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Abstract

Topological gene-set analysis has emerged as a powerful means for omic data interpreta-

tion. Although numerous methods for identifying dysregulated genes have been proposed,

few of them aim to distinguish genes that are the real source of perturbation from those that

merely respond to the signal dysregulation. Here, we propose a new method, called Source-

Set, able to distinguish between the primary and the secondary dysregulation within a

Gaussian graphical model context. The proposed method compares gene expression pro-

files in the control and in the perturbed condition and detects the differences in both the

mean and the covariance parameters with a series of likelihood ratio tests. The resulting evi-

dence is used to infer the primary and the secondary set, i.e. the genes responsible for the

primary dysregulation, and the genes affected by the perturbation through network propaga-

tion. The proposed method demonstrates high specificity and sensitivity in different simu-

lated scenarios and on several real biological case studies. In order to fit into the more

traditional pathway analysis framework, SourceSet R package also extends the analysis

from a single to multiple pathways and provides several graphical outputs, including Cytos-

cape visualization to browse the results.

Author summary

The rapid increase in omic studies has created a need to understand the biological impli-

cations of their results. Gene-set analysis has emerged as a powerful means for gaining

such understanding, evolving in the last decade from the classical enrichment analysis to

the more powerful topological approaches. Although numerous methods for identifying

dysregulated genes have been proposed, few of them aim to distinguish genes that are the

real source of perturbation from those that merely respond to the signal dysregulation.

This distinction is crucial for network medicine, where the prioritization of the effect of

biological perturbations may help in the molecular understanding of drug treatments and

diseases. Here we propose a new method, called SourceSet, able to distinguish between

primary and secondary dysregulation within a graphical model context, demonstrating a
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high specificity and sensitivity in different simulated scenarios and on real biological case

studies.

This is a PLOS Computational BiologyMethods paper.

Introduction

The high-throughput “omics” approaches, such as genomics, proteomics, and transcriptomics,

have been producing large quantities of data growing in size over time. While this information

provides a more detailed knowledge of the molecular status of biological systems, at the same

time it poses new challenges to the scientific community. In fact, the specification of models

that can represent complex and dynamic biological systems has become a major bottleneck

nowadays.

One of the most promising and widely used computational approaches for identifying dys-

regulated genes—typically between two conditions—is gene set analysis [1], that moves from a

gene-centered perspective towards gene set-centered analysis, the gene sets being defined as

functionally related groups of genes, such us, for example, pathways in KEGG or REACTOME

[2, 3].

Among gene set-centered analyses, Topological Pathway Analysis (TPA) exploits the explicit

information on biological interactions among genes pictured in a pathway to enhance and

improve inferential analysis [4]. Indeed, a biological pathway can be converted into a graphical

structure where nodes are genes, and edges are biochemical interactions among them [5, 6].

Most of such TPA methods compute a score for the entire pathway [7–11], others suggest a

subsequent refinement of the analysis aimed at identifying subnetworks (also called modules)

[12–19], which represent signal paths, consistent with the condition under study.

Most methods proposed for this task identify all components affected by the condition and

do not aim to distinguish genes that are the real source of perturbation (for example, due to

mutation, copy number variations, or epigenetic changes) from those that merely respond to

the signal dysregulation. Adopting the terminology proposed in [20], these methods are not

designed to distinguish between the primary dysregulation and the effect of the so-called net-

work propagation, which is the secondary dysregulation, especially when the primary dysregu-

lation is played by a gene which itself does not show a strong and statistically significant

differential expression [21]. As typical examples of situations in which a dysregulation allows a

distinction into primary and secondary, consider intervention studies, such as knock-in/out or

drug-response studies, where the expression of one or more molecular targets is experimen-

tally modified. But the distinction also occurs in classical case-control studies: here, the pri-

mary dysregulation is the set of factors allowing to classify units as cases or controls, which

may be thought of as a set of upstream regulators. In all these cases, approaches typically iden-

tify all significantly altered pathways (or sub-pathways), but they are unable to distinguish

between primary and secondary perturbations.

Identification, quantification, and the prediction of the primary dysregulation along with its

propagation across the cellular network is of crucial importance for network medicine, where

it helps to prioritize the effect of biological perturbations for further assays or therapies [22].

For this reason, a number of new methods proposed in the last decade aim to estimate and

quantify primary dysregulation [22–28]. With the exception of [25], that focuses on changes in

the mean and assumes no change in the covariance matrix, the remaining methods [27–30]

focus on the structural changes of the underlying graphical structure.

A graphical model approach to identify primary genes in perturbed biological pathways
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We propose a new method for the identification of primary genes, based on testing simulta-

neously the equality of both, the mean level, and the graphical structure. The combined test

broadens the range of possible perturbations and allows us more modelling flexibility; this is

especially useful in real experimental situations in which little is known about the nature of the

underlying perturbation.

The method is implemented in the R SourceSet package, which also contains additional

statistics and graphical devices aiding the user in interpreting the obtained results.

Materials and methods

Identifying the set of primary genes representing the primary dysregulation—the source set in

what follows—is the purpose of the proposed method which finds its theoretical foundation in

[31]. In the following, we present the key elements of our approach. A guided illustration of

the estimation procedure can be found in S1 Text.

The source set

Let V represent the set of genes under study, and let normal random vectors Xð1ÞV and Xð2ÞV
denote their expression levels in two conditions.

Definition 1We call the set D� V the source set, if:

1. the distribution of Xð1ÞD differs from that of Xð2ÞD ;

2. the conditional distributions Xð1Þ�D jX
ð1Þ

D and Xð2Þ�D jX
ð2Þ

D coincide, where �D ¼ V n D.

Furthermore, we say that D is a minimal source set, if no proper subset of it is itself a source set.
In words, D contains all genes in V that marginally differ in distribution in the two condi-

tions, but, conditionally on their realization, leave the distribution of the remaining genes

unchanged. Thus, assuming no confounding factors, genes in D represent elements that may

be considered as the starting point of the dysregulation process. It is only fair to emphasize

that, although clear from a mathematical point of view, a biological interpretation of Defini-

tion 1 is not elementary. Indeed, pathway annotation is far from being exhaustive, and it

could fail to annotate some genes. Thus, if the origin of the dysregulation is an event (an up/

down expression regulation, a mutation or a ipo/iper methylation) involving a gene of the

pathway which is not annotated, D will contain the elements of the network closest to the real

(unknown) source of dysregulation.

A naive strategy to identify the set D from data would require testing all possible subsets of

V, but the number of potential source sets grows with the power of p, making the search space

too large for many practical applications. However, if graphical models are employed to repre-

sent pathways, we can take advantage of the graphical syntax to identify a set of genes which

contains, if not coincides with, D.

The graphical framework

We assume to model the data of the same pathway in two different experimental conditions as

realizations of two Gaussian graphical models sharing the same decomposable graph G. Here,

G = (V, E) is obtained from the pathway topology conversion, where V and E represent genes

and biochemical reactions, respectively.

A major advantage of decomposable graphs is that they allow for a clique-grained descrip-

tion. Let Ci, i = 1, . . ., k, be the cliques, i.e. the maximal fully connected subgraphs of the graph

G. Let Si = Ci \ Ci−1, and Ri = Ci\Ci−1, be an associated sequence of separators and residuals,

i = 2, . . ., k. The cliques can be arranged so that the density of any normal random vector XV

A graphical model approach to identify primary genes in perturbed biological pathways
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with the graphical structure G factorizes as

f ðxVÞ ¼ f ðxC1
Þf ðxR2

jxS2
Þ � � � f ðxRk jxSkÞ; ð1Þ

where f denotes a generic density function [32].

Density factorization in (1) is reflected in the decomposition of a two sample testing prob-

lem. If Xð1ÞV and Xð2ÞV denote gene expression levels in two conditions, then the global hypothesis

of equality of the two distributions, H : Xð1ÞV ¼
d
Xð2ÞV , decomposes according to (1) as

H ¼
\k

i¼1

Hi; Hi : Xð1ÞRi jX
ð1Þ
Si ¼

d Xð2ÞRi jX
ð2Þ
Si ; i ¼ 1; . . . ; k; ð2Þ

where we define R1 = C1 and S1 = ⌀.

The ordering of cliques in (1) is not unique. There are at least k such orderings of the cli-

ques, one for each choice of the root clique. Let Ci1, . . ., Cik denote the ith ordering, having

Ci1 = Ci as the root clique, and Sij and Rij be a corresponding sequence of separators and

residuals, i, j = 1, . . ., k. For a fixed ordering i, letHij denote the j-th local hypothesis, i.e.

Hij : Xð1ÞRij jX
ð1Þ
Sij ¼

d
Xð2ÞRij jX

ð2Þ
Sij . The main building block of our approach is the following result that

states that we can estimate the source set from data by testing hypothesesHij.
Proposition 1 The random set D̂G

D̂G ¼
\k

i¼1

[

fj: Hij rejectedg

Cij; ð3Þ

is an estimator of the source set.
For the proof of the above proposition, and a more detailed exposition of the theory, we

refer the interested reader to S2 Text.

As outlined in the previous section, the minimal source set D is our quantity of interest. On

the other hand, set D̂G estimates the smallest source set identifiable by means of cliques and

separators of the underlying graph, DG, that we call the graphical source set. In some important

cases, the graphical source set will coincide with the minimal seed set. In particular, D = DG
whenever D coincides with a separator set in G. When this is not the case, the graphical source

set will contain additional nodes that, from the point of view of perturbation identification,

can be seen as false positives (see the scenario 3 in Simulation studies). One could then try to

“drill down” and identify D̂ � D̂G by performing additional statistical tests. Since determining

statistical properties of such a two-step approach is far from trivial, we leave this task for future

work.

Let D̂G;i ¼ [fj: Hij rejectedg Cij. In our setting, set D̂G ¼ [
k
i¼1
D̂G;i contains all genes affected

by the perturbation. The set D̂G � D̂G represents the graphical hull of genes which can be

deemed to be responsible for the dysregulation. From now on, when no ambiguity can arise,

we will refer to D̂G simply as the source set (or primary set), and to D̂G n D̂G as the secondary

set.

Estimation

Estimating source set according to (3) requires testing a collection of hypotheses {Hij, i, j = 1, ‥,

k}. AlthoughHij regards equality of conditional distributions, if log-likelihood ratio test (LLR)

is used no conditional distribution needs to be estimated. Namely, if λij denotes LLR forHij,
then λij = λ(Cij) − λ(Sij), where λ(Cij) and λ(Sij) are LLR criteria for testing equality of marginal

A graphical model approach to identify primary genes in perturbed biological pathways
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distributions induced by Cij and Sij. Thus, to obtain D̂G, it is enough to compute:

lðAÞ ¼
X2

l¼1

nl log
jŜAj

jŜ
ðlÞ
A j

ð4Þ

for A 2 {C1, . . ., Ck, S1, . . ., Sk}, where ŜA denotes a block submatrix of S, corresponding to

the nodes in A, jŜj is the determinant of the maximum likelihood estimate of the covariance

matrix of Xð1ÞV and Xð2ÞV , S, underH, ŜðlÞ (l = 1, 2) the maximum likelihood estimate of S(l)

under the general alternative, and nl the sample size in condition l, l = 1, 2.

The LLR test is well defined whenever the number of samples for the smaller group, n =

min(n1, n2), is greater than the cardinality of the largest clique p� = max(|C1|, . . ., |Ck|). Indeed,

the estimates of the covariance matrices in (4) must be positive definite. In practice, high-

throughput experiments are usually done with very few replicates due to budgetary con-

straints, which makes the LLR test applicable to a limited number of cases. To illustrate this

point, Table 1 provides information about the size of the maximal clique in KEGG and Reac-

tome pathways. For example, a data set of 14 samples in one class allows to analyze only a half

of KEGG and Reactome pathways (median maximal clique size q50 in Table 1 is close to 13 for

all species and both databases). Moreover, even when the number of samples is sufficient (i.e.,

n� p�) and the maximum likelihood estimate exists, the sample covariance matrix can no lon-

ger be considered a good estimate of the covariance matrix.

Great efforts have been undertaken to gain efficiency in (large-scale) covariance estimation

with small-sample data. Among the available strategies, shrinkage methods appear to be a valu-

able option. See, for example [33], which is shown to enjoy certain optimality properties within

the “large p, large n” asymptotics. To the best of our knowledge, however, a discussion of the

best shrinking strategy and of its impact on the validity of p-values in the context of two-sam-

ple testing is not available in the literature.

In SourceSet, we introduce a new estimation strategy, named TEGSmin, based on an ad-hoc
ridge estimator [34], that adds a small quantity to the diagonals of the covariance matrices to

be estimated. Extensive simulation studies (S1 Fig) have shown that this strategy has an impact

on the validity of p-values in the context of two-sample testing procedure by far preferable to

that due the use of more standard shrinking strategies, such as those in [33]. Indeed, the esti-

mation procedure that we adopt gives rise to p-values for the LLR tests whose distribution is

stochastically larger than the theoretical one, meaning that we obtained a valid, although con-

servative, testing procedure. All details and simulations can be found in S3 Text.

The graphical structure

As already mentioned above, the graphical structure G is derived from pathway structure. To

this end, a pathway is first converted to a directed graph, which is then transformed into a

decomposable undirected graph G in two steps, in graph terminology known asmoralization

Table 1. Biological pathways properties. The median (q50) and the third quartile (q75) of the distribution of (a) the cardinality of the largest clique and (b) the ratio of the

number of edges of the transformed graph (decomposable, undirected graph G) to the number of edges of the original graph (in parentheses) for pathways in KEGG and

Reactome databases. Pathway annotation is taken from the graphite Bioconductor package (version 1.28.2).

Species KEGG Reactome

q50 q75 N q50 q75 N
H.sapiens 13 (1.58) 23 (1.97) 298 9 (1.07) 24 (1.26) 1824

M.musculus 13 (1.61) 25 (2.02) 294 9 (1.06) 22 (1.25) 1481

C.elegans 7 (1.15) 11 (1.50) 103 5 (1.01) 13 (1.25) 800

https://doi.org/10.1371/journal.pcbi.1007357.t001
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and triangulation. Both graph operations require adding edges to the original graph and G typ-

ically has many more edges with respect to the original pathway graph (see Table 1). Since the

presence of an edge between two genes in G indicates a possibility of a direct connection, the

fact that G is highly connected implies that the restrictions imposed by the graphical structure

are mild. G can be seen as a network featuring a variety of possible paths a signal could take, of

which potentially only some are indeed active. In other words, the “true” structure could be

any subset of the edges featured in G. This means also that the “true” structures may be differ-

ent in two conditions (see the scenario 4 in Simulation studies) and in that case our method

will, given sufficient statistical power, detect this dysregulation and affected genes (nodes) will

be members of the estimated source set D̂G.

Multiple testing correction

The procedure for obtaining D̂G requires testing equality of all conditional distributions of

the form XRij jXSij (i, j = 1, . . ., k). The number of distinct tests among them depends on G

and equalsm ¼ kþ
Pk

i¼1
vðCiÞ, where v(Ci) is the number of distinct separators within Ci

(i = 1, . . ., k). This calls for multiple testing error correction. To address this problem we use

two versions of the method proposed in [35], which relies on permutations to obtain the joint

distribution of the p-values. It attenuates the well known conservativeness of the Bonferroni

procedure by taking into account the dependence between p-values.

More specifically, when the maximum likelihood estimates are used, both asymptotic and

per-hypothesis permutation p-values can be calculated, and maxT and minP approach can be

adopted, respectively. If the regularized estimates are calculated, the asymptotic distribution is

no longer valid and only the minP version and the per-hypothesis permutation p-values are

applicable. Note that by controlling the family wise error rate (FWER), we control the inclu-

sion of false positives in D̂G. More details on min P and max T algorithm can be found in S4

Text.

The number of permutations depends on the method, the α level chosen, and the number

of hypotheses. Although it would be best to always use the collection of all possible permuta-

tions, this is computationally not feasible even for moderate datasets. For this reason, we use a

collection of randomly generated permutations, as suggested in [36]. The Authors recommend

usingm/α permutations as an absolute minimum for min P, and 1/α permutations for max T.

The min Pmethod usually requires more permutations than max T, due to the discrete nature

of the permutation p-values.

Workflow of the algorithm

Given a graph G—typically representing the dependency structure encoded in a pathway—

and a matrix of sample observations—that contains the measured expression levels of the

genes in the two experimental conditions—a general scheme of the procedure is described in

what follows (see also Fig 1). It is worth noting that, in view of applying the multiple correction

procedure, a set of permuted datasets is also prepared, to be used in some of the next steps.

1. Maximal Cliques: identify the set of the maximal cliques, Ci, i = 1, . . ., k, and the set of sepa-

rators, Si, i = 1, . . ., k, of the decomposable graph G;

2. Decompositions: list all k orderings Ci1, . . ., Cik, using each clique Ci, i = 1, . . ., k, in turn as

the root clique;

3. Test Statistics:

A graphical model approach to identify primary genes in perturbed biological pathways
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a. Marginal test statistics: calculate marginal test statistics for the cliques and separators,

λ(Ci) and λ(Si), i = 1, . . ., k, for the original and the permuted datasets;

b. Conditional test statistics: calculate test statistics forHij as the difference between the cor-

responding clique and separator marginal test statistics;

c. Cut-off correction: control the FWER by min P or max T; find the cut-off based on the

test statistics computed in the original and the permuted datasets in (b);

4. Union: compute for each decomposition i, i = 1, . . ., k, the quantity D̂G;i by making the

union of the cliques found to be significantly dysregulated;

5. Intersection: estimate the source set, D̂G, by taking the intersection over the decompositions

i, i = 1, . . ., k, of the sets D̂G;i obtained in the union step.

Fig 1. Basic workflow of the SourceSet algorithm for the analysis of a single graph.

https://doi.org/10.1371/journal.pcbi.1007357.g001
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Results

Simulation studies

We studied the finite sample behavior of our method through a simulation study, following

the algorithm described in [37]. Data in the two conditions are assumed to be realizations of

independent multivariate normal random variables XV, Markov with respect to the same

graph G shown in Fig 2. Graph G consists of 10 nodes forming k = 5 cliques, with the maxi-

mum size p� = 4. Fig 2 also shows cliques of G and lists allm = 13 distinct distributions whose

equality in the reference and perturbed condition is tested by our approach.

Parameters of the reference condition (the mean and covariance matrix) are set to esti-

mates obtained from a gene set of the same cardinality as G randomly selected from the

Acute Lymphocytic Leukemia (ALL) dataset [38]. Parameters of the perturbed condition are

obtained by acting on the means and variances of the intervened variables XD, D� V, so as

to leave the parameters of the conditional distributions X�D jXD, �D ¼ V n D; unchanged. The

simulation model thus assumes that the dysregulation mechanism directly affects primary

gene(s), and then propagates to the remaining variables through the connections pictured in

the graph.

With reference to the graph in Fig 2, we considered four different scenarios:

1. source set is empty, i.e., there is no dysregulation;

2. the perturbation affects the mean and the variance of node 5.Here, the graphical source set
DG coincides with the minimal source set D = {5};

3. the perturbation affects the mean and the variance of node 10.Here, the graphical source set
DG = {5, 8, 9, 10} is larger than the minimal source set D = {10};

4. the perturbation affects the graphical structure and removes two edges: between nodes 1 and
3, and 2 and 3. The graphical source set DG and the minimal source set D = {1, 2, 3} coincide.

Fig 2. Decomposable graph used in the simulation study. Decomposable graph G consisting of |V| = 10 nodes, k = 5 cliques and

m = 13 unique components.

https://doi.org/10.1371/journal.pcbi.1007357.g002
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In scenarios 2 and 3, we dysregulated, respectively, node 5 and node 10 at three different

levels of intensity (mild,moderate, and strong). These consist of an increase in the mean and

the variance parameters of 20%, 60%, and 100%, respectively. In the fourth scenario, to remove

the two edges, we set the corresponding elements of the inverse of the covariance matrix of the

reference condition to zero.

After setting the mean and the variance parameters for the two conditions as described

above, we simulated 500 datasets for each combination of a source set, dysregulation intensity,

and sample size. We considered three different sample sizes (n1 = n2 = 5, 10, 25), which

allowed us to calculate both the maximum likelihood and regularized estimate of the covari-

ance matrix. All the parameters used in the simulation can be found in the SourceSet pack-

age, through the data(simulation) command.

To evaluate the performance of our procedure, we estimated the false positive rate, i.e. the

probability that a source set estimate contains a false positive (scenario 1) and the proportion

of true positives (scenario 2, 3 and 4). We adopted the min P approach for multiple error cor-

rection and we controlled FWER at level α = 0.05. Results are shown in Table 2 and Fig 3.

Scenario 1. Table 2 shows the Type I error of our method, i.e. the proportion of Monte

Carlo runs in which the source set estimate was non-empty under the null hypothesis of no

dysregulation. In this scenario, the algorithm demonstrates a very high accuracy (Type I

error< 0.05) for all considered sample sizes and regardless of the choice of the method for

covariance matrix estimation. The slight conservativeness is intrinsic to our estimation proce-

dure and is especially evident under the global null hypothesis. Indeed, under the global null

hypothesis at least two false rejections are needed in order to obtain a non-empty source set

estimate.

Scenario 2 and 3. The results in the presence of a dysregulation of varying intensity in sce-

narios 2 and 3 are shown in the top two panels of Fig 3. At the variable level, the plot shows,for

a given dysregulation strength and sample size, the percentage of Monte Carlo runs in which

the variable is deemed to be a source of dysregulation, i.e. an element of the source set (red),

affected by secondary perturbation, i.e. affected by the perturbation but not an element of the

source set (orange), or unaffected by the perturbation (green). Results based on the maximum

likelihood estimator are shown on the left; results based on the regularized covariance estima-

tor are shown on the right.

Consider scenario 2 shown in the top panel of Fig 3. When the dysregulation is moderate to

strong, and the sample size is n� 10, the source set is always identified correctly, i.e. D̂G ¼ D.

On the other hand, when the sample size is close to the theoretical limit for the existence of the

LLR criterion (i.e., n = 5), the regularized estimator performs better and correctly identifies the

source set about 84% of the times compared to the 17% reached by the maximum likelihood

estimator. When the dysregulation is mild, the performances are lower for both covariance

estimators, although the improvement obtained through regularization remains evident.

All the above considerations can be extended to scenario 3 (middle panel of Fig 3), in which

the graphical source set is larger than a minimal source set. As a consequence, while for the

Table 2. Simulation scenario 1. Fractions of misidentifications of D for different sample sizes and different covariance

matrix estimators.

D = {;} Maximum likelihood estimate Regularized estimate

n1 = n2 = 25 0.004 0.008

n1 = n2 = 10 0.008 0.022

n1 = n2 = 5 0.022 0.012

https://doi.org/10.1371/journal.pcbi.1007357.t002
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second scenario D̂G coincides with D, in the third we are identifying the entire clique {5, 8, 9,

10}. In this case, the event D � D̂G is of interest, coherently with the inclusion properties

shown by the true graphical and non graphical source sets. It is worth stressing that the inclu-

sion of D into a larger estimated gene set should not be considered a false positive in our

Fig 3. Simulation study results under the alternative hypothesis in scenario 2 (top panel), in scenario 3 (middle

panel), and in scenario 4 (bottom panel). On the left, results based on the maximum likelihood estimate of the

covariance matrix; on the right results based on the regularized estimate. Each subpanel corresponds to a different

combination of sample size (columns) and intensity of dysregulation (rows). Inside subpanels, for each node v 2 V, a

stacked bar chart shows the percentage of Monte Carlo runs in which v 2 D̂G (red, primary set), v 2 D̂G n D̂G (orange,

secondary set) and v 2 V n D̂G (green). The Monte Carlo error is bounded above by 2.2%.

https://doi.org/10.1371/journal.pcbi.1007357.g003
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simulation, but rather a limitation of the graphical approach (see the discussion in The graphi-

cal framework section).

Scenario 4. Dysregulation considered in scenario 4 is different from the previous ones in

that only the covariance parameter is affected by the perturbation. As already specified, to

remove the edges between nodes 1 and 3 and 2 and 3, we set the associated elements of the

inverse of the covariance matrix, i.e. concentration matrix, to zero. However, in our example

these elements of the concentration matrix were already low in the reference condition, mak-

ing the perturbation very mild. For this reason, in this simulation scenario we modified the

concentration matrix of the reference condition by increasing the strength of conditional

dependence relations (in absolute value) between nodes 1 and 3 and 2 and 3, i.e. we increased

the absolute value of the associated elements in the concentration matrix. Furthermore, we

considered larger sample sizes n = 10, 25, 50.

The results are shown in the bottom panel of Fig 3. We see that already with 25 observa-

tions, the method based on the regularized estimator achieves high detection power and

correctly identifies the source set D = {1, 2, 3} approximately 95% of the times. Maximum

likelihood estimator achieves similar performance with 50 observations. Interestingly, when

n = 25, maximum likelihood estimator manages to identify node 3 as an element of the

source set, but in two thirds of the cases (approximately 65% of times) is unable to detect

nodes 1 and 2.

Sensitivity analysis. In many practical applications, data can be far from normally distrib-

uted. For example, they can be discrete, possibly showing a large number of zeros, or come

from skewed distributions. A popular choice for adapting the non Gaussian data to the the

Gaussian assumption relies on data transformation. This approach can work well in some cir-

cumstances. For example, microarray data are typically Gaussian on a log scale. Unfortunately,

it can be also ill-suited in some circumstances. For example, the distributions of log counts or

RPKM/FPKM in next-generation sequencing, are known to be characterized by extreme outli-

ers, possibly leading to wrong inferences.

To explore sensitivity of our method to the presence of outliers and asymmetry, we per-

formed analyses in scenario 2 and scenario 3 using data generated from two multivariate skew-

normal distributions. To this aim, we used the previous means and covariance matrices for the

two conditions, and considered an additional vector of skewness parameters. To mimic real

applications, the skewness parameter was set to a value estimated from a real dataset. Indeed,

skew normal distributions can be considered a good fit for RNA-seq log transformed expres-

sion profiles, as highlighted in the figure of S6 Text. In particular, we injected skewness in the

distribution of 4 out of 10 variables (more details in S6 Text). This choice aims to reproduce

realistic behavior while preserving the conditional independence structure encoded in G (Fig

2). Our findings, reported in S1 Fig, indicate that the SourceSet appears to be robust to the

presence of outliers and skewness, giving results comparable with those obtained using multi-

variate normal distributions in both considered scenarios.

Additional simulation studies. It is interesting to investigate whether previous conclu-

sions can be extended to larger and more complicated graphs. To this aim, we considered the

Proteoglycans in cancer pathway (see Run-time analysis), in which we perturbed the mean

level of the fibronectin 1 gene (FN1) that appears to be the most connected node (80 neigh-

bours). We adopted the simulation strategy described in Comparison with other methods sec-

tion, and we considered moderate and strong dysregulation intensities for several sample

sizes (n = 15, 35, 50). As FN1 is the unique element of at least one separator, the graphical

source set coincides with the minimal source set (scenario 2). For each setting we used both

the regularized and—when it existed—the maximum likelihood estimate of the covariance

matrix.
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S2 Fig shows the results averaged over 50 Monte Carlo runs for the 13 genes (out of the

original 202) that appear in at least one source set estimate in any of the considered settings.

As expected, when the regularized estimate is used, the perturbed node is the only element of

the source set with a probability close to one, except for the milder configuration (N = 15 and

moderate perturbation). Conversely, this is true for the maximum likelihood estimate only in

the strongest signal setting (N = 50 and strong perturbation).

Implementation

The presented method is implemented in an R package called SourceSet (CRAN reposi-

tory). In particular, the method has been extended to fit into the more traditional TPA frame-

work, where the interest is in considering more than one pathway at a time.

The SourceSet package consists of six core functions (Table 3) that, given a list of path-

ways to be analyzed (input pathways) and a gene expression matrix, allow the user to:

1. identify a source set and a secondary set of each graph;

2. pool results from single-pathway analyses to gain a global view of results and obtain replica-

ble summaries of research findings through additional visualization tools and statistics;

3. connect with Cytoscape software environment [39] to visualize, explore and manipulate

chosen pathways in a dynamic manner.

Although the interpretation of the source set procedure for a single graph is intuitive, the

global analysis of results coming from a collection of overlapping pathways can be challenging.

To tackle this task, we introduce some new indices aimed at pointing the user to the most

interesting genes. In detail, for each gene, we introduce three new indicators, named relevance,
primary.impact and score, defined as follows:

• relevance: percentage of input graphs, such that the given gene belongs to their estimated

source set, with respect to the total number of input graphs;

• primary.impact: percentage of input graphs, such that the given gene belongs to their

estimated source set, with respect to the total number of input graphs in which the gene

appears;

• score: a number ranging from 0 (no significance) to +1 (maximal significance) computed

as the combination of the p-values of all components (of all the input pathways) containing

the gene.

Ideally, genes responsible for the primary dysregulation will be elements of the source set

in all input pathways that contain them and will thus have high values of primary.impact and

Table 3. SourceSet package main functions.

Function Description

sourceSet Main function

infoSource Return a summary of the results focusing on either variables or graphs

easyLookSource Summarize the results through a heatmap

sourceSankeyDiagram Summarize the results through an interactive Sankey diagram

sourceCytoscape Vizualize in Cytoscape a collection of the analyzed graphs highlighting the

interesting findings

sourceUnionCytoscape Visualize in Cytoscape the graphical union induced by the source sets of the

collection of the analyzed graphs

https://doi.org/10.1371/journal.pcbi.1007357.t003
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score. However, if a given gene appears in a single pathway, and belongs to its source set, these

indices can be deceptive. For this reason, relevance serves to identify genes that apart from

being good candidates for primary perturbation, also appear frequently in the input graphs.

Which index is to be preferred depends on the objective of the analysis: in case of exploratory

analysis, we suggest to rely on relevance (see, for example, Real Data section, Case study 2).

It should be stressed that the notion of the source set is relative to a single graphical struc-

ture G = (V, E). The union of source set estimates of different graphical structures, i.e. path-

ways, is not necessarily the source set for the pooled set of genes. For example, if the only gene

causing the primary dysregulation is not annotated in a given pathway, then the associated

source set estimate is likely to contain genes affected by the causal gene. The only way to ensure

that the global source set estimate contains only primary genes is to consider a global graph

representing the graphical union of the entire collection of pathways. This possibility is given

to the users by allowing them to provide the preferred input graph in the SourceSet pack-

age. However, in many cases—such as when considering unions of the KEGG and the REAC-

TOME pathways—this strategy leads to an almost fully connected graph, which nullifies the

usefulness of the biological annotations and of the proposed approach.

Some other notes on the extension to the case of multiple pathways and on the issues here

discussed can be found in S5 Text. A basic introduction on the usage of the package and its fea-

tures is given in S7 Text and in the vignette of the package.

Run-time analysis. The run-time analysis of sourceSet is nontrivial. The performance

of the algorithm mainly depends on the size of the input data (the two sample sizes and the

number of nodes/genes), as well as on the graphical structure. To evaluate the scalability and

efficiency of the algorithm as sample size and graph complexity increase, we conducted an

empirical analysis of the execution time.

The complexity of a graph is closely related to its size and its degree of connectedness, that

in our framework can be described by three parameters: the number of edges (E) of the graph,

the number of distinct hypotheses Hij to be tested (m), and the cardinality of the largest clique

(p�). We computed these three quantities for all KEGG pathways (N = 248, graphite pack-

age version 1.24.1) and the results are shown in the first row of Fig 4. We then selected six of

these pathways with an increasing level of complexity to be used as graphical structures in our

analysis (Fig 4 and Table 4).

For each of the six graphs, six different sample sizes were considered n = 10, 50, 100, 250,

500, 1000. For each combination of the graph and sample size we generated 50 datasets under

the null hypothesis of no dysregulation, and whenever the sample size allowed, in addition

to the permutation test (filled circles in Fig 4), we also considered the asymptotic test forHij
(filled squares in Fig 4). The execution time of the sourceSet function has been measured

with microbenchmark R package.

As can be seen in Fig 4, the running time varies from a few seconds to a few dozen minutes,

and grows linearly (in the original scale) with sample size and graph complexity. The increase

in the graph complexity mainly affects the number of permutations necessary for the calcula-

tion of the permutation test statistic. Since the number of permutations is for computational

reasons limited to 10000, complicating the graphical structure further does not significantly

affect the running time. In fact, this simulation study allowed us to explore the entire range of

permutations allowed by the algorithm (see Table 4).

WhenHij is tested with an asymptotic LLR test, permutations are used only to correct p-val-

ues for multiple testing. In that case, the number of permutations is lower (in our simulation

equal to 500), reducing the execution time by an order of magnitude (the execution time is in

the range of two seconds to two minutes). It should be emphasized that, although not imple-

mented in this version, the algorithm is fully parallelizable. Both the estimation of the source
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set for multiple input graphs and the calculation of the permutation test statistics for a single

graph can be run in parallel.

Real data

In this section, different real datasets have been used to validate and illustrate the value of our

method. We have considered three intervention studies and three classical case-control stud-

ies. Clearly, intervention studies offer the best possibility for the biological validation of our

approach in terms of identifying the origin of perturbation and providing new biological

insights. On the other hand, interpreting the results of case-control studies is more challenging

Fig 4. SourceSet run-time analysis. (Top panel) All pairwise relationships between the parameters that define the

complexity of a graph (i.e., the number of edges, the number of distinct hypotheses and the cardinality of the largest clique)

for 248 KEGG pathways. Six pathways—highlighted with filled circles of different colors—of increasing complexity were

chosen for the run-time analysis (see also Table 4). (Bottom panel) Run-time for the six pathways as a function of the

sample size. Permutation tests and asymptotic tests are plotted with circles and squares, respectively.

https://doi.org/10.1371/journal.pcbi.1007357.g004

Table 4. Properties of the six pathways selected for the run-time analysis. The number of genes (|V|), the number of edges (E), the cardinality of the largest clique (p�),
the number of distinct hypothesis (m), and the number of permutations used for the computation of the permutation p-values (Np), for the six KEGG pathways highlighted

in Fig 4. Pathway annotation is taken from the graphite Bioconductor package (version 1.24.1).

Pathway name |V| E p� m Np

1. Arrhythmogenic right 10 11 3 10 1000

2. Terpenoid backbone biosynthesis 21 58 7 25 1000

3. Platinum drug resistance 39 156 10 50 2000

4. Progesterone-mediated oocyte maturation 87 338 18 101 4040

5. Apoptosis 131 1014 27 200 8000

6. Proteoglycans in cancer 202 1516 34 295 10000

https://doi.org/10.1371/journal.pcbi.1007357.t004
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since we are further away from the ground truth regarding the original perturbation: these

examples should be viewed as an illustration of the wider applicability of the method.

In all following analyses, FWER is controlled at level α = 0.05. For any additional parame-

ters the default settings provided by the SourceSet package were used.

Validation study 1: Silencing of STAT3. The High-Grade Glioma (HGG) is the most

common and lethal brain tumor in humans. The over-expression of a mesenchymal gene

expression signatures (MGSE) is associated with a poor prognosis, and Carro et al. [40] identi-

fied six transcription factors (TF) that control the expression of> 74% of the MGSE genes.

Among them, STAT3 emerges as one of the master regulators and, to further investigate its

role, the authors silenced STAT3 in human cells.

We downloaded pre-processed data (variance stabilized and robust spline normalized)

from GEO portal (GSE19114). Gene probes were annotated using Illumina HumanHT12v3

annotation and duplicated Entrez IDs were averaged for each sample. The dataset includes 22

samples (11 knock-down and 11 control cells) and 19292 gene expression levels. The number

of differentially expressed genes between the two groups (EBayes test [41], adjusted p-

value� 0.05) is 1029, and STAT3 appeared to be the most significant one (p-value< 0.001,

log.FC = 1.301, rank = 1). Here, the exact source of perturbation is known and we expect that

all pathways with STAT3 have a non-empty source set that includes STAT3.

As expected, focusing on the subset of 20 pathways containing STAT3, the silenced gene

is present in the source set of all of these pathways, except for Pathway in cancer and FoxO
signaling that show an empty source set (Fig 5 and S1 Table). Furthermore, in 4 out of 18

pathways, STAT3 is the only element of the source set, although secondary dysregulation

involves many more genes. Th17 differentiation pathway provides the most obvious example:

SourceSet recognizes STAT3 as the primary source of the dysregulation while classifying the

remaining 39 genes as perturbed by the effect of signal propagation. Even considering the

analysis of the entire KEGG collection, STAT3 emerges as the gene with the highest absolute

relevance, and the fourth score (counting only genes that appear in more than one

graph, see S3 Fig).

As STAT3 is not annotated in all pathways, some genes might indirectly capture the silenc-

ing effect and result as primary genes. This behavior can be observed in the graphical union of

all subgraphs induced by the source set elements of KEGG pathways (S4 Fig).

Validation study 2: CREB knock-down. cAMP Response Element Binding Protein

(CREB1) is a TF known to be overexpressed in acute myeloid and leukemia cells. Pellegrini

et al. [42] tried to identify a panel of its potential direct targets comparing CREB1 knock-down

and control cell lines.

We downloaded raw data from the GEO portal (GSE12056). Loess normalization and

robust multi-array average (rma) background correction were performed according to affy
package (version 1.60.0). Gene probes were annotated using Affymetrix Human Genome

U133 Plus 2.0 Array data and duplicated Entrez IDs were averaged for each sample. The data-

set includes 20 samples (10 human leukemia cell lines K562 with CREB1 knocked-down and

10 K562 control cells) and 22.410 gene expression levels. The differential expression analysis

(EBayes test, adjusted p-value� 0.05) identified 4.026 genes significantly involved in the com-

parison and among them we found CREB1 (p.val < 0.001, log.FC = 0.858, rank = 116). As for

validation study 1 we expect CREB1 to be an element of the source set in all the pathway that

contain the knock-down gene.

As reported in S2 Table, CREB1 is responsible for primary dysregulation in 92% (24 out of

26) pathways in which it is annotated and, considering the results on the entire KEGG collec-

tion it is ranked on the top of relevance (rank = 5) and score (rank = 35) lists (S3 Fig), along

with several elements of the CREB family (S5 Fig).
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Validation study 3: ABL/BCR chimera. This is the well known benchmark dataset on

the ABL/BCR chimera in acute leukemia patients ALL (ALL Bioconductor package) [38].

Expression values were normalized according to rma and quantile normalization. Genes were

annotated using Affymetrix Human Genome U95 Set data and duplicated Entrez IDs were

averaged for each sample. Two groups of ALL patients with and without ABL/BCR genomic

rearrangement (37 and 42 patients, respectively), are compared. 159 out of 8.595 analyzed

genes (EBayes test [41], adjusted p-value� 0.05) resulted as involved in the comparison.

Among the two chimera genes only ABL1 (p.val < 0.001, log.FC = -0.634, rank = 3) reached

the significance threshold (BCR: p.val = 0.114, log.FC = 0.272, rank = 250). Given the presence

of the chimera we expected that i) all pathways including BCR and/or ABL1 genes will have a

source set, and ii) the chimera genes will be included in the source set and that iii) the source

set of Chronic myeloid leukemia (i.e., the pathway that describes the impact of the fusion genes

in the cell) will be composed of only chimera genes.

As reported in the S3 Table SourceSet is able to meet all these expectations. Moreover, in

comparison with all genes annotated in KEGG pathways, ABL1 and BCR appear to be among

those with the best score and relevance indices (Fig 6).

Fig 5. Visual summary of the source set analysis results for the STAT3 dataset. (Left) KEGG pathways containing

STAT3 and all genes appearing in at least one estimated source set are cross-tabulated. The color of the cell (i, j) shows

the relation between the i-th gene and the j-th pathway: blue if the gene belongs to D̂G (primary source set), light blue if

it belongs to D̂G n D̂G (secondary set), grey if the gene is participating in the considered pathway, and white otherwise

(i-th gene does not belong to j-th pathway). (Right) This plot features KEGG pathways containing STAT3 and having

a non-empty estimated source set, as well as all genes appearing in at least one estimated source. The three levels are to

be read from left to right. A link between left element a and right element bmust be interpreted as a� b. A module is

defined as a subset of a source set belonging to a connected subgraph of the associated pathway.

https://doi.org/10.1371/journal.pcbi.1007357.g005
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Unlike the knock-out experiments, in this case the exact source of the difference is

unknown, and many more genes might be directly or indirectly involved in the phenotype. A

useful way to identify other genes that can interact with chimera genes and/or play a role in

ALL is to observe the union of the sub-graphs induced by the primary genes of all considered

pathways (S6 Fig).

Case study 1: Prostate cancer. Prostate cancer is one of the most frequently diagnosed

malignancy and the second leading cause of cancer mortality in men. Here we used a selection

of the dataset of GSE6956 [43] to compare 18 primary prostate tumors vs. 18 healthy unpaired

tissues. Cancer samples were selected in order to be comparable to healthy ones in terms of

ethnicity and smoke habits.Pre-processing steps of Validation study 2 were applied.

A specific KEGG pathway annotation exists for this cancer (hsa:05215) thus, even analyzing

the entire KEGG collection, we expect to identify a significant set of primary genes character-

ized by the highest relevance and/or score within the target pathway.

The analysis was performed on 248 KEGG pathways. SourceSet identified 171 pathways

(69%) with a non-empty source set (median size of six) and globally provides a panel of 869

primary genes. Interestingly, the two genes with the highest relevance are ARAF and

RAF1 (Fig 7): both belong to the Prostate Cancer KEGG pathway. Other genes with highly

attractive characteristics are STAT3, TP53 and MAP2K1 (S4 Table). The target pathway is

composed of 81 genes, of which 37 marginally significant and six representing the primary

dysregulation (ARAF, RAF1, HSP90AA1, HSP90AB1, AR, HSP90B1).

Case study 2: Pancreatic cancer. Pancreatic Ductal Adenocarcinoma (PDAC) is a very

aggressive disease resistant to conventional and targeted therapeutic agents. Several studies

have been performed to better understand the molecular mechanism of its evolution. Here we

use a subset of GSE15471 dataset [44] to compare unpaired tissues (tumors, n = 20, vs healthy,

n = 16). Pre-processing steps of Validation study 2 were applied.

Among the 20502 measured gene expression levels about 66% result as differentially

expressed (Ebayes test, adjusted p-value� 0.05). As in the previous example, a specific KEGG

pathway for pancreatic cancer exists (hsa:05212), and we expect to find significant primary

genes with high relevance and score within this pathway.

Fig 6. SourcSet analysis results for the chimera case study. Boxplots of score (left panel) and relevance
(right panel) indices for genes annotated in at least two pathways of the whole KEGG collection (N = 248). The size of

each point is proportional to the number of pathways in which the associated gene is annotated. ABL1 and BCR (i.e.,

chimera genes) are highlighted with blue and light blue dots, respectively.

https://doi.org/10.1371/journal.pcbi.1007357.g006
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We ran SourceSet on 248 KEGG pathways. All analyzed pathways have a non-empty

source set (median size of 32) for a total of 3166 primary genes. As in the case study 1, the

genes with the highest relevance and score are involved in the pancreatic cancer pathway. In

particular 14 out of top 20 genes ordered by relevance, belong to its source set (Table 5, left).

Moreover, we performed the source set analysis on an independent study on pancreatic

cancer [45] with a comparable number of samples (20 tumors vs. 16 healthy unpaired tissues)

and the same Affymetrix platform (GPL570). Also in this dataset (GSE16515), the majority of

genes are differentially expressed (43%, Ebayes test, adjusted p-value� 0.05), and globally

2066 are primary genes (96% pathways with a non-empty source set, median size of 17). Inter-

estingly, the results of the two studies seem to be consistent: 6 genes are shared within the first

top 20 ranked genes (Table 5), and in particular, KRAS and MAPK9 are both elements of the

pancreatic cancer pathways.

Case study 3: Castration resistant prostate cancer. Androgen Deprivation Therapy

(ADT) suppresses the growth of prostate cancer via blockade of testicular androgen produc-

tion. Despite the initial response, for a significant proportion of affected individuals, cancer

cells develop castration resistance (CRPC) due to an aberrant androgen receptor (AR) expres-

sion and activation of intra tumoral androgen biosynthesis. Knuuttila et al. [46], tried to inves-

tigate the mechanism of the androgen-dependent growth of CRPC comparing tumors treated

with a new therapeutic strategy (enzalutamide, n = 14) and control samples (vehicle, n = 15).

RNA-seq raw profiles were downloaded from the GEO portal (GSE95413). One low quality

experiment was removed (enzalutamide tumor treated, id = MOV_25). Genes with at least ten

counts in more than 75% of samples were considered for the downstream analysis, resulting in

11617 expression profiles. Transcripts per million were normalized via median ratio method

(DESeq2 package) and transformed according to log2(count + 1). In the comparison between

Fig 7. Source set analysis results for the prostate cancer study. The plot shows the main cluster of the graphical union of the

source sets of the analyzed pathways, obtained through sourceUnionCytoscape function (Cytoscape version 3.6.1). The size of

each node is proportional to the number of times the gene appears in a source set. The color is associated to the relevance index:

higher values are indicated by dark blue colors.

https://doi.org/10.1371/journal.pcbi.1007357.g007
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vehicle and enzalutamide tumors, 1204 genes (10%) resulted differenially expressed (DESeq

analysis, adjusted p-value� 0.05).

We ran SourceSet on the entire collection of KEGG pathways (n = 248). Among these,

84 pathways (34%) had a non-empty source set, leading to a total of 329 genes identified as pri-

mary in at least one of them. Most of the top ranked pathways are metabolism and biosynthesis

related (S5 Table). In particular, Sphingolipid metabolism is the pathway with the highest num-

ber of primary genes (n.primary = 20) and is already reported to have a key role in several

pathological processes, as well as in the resistance to treatment [47]. Investigating the five top

ranked genes in S6 Table, we identified some classic androgen-regulated genes involved in

CRPC, such as HSD17B6 [48], GHR [49], HLA-DMB [50], together with potentially novel bio-

markers, such as GRIA2 and COMT.

Comparison with other methods

Recently, many methods for detecting genes driving the difference between two conditions

have been proposed. The method proposed in [23] searches for genes responsible for large

topological changes in the gene network, i.e. regulator genes whose connections with other

genes are significantly different between two conditions. [24] adapted this algorithm to single

cell RNA-Seq data. The algorithm proposed in [25] is similar to the previous two, but consid-

ers covariance networks, instead of conditional dependence networks. These methods do not

seem to be directly comparable with the SourceSet, since they differ in the definition of the

genes driving the difference between two conditions. Namely, when the network structure is

Table 5. infoSource summaries for the top 20 genes ordered by relevance index for the two pancreatic cancer studies. Number of analyzed pathways in which

the gene belongs to the primary dysregulation (n.primary), number of the analyzed pathways in which it is annotated (n.graph), and its score and relevance
indices; adjusted p-values for Ebayes test (p.value). Genes that belong to the pancreatic cancer pathway are marked with a star. Genes ranked in the first 20 positions in

both studies are highlighted in gray.

GEO ID GSE15471 [44] GSE1651 [45]

Rank Symbol n.primary n.graph score relevance p.value Symbol n.primary n.graph score relevance p-value

1 ⋆ MAPK1 59 84 1.671 0.239 0.956 ⋆ MAPK9 26 50 3.647 0.104 0.008

2 ⋆ MAPK3 60 83 1.444 0.239 0.388 PLCB1 25 41 2.103 0.104 <0.001

3 ⋆ MAP2K1 55 63 3.964 0.218 <0.001 PLCB4 25 41 2.046 0.104 0.082

4 ⋆ KRAS 53 59 4.325 0.215 0.004 PLCB3 25 41 2.035 0.104 0.082

5 ⋆ HRAS 49 54 4.646 0.200 <0.001 ADCY6 26 38 4.255 0.103 0.006

6 NRAS 48 54 4.643 0.196 0.001 ADCY9 25 37 4.348 0.101 0.001

7 MAP2K2 48 53 3.961 0.190 0.002 ADCY1 25 37 3.324 0.101 0.001

8 ⋆ RAF1 46 57 1.304 0.186 0.112 ADCY3 24 36 4.086 0.100 0.961

9 ⋆ AKT3 44 69 3.541 0.179 <0.001 PLCB2 25 43 1.935 0.099 0.656

10 ⋆ AKT1 44 69 3.447 0.179 0.022 ⋆ KRAS 24 59 2.447 0.098 0.002

11 ⋆ AKT2 42 69 2.929 0.171 0.023 ADCY5 24 40 3.413 0.096 0.006

12 PRKACG 40 53 1.489 0.159 <0.001 ADCY8 22 36 3.052 0.092 0.312

13 ⋆ MAPK9 37 50 3.394 0.148 0.001 PRKACG 23 53 1.007 0.091 0.057

14 ⋆ RELA 35 51 1.725 0.144 0.014 PRKACB 23 53 0.958 0.091 0.799

15 ⋆ PIK3CA 35 73 2.667 0.139 <0.001 PRKACA 23 53 0.916 0.091 0.691

16 PRKACB 35 53 1.425 0.139 0.099 ADCY7 22 34 4.238 0.091 0.021

17 PRKACA 35 53 1.194 0.139 0.081 ADCY4 22 35 4.057 0.088 0.324

18 ⋆ PIK3R2 34 72 2.512 0.137 0.007 ADCY2 22 35 2.706 0.088 0.873

19 ⋆ PIK3R3 33 71 2.649 0.135 0.321 ⋆ MAPK10 20 49 2.580 0.082 0.386

20 ⋆ PIK3R1 33 71 2.612 0.135 0.055 HRAS 19 54 2.514 0.077 0.270

https://doi.org/10.1371/journal.pcbi.1007357.t005
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perturbed, the above methods will search for the genes most affected by the structural changes;

SourceSet will flag as significant the entire portion of the network. On the other hand, the

method proposed in Griffin et al. (2018) [51] is set within the Gaussian graphical framework,

searches for the perturbations at the mean level, and shares some similarities with our

approach. We have thus decided to compare its performance with our proposed method in a

simulation study.

The method of [51] – NF in the following—is implemented in the mapggm R package, and

searches for the origin of perturbation in three steps. In the first step, data from the control

condition are used to estimate the graphical structure by means of a penalized regression. In

the second step, the effects of network propagation are eliminated by network filtering. Finally,

a set of likelihood ratio tests is performed to identify the most likely site of the original pertur-

bation. Its sequential version at each step takes into account the perturbation targets identified

in the previous tests. The output of the method is a list of genes, ranked according to a p-value

for the hypothesis that the said gene is the origin of perturbation.

In this simulation study, we considered the same graph G on 10 nodes as before (Fig 2). We

perturbed node 5, following the perturbation strategy described in [51]. Since NF searches

only for the perturbations in the mean value, data in the control condition are sampled from N
(0, S); in the perturbed condition from N(Sμ, S), where only the fifth element of μ, i.e. μ5 was

non-zero. We considered four different values for μ5 = 1, 5, 10, 50, corresponding to weak,

mild,moderate, and strong perturbation. We also considered three different sample sizes n = 5,

10, 25. To render the comparison of the two methods more balanced, instead of estimating

network structure encoded in S via penalized regression in NF, we used the prior information

on the underlying graphical structure encoded in G. For each combination of the sample size

and perturbation strength we generated 100 datasets. By allowing multiple perturbation tar-

gets, the sequential version of the NF procedure can be considered comparable to the Source-

Set method in terms of power and type I error. For each Monte Carlo run, multiple testing

correction (Bonferroni) was applied to the list of p-values returned by NF procedure.

Although NF was shown to be more powerful in the detection of weak perturbations, we

proved that this comes at the cost of a higher type I error even in the presence of mild dysregu-

lations (Table 6).

Indeed, even if node 5 is first-ranked in almost all the considered settings (S7 Table), NF

also marks many nodes close to the true perturbation site as significant. As already noted in

[51], these results imply that in more complicated configurations, such as biologically reason-

able dysregulations, it might be difficult to infer which one among several top-ranked genes is

the true origin of perturbation.

As an example, we applied NF to the dataset of the Validation study 3. We used the prior

information of the Chronic myeloid leukemia pathway to estimate the block-precision matrix

Table 6. Simulation study comparing sequential mapggm and SourceSet. Estimated power and type I error (in parentheses) for the two methods in different simula-

tion settings. Power is computed as the probability that node 5 is identified as the origin of perturbation; Type I error is computed as the probability that at least one other

node—other than node 5—is inferred to be the source of the dysregulation. A node is flagged as source of the dysregulation if its p-value is significant or it is a member of

the source set estimator, for sequential mapggm and SourceSet, respectively.

Mapggm SourceSet

n = 5 n = 10 n = 25 n = 5 n = 10 n = 25

Weak 0.48 (0.81) 0.14 (0.36) 0.23 (0.17) < 0.01 (< 0.01) 0.01 (<0.01) < 0.01 (< 0.01)

Mild 0.84 (0.99) 1.00 (0.89) 1.00 (0.83) 0.03 (0.01) 0.38 (0.01) 1.00 (0.06)

Moderate 0.99 (1.00) 1.00 (1.00) 1.00 (0.99) 0.27 (0.01) 1.00 (0.01) 1.00 (0.02)

Strong 1.00 (1.00) 1.00 (1.00) 1.00 (1.00) 0.85 (0.02) 1.00 (0.02) 1.00 (0.03)

https://doi.org/10.1371/journal.pcbi.1007357.t006
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using samples of first condition (i.e., patients without ABL/BCR genomic rearrangement) and

we performed gene-wise likelihood ratio tests in order to ascertain which gene was the most

likely perturbation candidate. The ranking of the participating genes by the NF method is

shown in Fig 8. As we can observe, most genes have very large values of test statistics and sig-

nificant p-values: the two chimera genes are occupying middle ranks and would be hard to be

identified as perturbation targets.

Finally, it should be stressed that NF searches for a more specific type of perturbation—the

one affecting the mean only—and assumes that the covariance matrices in the control and per-

turbed condition are the same. As a consequence, NF is unable to detect changes at the covari-

ance level.

It is also of interest to investigate how much the results of the source set analysis differ from

the results of the differential analysis. Fig 9 reports the number of differentially expressed

genes in the six validation and case-control studies. For each study, we report the total number

of differentially expressed genes broken down into two groups according to whether they are

annotated in the considered pathways. We also report the number of genes flagged by the

source set analysis (those reported as primary genes), as well as the overlap between the two:

the genes that are flagged both as primary, and as differentially expressed. We note that the

overlap is quite limited, indicating that the two approaches bring complementary insights.

Namely, some of the genes that are differentially expressed, but not primary, are downstream

from the primary genes and will be flagged as secondary by the SourceSet. The genes that are

flagged as primary but are not differentially expressed might be a) elements of the minimal

source set whose variance and covariance patterns have been affected by the perturbation, or

b) elements of the graphical source set, but not of the minimal source set.

Discussion

We present a novel computational approach, called SourceSet, to identify primary dysregula-

tions in perturbed pathways. Using graphical models theory, our approach detects changes in

the mean expression level and in the covariance patterns and uses the resulting evidence to

infer the source set, that is a set of primary genes consisting of, or closest to, the potential

Fig 8. Mapggm analysis results for the chimera case study. Rank (x-axis) according to the non-sequential NF test statistic (y axis)

for the 67 genes annotated in the Chronic myeloid leukemia KEGG pathway. ABL1 (rank = 27) and BCR (rank = 37) genes are

highlighted with blue dots.

https://doi.org/10.1371/journal.pcbi.1007357.g008

A graphical model approach to identify primary genes in perturbed biological pathways

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007357 October 25, 2019 21 / 28

https://doi.org/10.1371/journal.pcbi.1007357.g008
https://doi.org/10.1371/journal.pcbi.1007357


source of the differential behavior. We investigated the possibility that the primary genes iden-

tified by SourceSet coincide with the top ranked differentially expressed genes. Our results sug-

gest that there is little overlap between the two lists, indicating that the two methods offer

complementary insights.

The downside of the graphical approach is that it focuses on the graphical source set which

might be larger than the minimal source set (see scenario 3 in Simulation studies). To tackle

this issue, one may adopt a two step approach, in which the SourceSet analysis is followed by

additional statistical tests on individual elements of the graphical source set, allowing to further

reduce the set of possible candidates responsible for the primary perturbation. Determining

statistical properties of this two step approach is not trivial, and we leave this investigation for

future work.

Our method is applicable when the number of observations is far below the number of vari-

ables, a scenario that characterizes omics data. To tackle this issue, we adopted an ad-hoc ridge

strategy for estimating the covariance matrix and a permutation approach. Simulations show

that, when a dysregulation is present, SourceSet demonstrates high sensitivity and specificity

in all considered scenarios, even with a low number of samples. Apart from array-based gene

expression, we showed with simulated data that SourceSet can be applied to log counts or

RPKM/FPKM in next-generation sequencing experiments. Other possible applications include

protein abundances and metabolomic data.

A number of methods for the identification of the origin of perturbation have recently been

proposed and we discuss them in Comparison with other methods section. Most of them con-

sider different definitions of perturbations and make different underlying assumptions, which

makes them applicable to more specific types of perturbations, i.e. those affecting the network

structure or those affecting the mean expression. Our approach allows the perturbation to

affect the mean and/or the covariance of the set of genes, broadening the range of detectable

perturbations. On the other hand, when the sample size is very small or the perturbation is

Fig 9. Visual summary of the results of differential expression and source set analysis. Stacked bar represents the

proportion of genes flagged only by the differential expression analysis annotated in at least one KEGG pathway

(violet) and not annotated in any KEGG pathway (pink), the source set analysis (blue), or both, in the comparison

between the two considered conditions. Genes with p-values�0.05 are flagged as deferentially expressed (DE), and

those contained in the source set estimate of at least one analyzed pathway as primary.

https://doi.org/10.1371/journal.pcbi.1007357.g009
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very weak, our empirical comparison showed that a method focusing on a more specific type

of perturbation, such as [51], has more power and might be preferable.

In this work, we adopted a pathway-centered approach in which individual pathways are ana-

lyzed independently, and the results are visualized by taking the graphical union of the resulting

source set estimates.To this aim, we implemented different graphical devices to guide the user

in interpreting the obtained results in the SourceSet R package. Using the pathway-centered

approach we analyzed three different intervention studies and we showed that SourceSet has the

potential of providing new biological insights in the search for the origin of dysregulations.

It should be stressed that although the graphical union can provide valuable biological

insights, it cannot be interpreted as the global source set estimate, i.e. the source set of the

pooled set of genes. In order to obtain such estimate, one would need to consider a graph rep-

resenting the entire set of genes under study. The drawback of the global perspective is the

loss of interpretation of the biological annotation; nevertheless, this possibility is offered in the

SourceSet package, where the choice of the input graph is left to the user.
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S1 Fig. Simulation study results under the violation of symmetry for the graph in Fig 2

(main text) in scenario 2 (top panel) and scenario 3 (bottom panel). On the left, results

based on the maximum likelihood estimate of the covariance matrix; on the right results based

on the regularized estimate. Each subpanel corresponds to a different combination of the sam-

ple size (columns) and the intensity of dysregulation (rows). Inside subpanels, for each variable

Xv, v 2 V a stacked bar chart shows the percentages of times that v 2 D̂G (red, primary set),

v 2 D̂G n D̂G (orange, secondary set) and v 2 V n D̂G (green).

(PDF)

S2 Fig. Simulation study results for the Proteoglycans in cancer pathway when gene 2335
is perturbated. On the top panel, results based on the maximum likelihood estimate of the

covariance matrix; on the bottom panel results based on the regularized estimate. Each sub-

panel corresponds to a different combination of the sample size (columns) and the intensity of

dysregulation (rows). Inside subpanels, for each variable Xv, v 2 V a stacked bar chart shows

the percentages of times that v 2 D̂G (red, primary set), v 2 D̂G n D̂G (orange, secondary set)

A graphical model approach to identify primary genes in perturbed biological pathways

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007357 October 25, 2019 23 / 28

http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1007357.s001
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1007357.s002
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1007357.s003
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1007357.s004
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1007357.s005
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1007357.s006
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1007357.s007
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1007357.s008
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1007357.s009
https://doi.org/10.1371/journal.pcbi.1007357


and v 2 V n D̂G (green). Only genes that appear at least one time in the source set are shown

(13 out of 202). Two subpanels are missing because of the maximum likelihood estimate does

not exit (i.e., n� p�).
(PDF)

S3 Fig. SourcSet analysis results for STAT3 (top panel) and CREB (bottom panel) inter-

vention studies. Boxplots of score (left panel) and relevance (right panel) indices for

genes annotated in at least two pathways of the whole KEGG collection (N = 248). The size of

each point is proportional to the number of pathways in which the associated gene is anno-

tated. Silenced or knock-down genes are highlighted with blue dots. For more details about the

interpretation of each index, see S7 Text.

(PDF)

S4 Fig. sourceUnionCytoscape visualization of source set analysis results for the

STAT3 study. The graphical union of all subgraphs induced by source set elements of each

analyzed pathway (N = 248) is represented. The size of each node is proportional to the num-

ber of times the gene appears in a source set. The color is associated with the score index:

higher values are highlighted with darker blue color. The number depicted on each edge repre-

sents the number of pathways in which the two genes are connected. For more details about

the interpretation of each index, see S7 Text.

(PDF)

S5 Fig. sourceUnionCytoscape visualization of source set analysis results for the

CREB study. The graphical union of all subgraphs induced by source set elements of each ana-

lyzed pathway (N = 248) is represented. The size of each node is proportional to the number of

times the gene appears in a source set. The color is associated with the score index: higher

values are highlighted with darker blue color. The number depicted on each edge represents

the number of pathways in which the two genes are connected. For more details about the

interpretation of each index, see S7 Text.

(PDF)

S6 Fig. sourceUnionCytoscape visualization of source set analysis results for the Chi-

mera study. The graphical union of all subgraphs induced by source set elements of each ana-

lyzed pathway (N = 248) is represented. The size of each node is proportional to the number of

times the gene appears in a source set. The color is associated with the score index: higher

values are highlighted with darker blue color. The number depicted on each edge represents

the number of pathways in which the two genes are connected. For more details about the

interpretation of each index, see S7 Text.

(PDF)

S1 Table. infoSource summaries for the 20 pathways in which STAT3 gene is anno-

tated. Pathways in which the silenced gene appears in the source set are marked with a star. In

particular those in which the silenced gene is the only gene of the source set are highlighted in

gray. For more details about the interpretation of each index, see S7 Text.

(PDF)

S2 Table. infoSource summaries for the 26 pathways in which CREB gene is annotated.

Pathways in which the knock-down gene appears in the source set are marked with a star. In

particular, those in which CREB is the only source set element are highlighted in gray. For

more details about the interpretation of each index, see S7 Text.

(PDF)
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S3 Table. infoSource summary for pathways in which at least one of the chimera genes

are annotated. Pathways in which ABL1 or both chimera genes appear in the source set are

marked with one or two stars, respectively. In particular, those in which ABL1 and BCR are

the only elements of the source set are highlighted in gray. For more details about the interpre-

tation of each index, see S7 Text.

(PDF)

S4 Table. Prostate cancer study. infoSource summary for the top five genes ordered by

relevance index. Number of analyzed pathways in which the gene belongs to the primary

dysregulation (n.primary) or the secondary dysregulation (n.secondary); number of

analyzed pathways in which it is annotated (n.graph), and its score and relevance
indices. For more details about the interpretation of each index, see S7 Text.

(PDF)

S5 Table. Castration resistance prostate cancer study, top pathways. infoSource sum-

mary for the top 10 pathways, ordered by decreasing primary.impact. For more details about

the interpretation of each index, see S7 Text.

(PDF)

S6 Table. Castration resistance prostate cancer study, top genes. infoSource summary

for the top five genes—annotated in at least 2 pathways—ordered by score index. Number of

analyzed pathways in which the gene belongs to the primary dysregulation (n.primary) or

the secondary dysregulation (n.secondary); number of analyzed pathways in which it is

annotated (n.graph), and its score and relevance indices. For more details about the

interpretation of each index, see S7 Text.

(PDF)

S7 Table. Simulation study results for non-sequential mapggm. Precision and type I error

(in parentheses) in different simulation settings. For non-sequential mapggm procedure the

precision is computed as the probability that node 5 is first-ranked and significant; type I error

is calculated as the probability that another node—other than node 5—is first-ranked with a

significant p-value.

(PDF)
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