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The divergence of sexual signals is ultimately a coevolutionary process:
while signals and preferences diverge between lineages, they must remain
coordinated within lineages for matings to occur. Divergence in sexual sig-
nals makes a major contribution to evolving species barriers. Therefore, the
genetic architecture underlying signal–preference coevolution is essential to
understanding speciation but remains largely unknown. In Laupala crickets
where male song pulse rate and female pulse rate preferences have coe-
volved repeatedly and rapidly, we tested two contrasting hypotheses for
the genetic architecture underlying signal–preference coevolution: linkage
disequilibrium between unlinked loci and genetic coupling (linkage disequi-
librium resulting from pleiotropy of a shared locus or tight physical linkage).
Through selective introgression and quantitative trait locus (QTL) fine map-
ping, we estimated the location of QTL underlying interspecific variation in
both female preference and male pulse rate from the same mapping popu-
lations. Remarkably, map estimates of the pulse rate and preference loci
are as close as 0.06 cM apart, the strongest evidence to date for genetic coup-
ling between signal and preference loci. As the second pair of colocalizing
signal and preference loci in the Laupala genome, our finding supports an
intriguing pattern, pointing to a major role for genetic coupling in the quan-
titative evolution of a reproductive barrier and rapid speciation in Laupala.
Owing to its effect on suppressing recombination, a coupled, quantitative
genetic architecture offers a powerful and parsimonious genetic mechanism
for signal–preference coevolution and the establishment of positive genetic
covariance on which the Fisherian runaway process of sexual selection relies.
1. Introduction
From the courtship dances of birds of paradise to the songs of crickets, species
commonly differ in courtship behaviours [1–3]. Because variation in sexual sig-
nals and the associated preferential responses can ultimately give rise to
reproductive barriers between species, the divergence of sexual signalling sys-
tems may be a potent driving force of speciation [3–5]. Divergence of sexual
signalling systems often entails the coevolution of signals and preferences
within a lineage because they are functionally constrained to maintain effective
communication [6,7]. What genetic architecture facilitates signal–preference
coevolution? Because response to selection depends on the underlying genetics,
the answer to this question is indispensible to understanding the evolution of
sexual signalling systems and speciation.

Two contrasting hypotheses for the genetic architecture underlying signal–
preference coevolution have been proposed. The first hypothesis posits that
genetic variation in sexual traits and preferences is caused by unlinked loci.
Coevolution is mediated through preferential mating that results in linkage dis-
equilibrium between the trait and preference alleles over time [8,9]. By contrast,
the second hypothesis proposes that genetic coupling (a shared, pleiotropic
locus or tightly linked sexual trait and preference loci) underlies variation in
both sexual traits and preferences [10–14]. Particularly under pleiotropy, genetic
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covariance is realized by mutations that affect both traits sim-
ultaneously, enhancing the efficacy of divergent selection on
the communication system. Under both pleiotropy and tight
physical linkage, divergent signal–preference systems are
resistant to the homogenizing effects of gene flow when
species hybridize because recombination between signal
and preference alleles is suppressed. By contrast, under the
first hypothesis, recombination can decrease the genetic
covariance between unlinked signal and preference loci and
even reverse speciation. The two genetic architectures, thus,
may differ in their potency in promoting and maintaining
speciation.

Theoretical models of sexual selection often assume that
signal and preference loci are unlinked and that a positive
genetic correlation between these traits arises through assor-
tative mating [15–22]. Indeed, genetic mapping studies have
provided support for the hypothesis of unlinked loci in
chemical, acoustic and visual signalling modalities [23–25].
By contrast, genetic coupling is often considered unlikely
[19]. However, recent evidence from quantitative trait locus
(QTL) mapping and introgression studies supports the pres-
ence of colocalized genes underlying interspecific signal–
preference variation in crickets, butterflies, fruit flies and
fish [26–30]. In addition, laboratory-induced mutations that
alter both male signals and female preferences in fish and
flies [31–33] demonstrate that pleiotropic alleles underlying
signals and preferences do exist in the genomes of sexual
organisms.

The Hawaiian cricket Laupala presents a powerful system
to investigate the genetic architecture underlying signal-
preference coevolution during divergence in sexual signalling
systems. Rapid speciation in this genus has resulted in 38
morphologically and ecologically similar species distin-
guished by marked differences in acoustic behaviours [34].
Both male song and female acoustic preference have diverged
repeatedly between, but remain coordinated within, species
[34–37]. Like most crickets, Laupala males sing rhythmic
songs that attract females [7,38]. Moreover, female preference
for the salient feature, pulse rate, can be studied in computer
playback experiments, wherein females indicate preferences
by phonotaxis (i.e. orienting and walking towards the pre-
ferred song). Thus, female preference for pulse rate can
be easily isolated and measured. In addition, variation in
acoustic behaviours both within and between species is quan-
titative [29,36,37], exemplifying a common form of trait
evolution in natural systems. Finally, acoustically distinct
species of Laupala can be hybridized, allowing the genetic
analysis of natural variation in acoustic behaviour.

In support of the genetic coupling hypothesis, a previous
study of the fast singing Laupala kohalensis (pulse rate 3.72
pulses per second, pps) and the slow singing L. paranigra
(pulse rate 0.71 pps) demonstrated a shared QTL underlying
song and preference variation on linkage group one (LG1)
[29]. These colocalized loci explain approximately 9% and
15% of the species difference in pulse rate and pulse rate
preference, respectively. We subsequently isolated and fine-
mapped a song QTL on LG5 that explains an additional
approximately 11% of the pulse rate difference of this species
pair [39]. Marker association studies have predicted the exist-
ence of a preference QTL on LG5, yet its location on this
linkage group remains unknown [40,41].

Here, we present the remarkable discovery of a second
QTL for female acoustic preference, whose map position
coincides with the male pulse rate QTL on LG5. This rep-
resents the second case of a shared QTL underlying signal-
preference coevolution in Laupala. This finding illuminates
the process of quantitative evolution in sex-limited traits
under sexual selection. Furthermore, our results suggest
that genetic coupling in signal–preference communication
systems may be more common than previously thought.
2. Methods
(a) Breeding design
Details of the breeding design have been described in [39].
Briefly, through selective introgression, we isolated and intro-
gressed the largest-effect QTL for the male song pulse rate
(QTL4) on LG5 from L. paranigra into the L. kohalensis genome
in two independent near isogenic lines (NIL4C and NIL4E;
figure 1) [40,43]. NIL males were then backcrossed with L. koha-
lensis females to generate two F2 mapping families for two NILs
(denoted as family 4C.9 and 4E.1; figure 1), from which we
phenotyped 89 females and 469 males. All crickets were reared
individually in 120 ml specimen cups with a piece of moist
tissue and fed ad libitum Organix organic chicken and brown
rice dry cat food (Castor & Pollux Natural Petworks, Clackamas,
OR, USA) twice per week at 20°C and light cycle at 12 L : 12 D.

(b) Male song simulation
We simulated digital songs for female preference trials in Lab-
VIEW v.8.2 [44]. The simulated songs consisted of pulsed
sinusoidal tones with characteristics of natural Laupala songs
(40 ms pulse duration, 5 kHz carrier frequency; also see elec-
tronic supplementary material, methods). In a preference trial,
songs played simultaneously from two speakers were calibrated
to 90 dB at the cricket release point and 75 cm from the speaker
(i.e. at the centre of the phonotaxis tube, see below).

(c) Phenotyping
Methods for phenotyping male song pulse rate were reported in
[39]. Here, we measured the peak preference for pulse rate from
females using repeated, two-choice phonotactic trials. The trials
were conducted in custom-made phonotaxis tubes (figure 2a;
also see electronic supplementary material, methods) in an RS-
243 ETS-Lindgren’s sound isolation booth (ETS-Lindgren, Wood
Dale, IL, USA) at 20°C.

Each phonotaxis trial consisted of a 5-min pre-trial period
and a 10-min testing period. Two simulated songs differing by
0.5 pps, but were otherwise identical, were broadcasted simul-
taneously during both the pre-trial and testing periods from
speakers placed 180° apart (figure 2a). Songs were randomized
by the speaker for each trial. During the pre-trial period, the
focal female was confined to the central cage. To commence a
trial, the doors at both ends of the central cage were opened to
connect the cage with the phonotaxis tube. If the focal female
entered the preference zone defined as the last 10 cm at each
end of the tubes, we scored a preference for the song pulse rate
from that speaker.

Each femalewas tested in a series of trials to estimate peak pre-
ference (figure 2b). All females were initially tested in four trials in
random order where the pulse rates were 3.2 versus 3.7 pps, 3.3
versus 3.8 pps, 3.4 versus 3.9 pps and 3.5 versus 4.0 pps for 4C.9;
and 3.0 versus 3.5 pps, 3.1 versus 3.6 pps, 3.2 versus 3.7 pps and
3.3 versus 3.8 pps for 4E.1. The pulse rate range of the initial four
trials was determined by the F1 male pulse rate distribution in
each family. If the female response switched from faster pulse
rates at the lower end to slower pulse rates at the higher end of
the trial range, her peak preference was estimated on the basis of
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Figure 1. A two-step breeding design for QTL fine mapping of male song
pulse rate and female acoustic preference variation between Laupala parani-
gra (slow singer) and L. kohalensis ( fast singer) on linkage group 5
(represented by red and blue bars). In step 1, NILs were created through
four generations of marker-assisted backcrossing (see the red arrow) selecting
for individuals carrying the L. paranigra allele at the genetic marker linked to
QTL4 in Shaw et al. [42] (indicated by the black star) and one generation of
intercrossing. Two independent NIL replicates (NIL4C and 4E) were estab-
lished. In step 2, seventh- to ninth-generation NIL males were backcrossed
to L. kohalensis females to generate segregating F2 mapping populations
within each NIL replicate. The generation used for genotype-by-sequencing
is indicated with GBS. Reproduced with modifications from figure 2 in [39]
with permission from the Genetics Society of America.
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from preferring the faster to the slower pulse rate between trial 3.3
versus 3.8 pulses per second (pps) and trial 3.4 versus 3.9 pps. The peak
preference is, thus, calculated as (3.8 + 3.4)/2 = 3.6 pps.
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these four trials as the midpoint of the switch from faster to slower
pulse rates (figure 2b). If the female showed a consistent response
to either faster or slower pulse rates in the initial four trials, shewas
further tested in extended trials at either the lower (4C.9: 3.0 versus
3.5 pps and 3.1 versus 3.6 pps; 4E.1: 2.8 versus 3.3 pps and 2.9
versus 3.4 pps) or the higher (4C.9: 3.6 versus 4.1 pps and 3.7
versus 4.2 pps; 4E.1: 3.4 versus 3.9 pps and 3.5 versus 4.0 pps)
end of the range, depending on the direction of her response in
the initial trials (figure 2b). We repeated each trial up to three
times for females who failed to respond in a given trial. On any
given day, females were tested in not more than two trials, with
at least 2 h between the trials. In cases where a female consistently
showed a preference for faster or slower pulse rates in all six trials,
we estimated the peak preference at the most conservative value
(i.e. the midpoint in the next extreme trial, assuming the female
would show a switch in her preference).

(d) Genotyping and linkage mapping
Genotyping has been reported in [39]. Briefly, we sequenced F2
individuals using genotyping-by-sequencing [45]. Genotypes of
single-nucleotide polymorphism (SNP) markers were called in
each family using the L. kohalensis genome reference as the L.
kohalensis parent (whose genotype was denoted as ‘B’); the
alternative allele (denoted as ‘A’) was assigned to the NIL
parent. We excluded SNPs that deviated significantly from a
1 : 2 : 1 segregation ratio (Benjamini–Hochberg adjusted p < 0.05)
and/or had a mean depth of coverage less than 20 in each
family. Using the resulting SNPs, linkage maps of LG5 for
family 4C.9 and 4E.1 have been constructed previously [39]
and integrated herein in Joinmap 4 [46]. We kept one SNP
marker per 10 kb on the same scaffold. When markers on
the same scaffold showed order conflict between the two
families, we removed the marker with fewer unique pairwise
recombinations until the marker order conflict was resolved.
(e) QTL mapping
QTL mapping for pulse rate in each family was performed pre-
viously [39]. Here, we combined data from both families to
increase power in QTL mapping of female peak preference on
the integrated map. We also remapped the pulse rate QTL
using combined data on the integrated map. Individuals with
less than 25% missing genotypes were used for QTL mapping.
We first tested for a family effect on phenotype using the
Welch’s t-test. We then performed multiple imputation (IMP)
with family as an additive covariate. As a minor-effect QTL for
song pulse rate has been detected previously, we also performed
multiple QTL mapping (MQM) for both pulse rate and prefer-
ence in case the existence of other minor-effect QTL affects
location and effect size estimation of the focal QTL. Missing gen-
otypes were simulated by 10 000 multiple imputations. Linkage
group-wide logarithm of odds (LOD) thresholds were calculated
from 1000 permutations at an α level of 0.05. We estimated the
effect sizes of a significant QTL by both the final MQM models
and by phenotypes at the marker with the highest LOD score.
All QTL mapping analyses were conducted in R/qtl v.1.39-5 [47].

Finally, we tested whether the phenotypic distribution of
female preference in the combined F2 families deviated from a
1 : 2 : 1 Mendelian segregation ratio with a two-sided χ2-test. To
do so, we binned phenotypic data by dividing the range of the
phenotypic values evenly in three bins.
3. Results
We obtained peak preference measures from 56 and 33 F2
females in 4C.9 and 4E.1, respectively, and 21 females in
NIL4C and L. kohaensis lines. As expected, females from the
control L. kohalensis line preferred fast pulse rate (3.78 ±
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Table 1. Results from MQM for variation in male song pulse rate and female peak preference for pulse rate using combined data from two F2 mapping
families. Only results for the major-effect pulse rate QTL are shown in this table.

trait sex

sample

size

linkage

group

QTL location

(cM)

LOD score

(LOD

threshold)

1.5-LOD

confidence

interval (cM)

QTL effect

size–additive

(pps)

% species

difference

explained

% F2
variance

explained

preference female 71 5 26.17–26.34 7.35 (2.63) 25.20–27.99 0.13 ± 0.03 4.32 58.76

pulse rate male 450 5 26.40 207.09 (2.51) 26.34–26.80 0.33 ± 0.01 10.96 85.61
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0.10 pps, mean ± s.d., n = 17), and females from a NIL4C
preferred slow pulse rate (3.34 ± 0.05 pps, n = 4; figure 3).

Using IMP, we localized a preference QTL from combined
4C.9 and 4E.1 families that explained 58.8% of F2 variance in
female preference to a peak (plateau) in the LOD profile
between 26.17 and 26.34 cM (table 1 and figure 4) on the inte-
grated LG5 (electronic supplementary material, results and
figure S1). The final MQM model detected a single QTL at the
same location (electronic supplementary material, figure S2).
The 1.5-LOD confidence interval spanned 2.79 cM (table 1)
and included eight SNP markers from seven scaffolds (figure 4).
Three markers on scaffold S001371, S006506 and S000353 had
the highest LOD score among all markers (figure 4).

At the markers with the highest LOD score, females with
the L. paranigra-origin (AA), the heterozygous and the L. koha-
lensis-origin (BB) genotypes showed preference for slow (3.27
± 0.05 pps, mean ± s.e.; figure 4), intermediate (3.42 ±
0.03 pps) and fast pulse rates (3.66 ± 0.04 pps), respectively.
The phenotypic effect of a single allele at the preference
QTL was largely additive (0.13 ± 0.03 pps), explaining 4.3%
of the phenotypic difference between the pure species parents
(table 1). Combining 4C.9 and 4E.1, the phenotypic distri-
bution of the female peak preference in the F2 generation
was consistent with a 1 : 2 : 1 segregation ratio (bin1 = 21,
bin2 = 45, bin3 = 23, χ2 = 0.10, d.f. = 2, p = 0.95; figure 3).

We measured pulse rate from 339 and 130 males in 4C.9
and 4E.1, respectively (published previously in [39]). A
major-effect QTL explaining 85.6% F2 variance in pulse rate
was localized at 26.40 cM in both IMP and MQM (figure 4;
electronic supplementary material, figure S2 and table S1),
consistent with previous results [39]. The 1.5-LOD confidence
interval of this QTL spanned 0.46 cM (table 1 and figure 4).
MQM identified two additional small-effect QTL that
explained 1.17% and 0.48% of F2 variance at 5.6 cM and
59.8 cM, respectively (electronic supplementary material,
figure S2 and table S1).

Similar to the preference QTL, males with homozygous L.
paranigra (AA), heterozygous (AB) andhomozygousL. kohalen-
sis genotype (BB) at themarkerwith the highest LOD score had
slow (3.16 ± 0.01 pps), intermediate (3.51 ± 0.01 pps) and fast
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pulse rates (3.87 ± 0.01 pps; figure 4), respectively. The pheno-
typic effect of an allele at the pulse rateQTLwas almost entirely
additive (0.33 ± 0.01 pps), explaining 11.0% of species differ-
ence (table 1). The F2 phenotypic distribution of male pulse
rate was consistent with a 1 : 2 : 1 segregation ratio (figure 3)
as shown previously [39] and did not significantly differ
from that of female preference in F2 (χ

2 = 2.15, d.f. = 2, p = 0.34).

4. Discussion
Sexual signals and preferences commonly differ between
species, reflecting the powerful role of signal and preference
divergence in the speciation process [5,48]. While sexual
traits routinely diverge, sexual selection likely constrains
sexual signals and preferences to remain coordinated
during this process. The genetic architecture underlying
signal–preference coevolution is central to understanding
the complex selective landscape underlying speciation.
Signal and preference traits are often modelled with indepen-
dent hereditary bases where assortative mating alone results
in linkage disequilibrium among unlinked loci. Yet, recent
findings consistent with a coupled basis to natural variation
in signals and preferences in multiple taxa [26–30] suggest
a key to understanding signal–preference coevolution. Lau-
pala crickets exemplify these patterns, exhibiting distinctive
male songs and female acoustic preferences that have
diverged between closely related species in an extremely
rapid speciation context [34]. Laupala are further distinct
from other systems in that signal and preference are sex-lim-
ited traits involved in speciation by sexual selection.
Moreover, unlike traits with simple genetic switches, both
song and preference are complex, and vary quantitatively,
representing a common mode of trait evolution. Laupala,
thus, offers the potential for novel insights.

A significant limitation for many quantitative preference
phenotypes is the ability to estimate preference in a segregat-
ing population. The relatively simple acoustic behaviours in
Laupala allowed us to fine map a new female preference
QTL on LG5 between the fast singing (and preferring)
L. kohalensis and slow singing L. paranigra. We localized the
preference QTL on a 0.17 cM wide peak with a 1.5-LOD con-
fidence interval of only 2.8 cM. Our study is one of only three
to have mapped the location of preference/mate choice loci
with a sufficiently high resolution to rigorously test
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alternative hypotheses of genetic architecture [26,28]. More-
over, our study is unique among these in that acoustic
preference in Laupala is a sex-limited, quantitative trait
expressed in the context of sexual selection by female mate
choice [34], the leading causal explanation for the evolution
of elaborate sexual communication.

Remarkably, we found that the estimated map position of
the female preference QTL on LG5 is nearly identical to a
male pulse rate QTL with the peaks between only 0.06
(26.40–26.34) and 0.17 (26.40–26.17) cM apart (figure 4). Fur-
thermore, the 1.5-LOD confidence intervals of the preference
and song QTL largely overlap (figure 4; electronic sup-
plementary material, figure S2) with the top three LOD
scores for preference and song attributed to the same mar-
kers. Coincidentally, both preference and song QTL
contribute relatively minor to moderate effects in a largely
additive way to the differences in acoustic behaviours
between the two species (table 1). Equally importantly, the
phenotypic effects of pulse rate and preference QTL are in
the same direction, required for establishing a positive gen-
etic covariance between pulse rate and preference. Features
of genetic architecture such as these can greatly facilitate
the coevolution of a signal–preference system, whereby
both traits vary in quantitatively small steps in the same
direction, enabling coordinated changes despite the divergent
phenotypic evolution that must occur during the speciation
process [12–14].

The song and preference QTL identified in the present
study are the second pair of colocalizing QTL identified in
Laupala. We have previously mapped QTL that makes a simi-
larly coupled contribution to pulse rate and preference
differences between L. paranigra and L. kohalensis on LG1
[29]. At least eight and four QTL underlie the species differ-
ence in pulse rate and preference, respectively, between these
species [29,40–42]. The fact that two of the four preference
QTL independently coincide with a different pulse rate
QTL (the location of the remaining two as yet unknown)
suggests a compelling pattern underlying the coevolution of
these traits. Moreover, the allelic effect of the two preference
QTL and of their colocalizing pulse rate QTL together
account for roughly 20% of species difference (table 1
herein; table 1 in [29]). Such a substantial proportion attests
to a significant role that genetic coupling plays in sexual
signal divergence and speciation in Laupala.

Theoverlapof the confidence intervalsofpulse rate andpre-
ference QTL and the extremely close estimates of their peak
locations are consistent with a pleiotropic basis to variation in
pulse rate and preference. Pleiotropy provides a genetic mech-
anismwhereby positive genetic covariance between signal and
preference genes is an immediate consequence of mutations at
the locus (or loci for quantitative traits). Alternatively, our
results may reflect the genetic architecture of a tightly linked
signal–preference gene cluster, akin to a ‘supergene’, an equally
exciting explanation that has been repeatedlyshown to facilitate
the adaptation of complex traits [49–51]. Like pleiotropy, tight
physical linkage can facilitate coevolution by effectively sup-
pressing recombination between signal and preference alleles.
Distinguishing pleiotropy and tight linkage requires identify-
ing the causal genes and is a logical next step in this system.
Recent technological advances place such a goal within reach
in non-model systems [52].

Mechanistically, recent findings suggest that shared genes
for singing and temporal auditory pattern recognition are
plausible. Insect singing by wing movements is controlled
by central pattern generators (CPGs) in thoracic and abdomi-
nal ganglia [53,54]. In the field cricket, an auditory feature
detector circuit that selectively responds to the pulse rate of
conspecific song has been identified in the female brain
[55]. In this circuit, pulse rate selectivity is achieved via
post-inhibitory rebound that offsets direct and delayed line
inputs to a coincidence detector neuron by the exact duration
of the conspecific pulse period. We suggest that a shared mol-
ecular mechanism, for example, the type or number of ion
channels or neural projections, may regulate both the oscil-
lation period of the song CPG and the offset duration of
the feature detector circuit. Fine mapping and gene annota-
tion [39] identified a promising candidate gene for song
variation, the putative Laupala cyclic nucleotide-gated ion
channel-like gene (Cngl) on scaffold S001371. Here, we
show that the highest LOD score for preference also associ-
ates with this scaffold. Although unknown in Laupala,
Drosophila Cngl is expressed in brain, thoracic ganglia and
muscles [56], consistent with the expectation for a causal
gene for song and preference variation. Finally, a related
group of genes in the same gene superfamily are implicated
in both rhythmic muscle contraction [57–60] and temporal
coincidence detection and relay in auditory systems [61–63].
Such evidence renders Cngl a candidate pleiotropic gene for
further functional validation.

Colocalization of loci for sexual traits and mate choice has
been shown in two other high-resolution mapping studies. In
the three spine stickleback, the QTL for mate choice and body
shape were 14.3 cM apart [26]. In the Heliconius butterflies, a
QTL contributing to visual preference is only 1.2 cM from
optix, a gene regulating the forewing red band [28], demon-
strating genetic coupling underlying variation in wing
colouration and visual preference. In both these systems,
mating signals or cues are likely magic traits [64] that func-
tion in both ecological (foraging or predator avoidance) and
mate choice contexts. By contrast, the sexual traits we have
studied in Laupala are sex-limited and function primarily in
a reproductive context (ecological function of pulse rate or
preference for pulse rate has yet to be discovered), represent-
ing the widespread process of sexual selection by female
choice thought to underlie the evolution of many elaborate
and extravagant sexual signalling systems. Intriguingly, the
Fisherian runaway process of sexual selection, a primary
explanation for the evolution of exaggerated sexual traits,
relies on positive genetic covariance between sexual trait
and preference [8,19]. Whether such positive genetic covari-
ances exist is debated [65,66], our finding offers a
parsimonious and effective genetic mechanism for the estab-
lishment and maintenance of positive genetic covariance for
the trait pair [19,22,67].

Taken together with the studies above, genetic coupling
may transcend communication modality, evolutionary mech-
anism and taxonomic group (invertebrates or vertebrates)
and prove to be of general importance to the divergence of
sexual communication systems and speciation. In the light
of these emerging empirical findings, theoretical and model-
ling work has recently begun to explore the effect of
pleiotropy and tight physical linkage on the process and con-
sequence of lineage divergence [68,69]. Further empirical and
theoretical efforts should be fruitful in deepening our under-
standing of how divergence in communication systems can
spur speciation.
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