density dependence, and
dispersal rates in a statistical model [64]. There are relatively
few examples of operational DRMs, but a recent evaluation
of several approaches found DRMs, compared to classical
and process-based SDMs, to improve predictions under
current climate conditions [44]. However, model results were
evaluated using simulated rather than real data, while pre-
dictions under climate change scenarios were comparable
across models [44]. Pagel & Schurr [64] suggested that the
use of mechanistic submodels, for both niche and population
dynamics, would increase the predictive power of DRMs
under environmental change.

(c) Individual-based models
Individual-based models (IBMs; also known as agent-based
models, ABMs) consider individuals and their variation as
the fundamental building blocks of ecological systems,
while landscapes are often dynamic and characterized by
environmental drivers [65]. During model simulations, indi-
viduals interact with one another and their environment
and make decisions about how to maximize their fitness in
a given environment, resulting in emergent predictions at
the population level. IBMs can thus describe the bottom-up
mechanisms that give rise to population dynamics in novel
environmental and management scenarios [8]. Accounting
for individual variation explicitly further allows for predic-
tions of population distributions according to individual
characteristics across heterogeneous environments. IBMs
have thus proven to be particularly useful in addressing
land management and conservation scenarios, where the con-
sequences of individual exposures to multiple stressors on
species populations can be predicted [3,66]. Despite their
many advantages, however, IBMs are far less commonly
used for predicting environmental change effects on species
abundances and distributions than MPMs and SDMs [3].
A key limitation of IBMs is the need for sufficient, and pre-
cise, individual-level data to parametrize species life cycles and
behaviours under various environmental scenarios [67]. Data
availability at the individual and population level is often
limited for different species, and so most IBMs are developed
ad hoc with the model’s purpose (i.e. species, environmental,
and management scenarios) and data availability in mind
[68]. IBMs are thus less standardized than demographic
models or SDMs and can be time-intensive to develop. IBMs
are also not necessarily mechanistic, and demographic rates
are widely used to parametrize IBMs. However, demographic
models are being increasingly replaced by physiological and
behavioural mechanisms which better describe fundamental
relationships across species and environmental variables
[48–50]. These ‘mechanistic’ IBMs are better able to make pre-
dictions outside of the range of environmental conditions for
which they were parametrized because the individual-level
mechanisms remain unchanged across scenarios.
4. Towards a standardized mechanistic approach
in population modelling

Progress in mechanistic population modelling has been made
by integrating individual-level mechanisms in historically
correlative or demographic approaches (table 1). Indeed, a
common feature of the population modelling approaches
reviewed in the previous section is the recent integration of
mechanisms to provide better predictive power. However,
there is little consensus on how to integrate the full range of
mechanisms within population models. There is thus an over-
arching need to work towards a standardized mechanistic
approach across existing populationmodels. Such an approach
would consider different individual-level mechanisms (physi-
ology, behaviour, and evolution) and the interactions between
them (figure 1). A key benefit to a standardized approach is
that current ad hoc development of mechanistic approaches
is time-consuming. Also, because population models are typi-
cally developed to answer specific questions they are often
species and site specific. By integrating fundamental and gen-
eral eco-evolutionary rules (e.g. thermodynamics and energy
conservation, stoichiometry, natural selection), a standardized
mechanistic approach would be applicable across taxa and
environmental scenarios and have better predictive power
under environmental change.
5. Mechanistic submodels for representing
individual-level mechanisms within
population models

Individual mechanisms need to be represented using quanti-
tative submodels in mechanistic population models. Ideally, a
toolkit of standardized mechanistic submodels would be
available for modellers to integrate into population models
and test for different species and scenarios. A synthesis of
existing submodels, however, is needed to better understand
how these could be linked in a standardized mechanistic
population model (figure 1). Here, we review approaches
currently used to describe physiological, behavioural, and
evolutionary mechanisms at the individual level. While
these individual mechanisms interact with one another, the



abiotic drivers
(e.g. temp, food)

stressors
(e.g. pollution)

biotic drivers
(e.g. competition)

behaviour
(e.g. foraging)

physiology
(e.g. energetics)

abundance

distribution

individual mechanisms population dynamics

evolution
(e.g. adaptation)

Figure 1. Conceptual standardized mechanistic approach for predicting animal population dynamics in response to spatially explicit abiotic drivers (blue) and mul-
tiple stressors (red). Individual mechanisms (black) interact to drive shifts in population abundance and distribution (green), and biotic drivers (orange) cause
feedbacks between population dynamics and individual mechanisms. (Online version in colour.)
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methods to model each often come from disparate fields and
so are considered separately in the following section.

(a) Physiology
Phenotypic plasticity is often described using energy budget
models (also known as energy allocation, bioenergetics, or
biophysical models), which integrate fundamental principles
of physiological ecology. Energy budget models represent
how individual animals acquire energy from food resources
and expend assimilated energy on different life cycle pro-
cesses in order to maximize Darwinian fitness [69,70].
When food is limited, for instance, r-selected species often
allocate energy to reproduction before growth. Because phys-
iological and biochemical properties are widely shared across
taxa and/or species, energy budgets also provide a general
framework for representing individual life cycles [71].
When coupled with heterogeneous landscapes, energy bud-
gets integrated into population models are useful for
predicting population responses to changing resource distri-
butions and temperature regimes [48,49]. However, current
energy budget approaches are limited to describing life
cycles in response to a small number of abiotic drivers (temp-
erature, resource amount, and energy contents).

Nutrition, togetherwith energy, plays a central role in physi-
ology through the need to maintain nutrient homeostasis [72].
Ecological stoichiometry (ES) is used to investigate environ-
mental effects on the nutrient (carbon, nitrogen, phosphorous)
stoichiometry of organisms, and how nutrients flow through
individuals and populations [73]. Combinations of energy
budget and ES concepts in a unified framework have been
suggested to predict the influence of nutrition on animal popu-
lations but have not yet been appliedwithin a populationmodel
[74]. Similar approaches have been suggested to combine the
metabolic theory of ecology and ES [75]. Still, metabolic submo-
dels do not currently integrate mechanisms of acclimatization,
adaptation, or genetic plasticity, whereby the expression of
physiological traits vary with environmental stress.

(b) Behaviour
Behavioural plasticity plays a central role in the ability of ani-
mals to cope with environmental changes [11]. Classical
behavioural ecology theories such as optimal foraging, ideal
free distribution (IDF), and kin selection provide testable sub-
models for describing animal behaviour in population
models. Yet, most assume that animals will always move in
order to optimize their fitness and that they have perfect knowl-
edge of the profitability of their environment [76]. IDF, for
example, assumes equilibrium distribution of organisms
among patchy resources or habitats [77]. Many animals, how-
ever, have shown maladaptive behavioural responses to
environmental changes [78], suggesting the need to understand
animal behaviour according to trade-offs between an individ-
ual’s fitness and their position in a rapidly changing
environment.

State-space models (SSMs) of animal movement integrate
unobserved interactions between individual fitness and
environmental variables to better understand movement pat-
terns [79]. Coupling SSMs with robust individual physiology
and evolution submodels could thus improve the mechanistic
basis for understanding animal abundances and distributions
in future conditions. On the other hand, energy budget
models coupled with spatially explicit IBMs can be used to
understand howanimals forage tomaximize their fitness in het-
erogeneous environments [70]. However, the profitability of
landscape patches and trade-offs between different environ-
mental variables need to be described [66]. Patch profitability
then needs to be linked to the probability of moving, together
with movement metrics such as speed, direction, and turning
angles [80]. Nutritional ecology has addressed some of these
questions through theGeometric Framework,whichwas devel-
oped to understand how individual behaviour (e.g. foraging)
responded to changes in the nutritional value (energetic macro-
nutrients, micronutrients, and non-nutritional components) of
available food resources [81].

Animal groups are influenced by additional behaviours
such as collective decisions and sociality. Many studies
have stressed the importance of quorum responses as a key
feature of collective decisions at the group level, which are
modelled as nonlinear probabilities of an individual choosing
a particular action according to the number of individuals
already committed to the same decision [82], although this
is just one means by which collective decisions are made.
In other groups, the age-structure of populations can be criti-
cal in group responses to environmental changes, particularly
in long-lived species where changes in behaviour can occur
faster than evolution [83]. In such cases, the loss of leaders
can lead to an overall loss of information from the group
[84]. Although animal sociality is an important mechanism
driving population responses to environmental change [85],
there are currently very few approaches for linking animal
culture to behavioural decisions.
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(c) Evolution
Evolutionary processes moderate species responses to environ-
mental change via complex eco-evolutionary dynamics [86].
Genetic variation and heritability are often studied at the popu-
lation level [20], and observations can be used to predict the
selection response of a population given single- or multiple-
trait heritability and a specified selection pressure [87].
Approaches such as the breeders equation have enabled
identification of the genetic and non-genetic components of
phenotypic changes in response to novel environments. Demo-
graphic processes within populations, however, play a key role
in evolutionary change. The mechanistic MPM of de Vries &
Caswell [37] addresses this issue by integrating a demographic
genetic model which accounts for genotype-stage dynamics
and allows for the maintenance of a genetic polymorphism.
Adaptive population responses to environmental change, how-
ever, rely on interactions between different levels of biological
organization in the same way as nonadaptive population
responses [88]. That is, evolutionary change at the population
level will feedback to a number of mechanisms operating at
the individual level ([89], figure 1).

The influence of trait variation on demographic rates and
their heritability is increasingly accounted for in population
models which integrate evolutionary processes. IProjMs which
link demography to trait variation, for instance, can incorporate
eco-evolutionary dynamics using statistical relationships
between vital rates and environmental variables and estimates
of heritability [90]. Likewise, the reaction norm (RN) concept
for quantifying genotype–phenotype relationships is typically
expressed as simple linear regressions between trait value in
the average environment and the change in phenotype across
an environmental gradient [91]. While statistical relationships
between demographic rates and evolutionary change allow for
models to account for the influence of population dynamics on
adaptive responses, they cannot describe the fundamental
relationships influencing genetic structure [92]. An alternative
approach, typically applied to macroevolutionary processes, is
the direct representation of alleles coding for a phenotypic trait
of individuals that are then inherited by their offspring [47,93].
Although applications of such models have so far been largely
theoretical, Coulson et al. [39] recently set out a framework for
incorporatingdevelopmental and inheritance rules for both gen-
etic and environmental components of a phenotype in IProjMs.
Such an approach can predict both plastic and adaptive
population responses to environmental change.
6. Current limitations and future directions
Representing how animal population dynamics emerge from
interactions between individual mechanisms in spatially expli-
cit landscapes will improve the predictive power of population
models. Such mechanistic approaches are potentially more
flexible and informative than existing population modelling
approaches which rely on correlative relationships and/or ad
hoc model development. A number of current limitations,
however, need to be overcome before progress in the develop-
ment of a standardized mechanistic approach in population
modelling can be made.

(a) Data availability
A key limitation in population modelling is the availability of
data to parametrize, calibrate, and validate models.
Historically, SDMs have relied only on presence–absence
data, demographic models were built with snapshots of abun-
dance over time, and IBMs have focused on a single well-
studied system to fulfil high data needs. A standardized
mechanistic approach, however, necessitates data at the indi-
vidual level for parametrization and the population level for
validation. For most species, data are often limiting at one
level. For instance, short-lived species are often well studied
at the individual level in laboratory conditions and less so at
the population and field level (e.g. invertebrates and fish),
whereas population data may be available for wild animals
but individual-level data are scant (e.g. large mammals).
Another limitation is thatmost empirical studies are conducted
over short timescales, while the processes influencing popu-
lation responses to environmental changes operate over
longer timescales.

Individual-based and long-term field studies represent an
important resource for the development and evaluation of a
standardized mechanistic approach in population modelling
[94]. In particular, datasets for diverse species and scenarios
will be crucial in testing whether such an approach can identify
how different mechanisms influence a population response to
different environmental changes. Individual-based studies, for
instance, haveplayedakey role in identifying the role of individ-
ual variation, age-related fitness, and social structures on
population dynamics [95–99]. Still, mechanistic submodels
often require more detailed information at the individual
level than is recorded in the field. Energy budget models,
for example, often require prior knowledge about ingestion,
assimilation, growth, andreproduction rates inoptimal environ-
mental conditions. An advantage of developing a standardized
mechanistic approach in population modelling, however, is in
providing a consensus on how to address data gaps using
robust statistical techniques and calibration tools (e.g. [66]).

Other promising advances beingmade in the collection and
sharing of data include remote sensing and citizen science pro-
jects [100]. For example, satellite tracking technology such as
that used in the recently launched International Cooperation
for Animal Research Using Space (ICARUS) project [101] can
provide valuable data for parametrizing the movements
and dispersal ability of individuals. A growing data sharing
culture and the growth of freely available online databases
such as Add-my-pet [102] and Movebank [103] present
another promising source of data for population models.
A standardized mechanistic approach, developed and tested
for diverse species and scenarios simultaneously, would
provide additional consensus on data requirements and avail-
ability from diverse sources. Such an approach would also
identify key knowledge gaps in physiological, behavioural,
and evolutionary ecology which could be addressed through
coupled modelling-empirical studies.
(b) Eco-evolutionary theory
Quantitative methods for representing individual mechanisms
and the interactions between them as in figure 1 need to be
developed and tested. A number of current approaches, based
on fundamental eco-evolutionary theory, have been developed
to address singlemechanisms.A pragmaticway forward, there-
fore, is to establish which of these competing approaches
for representing physiology, behaviour, and evolution can be
used within a single framework. Because different approaches
have been designed to address different questions, however,
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components from a variety of approaches may need to be inte-
grated. Using established and extensive datasets for different
species and scenarios, as discussed above, provides a way to
develop a unified approach by testing their assumptions and
predictions. Novel eco-evolutionary theory will likely emerge
from such an exercise, because interactions between physio-
logy, behaviour, and evolution need to be accounted for to
understand diverse population responses.

(c) Environmental scenarios
There is an overarchingneed for realistic andmulti-dimensional
environmental scenarios. Climate forecasts, from a range of
Earth system models and for numerous greenhouse gas emis-
sion scenarios, are well developed as inputs to population
models. A general lack of standardized multiple stressor scen-
arios, however, limit many population modelling approaches
to focusing on the effects of climate changes alone. Multi-
dimensional environmental change scenarios would include
multiple environmental drivers and stressors and could be
developed by integrating key drivers of biodiversity change
(e.g. land use, atmospheric CO2 concentration, nitrogen depo-
sition, and climate) using different scenarios generated by
global models of climate, vegetation, and land use. Such scen-
arios could identify how global drivers interacted in the past
(e.g. antagonistically or synergistically) to informmore realistic
environmental scenarios in the future. Hypothetical scenarios
of additional stressors, such as habitat fragmentation, pollution,
and invasive species, could be further integrated for projection
purposes. Such standardized landscape-scale environmen-
tal scenarios will be key to objectively evaluating different
modelling approach predictions under environmental change.
7. Concluding remarks
Mechanistic population models are needed to better antici-
pate, and mitigate, the ecological consequences of future
environmental changes. Currently, population models tend
to be either ‘correlative’ or ‘mechanistic’. Correlative models
assess how current ecological ranges of species will shift or
disappear with changing climatic conditions, and provide
useful assessments of species’ exposure to environmental
changes but are limited to extrapolations of historical popu-
lation patterns into the future. Mechanistic models, on the
other hand, provide more robust predictions about a species’
vulnerability to future environmental changes by incorpo-
rating individual-level mechanisms but are time- and data-
intensive and limited to finer ecological scales compared to
correlative approaches. A standardized mechanistic approach
is needed for more informed predictions of animal popula-
tion responses to novel environmental conditions. Progress
in predictive population modelling should thus focus on
identifying extensive datasets for different species and
scenarios for model development and evaluation, the con-
ception of a unified approach for integrating current eco-
evolutionary theory to represent individual mechanisms
and the interactions between them, and the construction of
multidimensional environmental scenarios for informing
population predictions in the uncertain future.
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