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Abstract

We use the PBE0/6-31G* density functional method to perform ab initio quantum mechanical/

molecular mechanical (QM/MM) molecular dynamics (MD) simulations under periodic boundary 

conditions with rigorous electrostatics using the ambient potential composite Ewald method in 

order to test the convergence of MM→QM/MM free energy corrections for the prediction of 17 

small-molecule solvation free energies and 8 ligand binding free energies to T4 lysozyme. The 

“indirect” thermodynamic cycle for calculating free energies is used to explore whether a series of 

reference potentials improve the statistical quality of the predictions. Specifically, we construct a 

series of reference potentials that optimizes a molecular mechanical (MM) force field’s parameters 

to reproduce the ab initio QM/MM forces from a QM/MM simulation. The optimizations form a 

systematic progression of successively expanded parameters that include bond, angle, dihedral and 

charge parameters. For each reference potential, we calculate benchmark quality reference values 

for the MM→QM/MM correction by performing the mixed MM and QM/MM Hamiltonians at 11 

intermediate states, each for 200 ps. We then compare forward and reverse application of 

Zwanzig’s relation, thermodynamic integration, and Bennett’s acceptance ratio (BAR) methods as 

a function of reference potential, simulation time, and the number of simulated intermediate states. 

We find that Zwanzig’s equation is inadequate unless a large number of intermediate states are 

explicitly simulated. The TI and BAR mean signed errors are very small even when only the end-

state simulations are considered, and the standard deviation of the TI and BAR errors are 

decreased by choosing a reference potential that optimizes the bond and angle parameters. We find 

a robust approach for the data sets of fairly rigid molecules considered here is to use bond+angle 

reference potential together with the end-state-only BAR analysis. This requires a QM/MM 

simulations to be performed in order to generate reference data to parameterize the bond+angle 

reference potential, and then this same simulation serves a dual purpose as the full QM/MM end-

state. The convergence of the results with respect to time suggests that computational resources 

may be used more efficiently by running multiple simulations for no more than 50 ps, rather than 

running one long simulation.
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1 Introduction

Reliable simulations of complex biological processes whereby molecules undergo 

significant changes in their environment require robust force field models as well as efficient 

sampling methods to enable both the electronic and conformational degrees of freedom to 

accurately respond.1 These requirements present challenges for conventional molecular 

mechanical (MM) force fields,2 particularly with chemically diverse molecules for which 

tested parameters do not exist (and often selection of parameters is not clear).3 Further, 

modeling of more complex interactions such as formation/cleavage of ionic or covalent 

bonds may require more sophisticated quantum mechanical (QM) models.4 These challenges 

all culminate in free energy simulations applied to drug discovery applications, creating a 

critical barrier to progress for structure-based drug design.2-5

Free energy simulations with combined quantum mechanical/molecular mechanical 

(QM/MM) potentials or fully quantum mechanical force fields (QMFFs) garner increasing 

interest for improving the accuracy of prediction6-10 particularly for solvation and relative 

ligand binding free energies that are important for drug design applications.11 Quantum 

models, if made affordable, are attractive for these applications owing to their accuracy, 

robustness and lack of adjustable free parameters relative to MM force fields. Although 

dual-topology single-coordinate QM/MM free energy calculations can be performed for 

some specific applications,12,13 a more common strategy is to use a “reference potential 

approach” for calculating the free energy change via an indirect route. That is, one can 

perform the alchemical transformation with a MM method, and then apply MM→QM/MM 

free energy corrections to the end-states. The reference potential approach was pioneered by 

Gao14,15 and Warshel,16 and advanced recently by Woodcock, Boresch, König, Brooks and 

others.17-26

The high cost of quantum mechanical (QM) calculations has led to the exploration of 

various methods to reduce the number of energy (and force) evaluations necessary to 

converge the free energy estimate. These include the use of frozen density functional 

approximations,27,28 orthogonal space random walk strategies,29 integrated Hamiltonian 

sampling,30 paradynamics,31,32 and trajectory reweighting.25,33-36 Others have noted the 
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importance of choosing the most compatible reference potential37-40 or have sought to 

improve the reference potential to increase the distribution overlap between reference and 

QM/MM potential energy surfaces.32,38,41,42 Of particular note are those methods that 

perform ad hoc parametrization of the MM reference potential via “force matching” to the 

QM/MM potential19,39,43-50 to enhance the conformational overlap between the levels of 

theory.18,19,47,50 In the present work, we use the phrase “reference potential” to refer to the 

low-level MM Hamiltonian used to connect the high-level QM/MM Hamiltonian to the free 

energy cycle. In other words, if an ad hoc MM force field model is parametrized to match 

the high-level QM/MM forces, then the reference potential is the force-matched MM model.

One can greatly reduce the number of QM/MM evaluations by re-analyzing a distribution 

generated from simulations using an MM reference potential, because only the statistically 

independent samples (typically 103 times less than that needed to produce the simulation 

distribution) need to be considered. The simplest form of re-analysis is the evaluation of 

Zwanzig’s relation,51 which is theoretically exact in the limit of infinite sampling;52 

however, forward and reverse analysis (that is, evaluating Zwanzig’s relation from MM and 

QM/MM distributions, respectively) can be in serious error for finite sampling realized in 

practice,24,25,33,38,53-57 which has lead some to doubt the feasibility of converging the total 

energy calculations within a reasonable simulation time.55 Nevertheless, procedures have 

been sought to improve the convergence; for example, by fixing the internal-coordinates of 

the “QM region” during dynamics,58,59 representing the environment through a mean-field 

approximation,60 averaging many, short simulations,61,62 performing nonequilibrium work 

simulations,20,21,62-65 or by using interaction energies rather than total energies.66-68 It has 

been demonstrated, however, that the use of interaction energies can yield incorrect solvation 

free energies with respect to rigorously obtained values.68,69

In this work, we compare MM→QM/MM free energy corrections calculated from 

Zwanzig’s relation (forward and reverse), Bennett’s acceptance ratio70 (BAR), and 

thermodynamic integration71 (TI) for a series of solvation free energies and ligand binding 

free energies to the T4 lysozyme.72 We perform dynamics with the PBE0/6-31G* hybrid 

density functional method and obtain reference free energy correction values by performing 

simulations at 11-intermediate states connecting the MM and QM/MM Hamiltonians. 

Unlike previous works that performed ab initio QM/MM free energy simulations, we are 

able to perform condensed phase electrostatics using a robust ambient potential composite 

Ewald method to account for long-range interactions.73 We explore the benefits of using 

various reference potentials produced from force matching parametrization. Specifically, we 

use force matching parametrizations to construct a series of ad hoc MM′ reference potential 

models that are used as an intermediate stage within the thermodynamic cycle, so that the 

free energy correction becomes: MM→MM′→QM/MM. The MM′ reference potential 

models are parametrized to reproduce the target QM/MM forces by changing either: (1) the 

MM bond parameters, (2) the MM bond and angle parameters, (3) the MM bond and angle 

parameters and the dihedral force constants, or (4) the MM bonded parameters and (fixed) 

atomic charges. Convergence of the analysis methods is performed with respect to sampling 

time and the number of intermediate-Hamiltonian simulations.
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The studies in the literature most closely related to the present work are those that directly 

assess the quality of the free energy corrections through extensive generation of QM/MM 

MD trajectories, including intermediate MM→QM/MM alchemical Hamlitonians as a 

reference for comparison.17,55,57 Of particular note is the work of Kearns et al.,17 which was 

published during the preparation of our manuscript. They developed a dataset for validating 

QM/MM free energy corrections consisting of 22 drug-like small molecules, and gas-phase 

QM corrections are obtained for a self-consistent charge density functional tight-binding 

(SCC-DFTB) semiempirical Hamiltonian.17 The authors obtain accurate free energy 

estimates and compare several analysis methods (Zwanzig’s relation, BAR, Jarzynski’s 

equation). Our present work differs in several ways: we use the PBE0/6-31G* ab initio 
Hamiltonian and obtain accurate estimates in both condensed- and gas-phases (for solvation 

free energies), and bound- and unbound-states (for ligand-binding free energies). 

Furthermore, our work is more heavily focused on the use of reference potentials obtained 

from force-matching parametrization.

2 Methods

2.1 Thermodynamic cycles and test sets

Figure 1 illustrates thermodynamic cycles for computing QM/MM solvation and ligand 

binding free energies by correcting the end-states of a MM-computed alchemical free energy 

calculation. The MM→QM end-state transformations avoid the need for performing direct 

alchemical transformations with a QM method. The thermodynamic cycle contains an 

intermediate step that transforms the MM Hamiltonian to a MM′ model, which differs only 

by the MM parameter values that are used. The purpose of including this additional step is to 

improve the overlap between the MM′ and QM distributions to enhance the converge of the 

thermodynamic estimate with respect to the number of QM energy evaluations (and in 

particular to minimize the amount of simulations that requires expensive QM/MM energy 

and force evaluation at every time step). In comparison, the MM→MM′ transformation 

requires a trivial amount of computational resources to obtain adequate sampling. Note: the 

schematic in Figure 1 illustrates the absolute ligand binding free energy, ΔAb(L ∙ P), whereas 

in practice, it is often the relative ligand binding free energy between two closely related 

ligands, ΔAb(L ∙ P) − ΔAb(L′ ∙ P), representing a much smaller perturbation, that is actually 

computed. This type of calculation involves an additional alchemical transformation 

between the ligands, in both an aqueous environment and bound to the protein. These 

transformations can be conducted completely within the MM framework, and the exact same 

QM/MM end-state free energy corrections as shown in the illustration can be used to make 

QM corrections to the relative ligand binding free energy calculations computed at the MM 

level.

One can write the QM-corrected solvation free energy of molecule A as

ΔAsolv
QM ∕ MM(A) = ΔAsolv

MM ∕ MM(A) + ΔΔAnet
MM ∕ MM QM ∕ MM(A) (1)

where ΔΔAnet
MM ∕ MM QM ∕ MM(A) is the net MM→QM correction
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ΔΔAnet
MM ∕ MM QM ∕ MM(A) = ΔA(aq)

MM MM′(A) + ΔA(aq)
MM′ QM(A)

− ΔA(gas)
MM MM′(A) − ΔA(gas)

MM′ QM(A)
(2)

We calculate ΔAsolv
MM ∕ MM(A) by transforming the solute, A, to a set of dummy particles that 

do not interact with the solvent, A*, in both aqueous and gas phases; that is

ΔAsolv
MM ∕ MM(A) = ΔA(gas)

MM ∕ MM(A A∗) − ΔA(aq)
MM ∕ MM(A A∗) (3)

The simulations that were explicitly performed correspond to the terms: 

ΔA(gas)
MM ∕ MM(A A∗) and ΔA(aq)

MM ∕ MM(A A∗) in Eq. 3, and ΔA(aq)
MM MM′(A), 

ΔA(aq)
MM′ QM(A), ΔA(gas)

MM MM′(A), ΔA(gas)
MM′ QM(A) in Eq. 2. We examine the accuracy 

ΔA(solv)
QM ∕ MM(A) and the convergence of ΔΔA(net)

MM ∕ MM QM ∕ MM(A), ΔA(aq)
MM′ QM(A), and 

ΔA(gas)
MM′ QM(A) for the following set of 17 molecules/ions: CO3

2 −, CH3NH3
+, NH4

+, CH3CO2
−, 

H3O+, C6H5Cl, C6H14, CH3OH, C2H6, (CH2)4O, C(NH2)3
+, C6H5NH2, CH3CONH2, H2O, 

C2H5OH, C6H6, and C6H5OH. These are designated the “Solvation test set” and are shown 

in Figure 2.

The QM-corrected ligand binding free energy of ligand L to protein P is

ΔAb
QM(L ⋅ P) = ΔAb

MM ∕ MM(L ⋅ P) + ΔΔAnet
MM ∕ MM QM ∕ MM(L ⋅ P) (4)

where ΔΔAnet
MM ∕ MM QM ∕ MM(L) is the free energy of transforming the ligand from 

MM→QM while the protein continues to be modeled with MM.

ΔΔAnet
MM ∕ MM QM ∕ MM(L ⋅ P) = ΔA(aq)

MM MM′(L ⋅ P) + ΔA(aq)
MM′ QM(L ⋅ P)

− ΔA(aq)
MM MM′(L + P) − ΔA(aq)

MM′ QM(L + P)
(5)

The notation L ∙ P and L + P indicates that the ligand is bound and unbound to the protein, 

respectively.

In practice, we compute the relative ligand binding free of ligand L (relative to ligand L′), 

which requires a much smaller perturbation to the system. The relative ligand binding free 

energy is:
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ΔΔAb
QM ∕ MM(L ⋅ P) = ΔAb

QM ∕ MM(L ⋅ P) − ΔA(b)
QM ∕ MM(L′ ⋅ P)

= ΔΔA(b)
MM ∕ MM(L′ ⋅ P L ⋅ P)

+ ΔΔAnet
MM ∕ MM QM ∕ MM(L ⋅ P)

− ΔΔAnet
MM ∕ MM QM ∕ MM(L′ ⋅ P)

(6)

where

ΔΔAb
MM ∕ MM(L′ ⋅ P L ⋅ P) = ΔA(aq)

MM ∕ MM(L′ ⋅ P L ⋅ P)
− ΔA(aq)

MM ∕ MM(L′ + P L + P)
(7)

The simulations that were explicitly performed correspond to the terms: 

ΔA(aq)
MM ∕ MM(L′ ⋅ P L ⋅ P) and ΔA(aq)

MM ∕ MM(L′ + P L + P) in Eq. 7, and 

ΔA(aq)
MM MM′(L ⋅ P), ΔA(aq)

MM′ QM(L ⋅ P), ΔA(aq)
MM MM′(L + P), and ΔA(aq)

MM′ QM(L + P) in 

Eq. 5. We examine the accuracy of ΔΔAb
QM ∕ MM(L ⋅ P) and the convergence of 

ΔΔAnet
MM ∕ MM QM ∕ MM(L ⋅ P), ΔA(aq)

MM′ QM(L ⋅ P), and ΔA(aq)
MM′ QM(L + P) for the 

following 8 ligands bound to T4 lysozyme:72 BNZ (benzene, PDBID: 181l), PXY (p-xylene, 

PDBID: 187l), I4B (isobutylbenzene, PDBID: 184l), BZF (benzofuran, PDBID: 182l), DEN 

(indene, PDBID: 183l), IND (indole, PDBID: 185l), OXE (o-xylene, PDBID: 188l), and 

N4B (n-butylbenzene, PDBID: 186l). These ligands are designated the “T4 lysozyme test 

set” and are illustrated in Figure 2. All ligands in the T4 lysozyme test set are electrically 

neutral, and the partial atomic charges were determined using the AM1-BCC procedure.74,75

2.2 Reference potentials

The free energy calculations begin by solvating the system and equilibrating the unit cell 

density using a MM Hamiltonian. A 200 ps QM/MM NVT simulation is then performed, 

and the trajectories of coordinates and atomic forces are saved every 0.5 ps. This simulation 

will later be reused to perform free energy analysis.

The MM′ reference potential models are created by adjusting the MM parameters to 

reproduce the saved QM/MM forces within a nonlinear optimization procedure. The merit 

function used in the optimization is:

χ2(p) = ∑
i = 1

Nframes
∑

a = 1

Natoms
∣ Fa, i

QM ∕ MM − Fa, i
MM(p) ∣2 (8)

where Fa, i
QM ∕ MM is the QM/MM atomic force vector of atom a in trajectory frame i and 

Fa, i
MM(p) is the force vector produced by the MM Hamiltonian with the trial set of MM 

parameters p. All atoms, including MM solvent, contribute to the merit function. For the 

molecules in the solvation test set, the merit function uses the solvated simulation 
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trajectories. For the T4 lysozyme ligand binding test set, the merit function uses the 

unbound/solvated simulation trajectories. One could perform the parameter optimization 

using the bound simulations; however, we chose to perform the optimizations using the 

unbound trajectories to make the procedure more consistent between the two test sets, and 

applicable to drug-like molecules for which binding to a specific target might not be known 

in advance.

The MM′ reference potentials considered in this work form a systematic progression in 

which MM bond, angle, dihedral and charge parameters form aggregate reference potential 

sets as follows:

• The “b” model adjusts the solute/ligand bond force constants and equilibrium 

values, but leaves all other MM parameters unchanged.

• The “ba” model adjusts the solute/ligand bond and angle force constants and 

equilibrium values, but leaves all other MM parameters unchanged.

• The “bad” model adjusts the solute/ligand bond, angle, and dihedral force 

constants and the bond and angle equilibrium values, but leaves all other MM 

parameters unchanged.

• The “badq” model adjusts the atomic charges, in addition to the parameters 

optimized within the “bad” model, under the constraint that the net-charge is 

preserved and equivalent-atom charges are maintained.

The GAFF force field chooses the MM parameters based upon atom-type assignment. That 

is, there are bond parameters of each pair of atom-types, angle parameters for each triplet of 

atom-types, and torsion parameters for each quadruplet of atom-types. For example, a 3-site 

water molecule consists of two atom types: “ow” for the oxygen and “hw” for each of the 

two hydrogens. There is only 1 set of bond parameters, corresponding to a ow-hw bond, and 

1 set of angle parameters for the hw-ow-hw angle. The MM′ potential uses the same atom-

type assignments as the GAFF force field – only the values of the parameters are allowed to 

change – therefore, the “b” MM′ model optimizes a total of 2 parameters for water: the 

force constant and equilibrium value of all ow-hw bonds.

The nonlinear optimization was performed using a custom python script that utilizes binding 

to the NLopt library.76 Trial parameters were successively chosen using the Constrained 

Optimization BY Linear Approximations (COBYLA) algorithm.77 The optimization script 

is provided the original MM (GAFF) parameter file, a list of parameters to optimize, a 

trajectory of atomic coordinates, and a corresponding trajectory of atomic forces evaluated 

with the QM/MM Hamiltonian (the Fa, i
QM ∕ MM in Eq. 8. At each step in the optimization 

procedure: 1. A new set of trial parameters are obtained from the COBYLA algorithm. 2. An 

Amber parameter file is written for the solvated system. 3. The SANDER program reads the 

parameter and coordinate trajectory files, re-evaluates the MM energy and forces for each 

trajectory frame (rather than performing dynamics) and writes the atomic forces to a file (the 

Fa, i
MM(p) in Eq. 8). 4. The optimization script reads the new set of atomic forces from file and 

evaluates χ2 from Eq. 8. All parameters are allowed to change by 40% of their initial value. 

The “badq” model also changes the atomic charges within the nonlinear optimization 
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procedure in a manner that is no different from any other optimization parameter with 2 

exceptions: 1. Only the unique charges are optimized; that is, if two-or-more atoms share a 

common charge in the MM force field, then they will continue to share a common charge in 

the MM′ force field. 2. A constraint is placed on the optimization that maintains a fixed 

molecular charge. Finally, we emphasize that the optimization procedure evaluates the 

atomic forces of the entire system (including solvent) in the same manner as would be 

calculated during molecular dynamics. In contrast, the force-matching protocol used in some 

other works may only evaluate the forces of the solute in a vacuum environment, rather than 

the solvated system. In that case, one would not want to include the solute-solvent 

contributions within Fa, i
QM ∕ MM, as this would effectively doublecount the environment’s 

influence on the forces when it is applied to a condensed phase simulation. Technical 

advances in force matching procedures for force field development have been described in 

detail in several other seminal works.44-46,50,78-80

2.3 Simulation details

The solute and ligand molecule MM parameters were taken from the GAFF force field.81 

The T4 lysozyme MM parameters are from the ff14SB protein force field.82 Water solvent 

molecules use the TIP4P-Ew model.83 The simulated T4 lysozyme structure has a net charge 

of 9+. This charge is counterbalanced by 16 Na+ and 25 Cl− ions chosen to achieve a 140 

mM near-physiological salt concentration after neutralization. All QM calculations are 

performed with the PBE0/6-31G* hybrid density functional implemented within a 

development version of the SANDER molecular dynamics program.84 Condensed phase 

simulations are performed within a periodic truncated octahedron with at least 13 Å of 

solvent around all sides of the solute. Long-range electrostatics are evaluated with the 

Particle Mesh Ewald method with 10 Å real-space cutoffs and the reciprocal-space energy is 

evaluated with a 1 point/Å Fast Fourier Transform grid spacing, fourth order cubic B-spline 

interpolation, and tin-foil boundary conditions.85 A charge-canceling uniform background 

plasma correction was applied to those systems with a net charge.86,87 The condensed phase 

QM/MM simulations use the ambient potential composite Ewald method73 with the same 

cutoff and grid spacing. Nonbond interactions were explicitly computed within a 10 Å 

direct-space cutoff, and the LJ interactions beyond the cutoff were modeled with a long-

range tail correction. All simulations are performed with a 1 fs timestep, and the SHAKE 

algorithm88 is used to remove hydrogen vibrations except the ligand or solute molecule that 

is (or will become) evaluated with the QM Hamiltonian. The condensed phase simulations 

were initially equilibrated with the MM Hamiltonian in the NPT ensemble (1 ATM pressure, 

298K temperature) for 2 ns using the using the Berendsen barostat. After the initial 

equilibration of the density, all condensed phase simulations were performed in the NVT 

ensemble at 298 K using the Langevin thermostat (5 ps collision frequency).89 The gas-

phase simulations are aperiodic, they use the weak-coupling algorithm90 to mantain a 

temperature of 298 K, and direct electrostatic evaluations are performed with a cutoff of 999 

Å.

Free energy values are calculated from a series of simulations that propagate the dynamics 

using a λ-dependent potential energy:

Giese and York Page 8

J Chem Theory Comput. Author manuscript; available in PMC 2019 November 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



U(λ) = U(0) + λ[U(1) − U(0)] (9)

where U(0) and U(1) are the potential energy functions of the initial and final states, 

respectively. The free energy simulations are performed using the single-coordinate dual-

topology framework implemented with the Amber software; however, the MM→MM′ 
simulations could also be performed using the single-topology parameter interpolation 

approach.91 We use fixed values of λ that evenly divide the range [0,1]. The reference free 

energy values use a large number of λ simulations (the MM-calculated direct alchemical 

transformations use 12 λ values and the indirect stages of the MM→QM transformations 

each use 11 simulations). The latter was chosen such that we could examine subsets of 2, 3, 

and 6 evenly spaced λ windows with the same endpoints in order assess convergence with 

number of windows. The reference values are used to compare how the results differ when 

fewer λ values are considered. From these simulations, the free energy can be calculated 

from a variety of methods, discussed in the “Free energy analysis” section.

Additional simulation details are itemized below for specific energy terms. The listed 

simulation lengths are the total amount of sampling performed; the first half of each 

simulation is discarded as equilibration.

• ΔA(aq)
MM ∕ MM(A A∗) (in Eq. 3). This is performed in two stages. The first stage 

simulated 12 uniformly-spaced λ values in which the solute charges were set to 

zero. The second stage used a softcore Lennard-Jones potential in 12 uniformly-

spaced λ values to transform the atoms into dummy particles consisting of only 

nonelectrostatic, nonbond energy terms. Each of these 24 simulations were run 

for 10 ns, and each 10 ns simulation was repeated 3 times, for an aggregate total 

of 720 ns of sampling. These simulations were run on a single GPU. The 

energies and dU/dλ were sampled every 1 ps, and the autocorrelation times of 

dU/dλ were found to typically range between 1 and 2 ps.

• ΔA(gas)
MM ∕ MM(A A∗) (in Eq. 3). This is performed in two stages, analogous to 

the description of ΔA(gas)
MM ∕ MM(A A∗), yielding 720 ns of aggregate sampling in 

the gas phase. These simulations were run on a single CPU core. The energies 

and dU/dλ were sampled every 1 ps, and the autocorrelation times of dU/dλ 
were found to typically range between 0 and 20 ps.

• ΔA(aq)
MM MM′(A) (in Eq. 2). This is performed in a single stage consisting of 11 

uniformly-spaced windows, each run for 2 ns for an aggregate total of 22 ns of 

sampling. The simulations were performed on a single GPU. The energies and 

dU/dλ were sampled every 10 ps, and the autocorrelation times of dU/dλ were 

found to be less than 10 ps.

• ΔA(gas)
MM MM′(A) (in Eq. 2). This is performed in a single stage consisting of 11 

uniformly-spaced windows, each run for 20 ns and repeated twice, for an 

aggregate total of 220 ns of gas phase sampling. These simulations were 
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performed on a single CPU core. The energies and dU/dλ were sampled every 

10 ps, and the autocorrelation times of dU/dλ were found to be less than 10 ps.

• ΔA(aq)
MM′ QM(A) (in Eq. 2). This is performed in a single stage consisting of 11 

uniformly-spaced windows, each run for 200 ps, for an aggregate total of 2.2 ns 

of sampling. Each simulation was performed on a 36-core node. A single core 

was reserved for evaluating the pure-MM energy and forces, and 35 of the cores 

were used to evaluate the ab initio QM/MM energy and forces. The energies and 

dU/dλ were sampled every 0.5 ps, and the autocorrelation times of dU/dλ were 

found to typically range between 0 and 1 ps.

• ΔA(gas)
MM′ QM(A) (in Eq. 2). This is performed in a single stage consisting of 11 

uniformly-spaced windows, each run for 200 ps, for an aggregate total of 2.2 ns 

of sampling. Each simulation was performed on a 36-core node. The energies 

and dU/dλ were sampled every 0.5 ps, and the autocorrelation times of dU/dλ 
were found to typically range between 0 and 2 ps.

• ΔA(aq)
MM ∕ MM(L′ ⋅ P L ⋅ P) (in Eq. 7) The relative ligand binding free energy 

simulations are performed in 3 stages which transform a benzene ligand to the 

target ligand. The first stage simulated 12 uniformly-spaced λ values to remove 

the atomic charges of those atoms present only in benzene, but not the target 

ligand. The second stage used a softcore Lennard-Jones potential to remove 

nonbonded, nonelectrostatic interactions of the “disappearing atoms” while 

simultaneously introducing the target ligand’s missing nonbonded, 

nonelectrostatic interactions. The atomic charges of those atoms common to the 

benzene and target ligand are also linearly-transformed in the second stage. The 

third stage reintroduces the atomic charges of the “appearing atoms”. Each of 

these 36 simulations was run for 2 ns, and each 2 ns simulation was repeated in 3 

independent trials, yielding an aggregate total of 216 ns of sampling. The 

simulations were performed on a single GPU. The energies and dU/dλ were 

sampled every 20 ps, and the autocorrelation times of dU/dλ were found to 

typically range between 30 and 90 ps.

• ΔA(aq)
MM ∕ MM(L′ + P L + P) (in Eq. 7) The unbound ligand simulations were 

performed in the same manner as the bound-ligand simulations discussed above 

to produce 216 ns of aggregate sampling. The simulations were performed on a 

single GPU. The energies and dU/dλ were sampled every 20 ps, and the 

autocorrelation times of dU/dλ were found to be less than 20 ps.

• ΔA(aq)
MM MM′(L ⋅ P) and ΔA(aq)

MM MM′(L + P) (in Eq. 5). These two terms are 

each performed using 11 uniformly-spaced windows simulated for 2 ns. Each 

term was sampled for an aggregate total of 22 ns, and each simulation was 

performed on a single GPU. The energies and dU/dλ were sampled every 10 ps, 

and the autocorrelation times of dU/dλ were found to be less than 10 ps.

Giese and York Page 10

J Chem Theory Comput. Author manuscript; available in PMC 2019 November 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



• ΔA(aq)
MM′ QM(L ⋅ P) and ΔA(aq)

MM′ QM(L + P) (in Eq. 5). These two terms are each 

performed using 11 uniformly-spaced windows simulated for 200 ps. Each term 

was sampled for an aggregate total of 2.2 ns, and each simulation was performed 

on a 36-core CPU node. The energies and dU/dλ were sampled every 0.5 ps, and 

the autocorrelation times of dU/dλ were found to be less than 0.5 ps.

2.4 Free energy analysis

The free energy analysis was performed using the ALCHEMICAL-ANALYSIS program.92 The 

ALCHEMICAL-ANALYSIS program makes use of the PYMBAR library, which implements time-

series algorithms93 and various free energy analysis methods, including exponential 

averaging (the Zwanzig relationship51), Bennett acceptance ratio70,94 (BAR), multistate 

Bennett acceptance ratio95 (MBAR), and thermodynamic integration (TI) methods using 

either the trapezoidal rule or cubic spline integration.96 To perform the TI calculation, the 

mean value of ∂U(λ)/∂λ is calculated for each λ-state, and the autocorrelation time is used 

to prune the data into statistically independent samples for estimating the standard error. The 

energy of the λ = 0 and λ = 1 states are printed in the output files; therefore, the required 

derivative is easily calculated. The exponential averaging, BAR, and MBAR analysis require 

the energies of the λ-states, which are also readily available. The exponential averaging 

method can be performed in two directions, yielding two results that are referred to as DEXP 

and IEXP. The “D” and “I” are suggestive of processes that that delete or insert atoms in an 

alchemical transformation, respectively; however, in the present context, they merely assign 

a direction in which the data is analyzed. Specifically, the IEXP method uses the distribution 

sampled at λi and evaluates the energies at λi and λi−1, whereas the DEXP requires the 

energies at λi and λi+1. For the MM′→QM transformation, the λ=0 and 1 states correspond 

to the MM′/MM and QM/MM potentials, respectively. The BAR method requires energy 

evaluations from adjacent neighbors λi−1, λi, and λi+1. The MBAR method further uses the 

energies from all λ-states.

We calculated the MM′→QM transformations using 11 λ-states, each simulated for 200 ps. 

As will be shown below, this degree of λ and time sampling are very highly converged, and 

we have chosen it to enable clean comparisons and analysis. For example, 11 equally spaced 

λ windows as reference also allows comparison of 2, 3 and 6 intermediate λ windows by 

taking subsets of the reference data. From the 200 ps of total sampling, 100 ps is discarded 

as equilibration and the last 100 ps is analyzed. The large number of intermediate states used 

to calculate the reference free energy values resulted in nearly identical results between TI, 

BAR, and MBAR. We use the TI results as high-level reference values in the remainder of 

the paper.

3 Results and Discussion

Here we present benchmark reference results for a set of absolute solvation free energies and 

relative ligand binding free energies in order to investigate MM′→QM transformations 

using different reference potentials, methods and procedures. In particular, this study sets out 

to answer the following questions: 1. How linear are the MM′→QM transformations (in 

terms of dU/dλ profile) as a function reference potential? 2. How do the TI, BAR, DEXP, 
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and IEXP methods perform when fewer λ-states are used? 3. How do the methods compare 

to the reference values when less sampling is used? 4. Does the use of reference potentials 

for MM′ intermediate states improve the accuracy of the MM→QM transformation, and 

which reference potential is best? 5. How does the accuracy of fast “1-state” and moderately 

fast “2-state” approaches compare? 6. How does the performance of fast “1-state” and 

moderately fast “2-state” approaches compare? We designate a “1-state” simulation 

approach to involve simulation at only one end-state (here, the λ=0 MM/MM or MM′/MM 

state), and free energy analysis using the Zwanzig equation that involves evaluation of ΔU = 

U1 − U0. A “2-state” simulation approach, on the other hand requires simulations at both 

end-states.

Toward this end, we have organized this section as follows. In the first subsection, we 

evaluate the linearity of the thermodynamic integration profiles for MM′→QM 

transformations using different reference potentials in order to gain insight that will be 

valuable in developing robust, efficient methods. In the second subsection, we examine the 

convergence of the MM′→QM transformation for solvation and relative ligand binding free 

energies with respect to number of λ windows and sampling. In the third subsection, we 

analyze phase space overlap of ΔU(λ) distributions from end-state simulations as a function 

of reference potential to better understand the origin of observed errors. In the fourth 

subsection, we examine the use of the indirect method with a force-matched reference 

potential analyzed with Bennett’s acceptance ratio for calculating free energies. For brevity, 

we refer to this as the BAR Book-ending to QM (BBQm) method, and we compare its 

accuracy to fast “1-state” approaches, designated “EA”, that use the Zwanzig equation to 

perform exponential averaging based only on MD trajectories using pure MM potentials. 

Finally, in the fifth subsection, we gauge the perforance of the BBQm and 1-state EA 

methods.

3.1 Linearity of the thermodynamic integration profiles for MM′→QM transformations

The goal of this paper is to examine the convergence properties of QM/MM alchemical free 

energy methods, and ultimately develop a procedure for robust and accurate MM′→QM 

transformations that requires minimal sampling involving evaluation of the expensive 

QM/MM potentials. To motivate design of such a method, it is important to understand the 

nature of the transformation itself, and in particular, the linearity of the ⟨∂U/∂λ⟩λ 
thermodynamic integration profiles for MM′→QM transformations using different MM′ 
reference potentials. The more linear the ⟨∂U/∂λ⟩λ profiles, the better justified 

thermodynamic integration becomes when only the end-point states, or simply “end-states” 

(λ=0 or 1), are sampled because the numerical integration of the profile (approximated as a 

line) is then accurate.

Figure 3 compares the average slopes, R2 coefficient of determination, and sum of squared 

errors produced from linear regressions of the ⟨∂U/∂λ⟩λ profile generated from 11 λ-state 

simulations for each MM′→QM transformation. The vertical bars are the standard 

deviations. For each MM′→QM transformation, we fit the 11 ⟨∂U/∂λ⟩λi values 

(corresponding to each λi window, i = 1, ⋯ 11) to a line, and the sum of squared errors 

(⟨err2⟩) is:
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〈err2〉 = ∑
i

∣ 〈∂U ∕ ∂λ〉λi
− y(λi) ∣2 (10)

where y(λi) is the value of the line at λi.

Figure 3 illustrates that the MM′→QM ∂U/∂λ profiles examined in this work are quite 

linear. The linearity of the profiles is best expressed by how close the R2 coefficients are to 

unity. The largest deviations of R2 from unity occur for the gas phase transformations 

performed in the solvation test set using the “ba”, “bad”, and “badq” MM′ parameters; 

however, linear fits of these profiles have a slope very close to zero, which artifically 

amplifies the apparent randomness of the data. In fact, it is precisely these transformations 

that have some of the smallest sum of squared errors. If the MM′ and QM models produced 

the same ensemble distributions, then the ∂U/∂λ profiles would be a line with zero slope. 

The slopes shown in Figure 3 become more linear from MM to “b” and “ba”; however, no 

improvement to the slope is made in going to “bad” nor “badq”.

These results suggest that the MM′→QM transformations are all highly linear and there is, 

at best, limited improvement in the linearity going beyond the “ba” reference potential. This 

observation is probably due to the small size of the molecules, which lack a high degree of 

torsional flexibility. This motivates us to explore the convergence of faster approaches that 

require less sampling with the expensive QM/MM potentials in order to inform the design of 

an optimal method.

3.2 Convergence of the MM′→QM transformation for solvation and relative ligand 
binding free energies with respect to number of λ windows and sampling

Figure 4 summarizes the MM′ →QM transformation errors of in the free energy estimates 

for the 17 molecules in the solvation test set as a function of the number of λ windows using 

200 ps of sampling per window. The figure compares the solvation free energy mean signed 

errors between the TI, BAR, DEXP, and IEXP methods for each MM′ reference potential, 

relative to the reference TI results. The vertical bars are standard deviations. The left, center, 

and right columns are errors in ΔA(aq)
MM′ ∕ MM QM ∕ MM, ΔA(gas)

MM′ QM, and 

ΔΔAnet
MM ∕ MM QM ∕ MM, respectively. The top row of plots evaluate the free energy using 

only the λ = 0 and λ = 1 states; that is, the BAR and TI methods use the two end-state 

simulations, the DEXP method evaluates Zwanzig’s equation using the λ = 1 simulation, 

and the IEXP method evaluated Zwanzig’s equation using the λ = 0 simulation. The middle 

row of plots perform the analysis with the λ = (0, 0.5, 1) states. The bottom row of plots 

compute the free energy using the λ = (0, 0.2, 0.4, 0.6, 0.8, 1) states.

On average, one observes improvement of aqueous and gas phase MM′→QM 

transformation free energies in going from MM to “ba”, but little to no improvement is made 

by further optimizing the dihedral force constants and atomic charges (i.e., to “bad” and 

“badq” reference potentials). We suspect that optimization of the dihedral force constants 

would make a larger impact if the solvation test contained molecules that exhibited larger 

conformational flexibility. The mean errors produced by Zwanzig’s equation (IEXP and 

Giese and York Page 13

J Chem Theory Comput. Author manuscript; available in PMC 2019 November 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



DEXP) in solvent and gas phases are demonstrably worse than the BAR and TI errors; 

however, these errors cancel such that the net error is much closer to zero, on average. The 

standard deviation of the IEXP and DEXP net errors are approximately twice as large as TI 

or BAR. Because the IEXP and DEXP net errors rely on a precarious balance of the solvated 

and gas phase errors, one does not observe a systematic decrease in their mean errors within 

the series Nλ = 2, 3, and 6; however, increasing the number of intermediate simulations 

decreases the standard deviation of the errors.

The MM′→QM free energy values produced by the TI and BAR methods, on the other 

hand, are quite accurate for the solvation test set, even when only the end-state simulations 

are used for the analysis. Rather than significantly reducing the mean signed errors, which 

are already very small, the parametrized MM′ reference potentials act to reduce the standard 

deviation of errors. For example, the standard deviation of the net free energy corrections 

using the MM model and BAR analysis is 0.40 kcal/mol, whereas simulations using the “ba” 

model reduce the standard deviations to 0.11 kcal/mol. Increasing the number of windows 

further decreases the standard deviations; with 3 windows, the MM and “ba” net free energy 

correction standard deviations are 0.20 and 0.05 kcal/mol, respectively.

Overall, the use of the reference potentials improves the errors going from MM (no 

reference potential) to “b” and “ba”, but limited if any further improvement in going to 

“bad” and “badq” reference potentials. These results suggest that – for the molecules within 

the solvation test set – the “ba” reference potential, together with TI or BAR, are highly 

accurate using 200 ps of sampling per window, and motivates us to compare the convergence 

of the errors for the “ba” reference potential (relative to MM with no reference potential) as 

a function of simlation time.

Figure 5 compares the solvation free energy mean signed errors of the MM′→QM 

transformations for the TI, BAR, DEXP, and IEXP methods as a function of simulation time 

for MM and the “ba” reference potential. These results were computed using the most 

computationally cost-effective “2-window” end-state simulations (λ=0 and/or 1). The 

vertical bars are standard deviations. The left, center, and right plots are errors in 

ΔA(aq)
MM′ ∕ MM QM ∕ MM, ΔA(gas)

MM′ QM, and ΔΔAnet
MM ∕ MM QM ∕ MM, respectively. The top 

row is the direct MM→QM transformation, and the bottom row is the ba→QM 

transformation. For each analysis, we exclude the first half of the simulation as equilibration; 

for example, the 200 ps simulation results only analyze the last 100 ps of data.

The TI and BAR results are markedly more accurate than the IEXP and DEXP results, and 

are considerably improved with the use of the “ba” reference potential. The mean signed 

errors for all the reference potential and analysis methods do not significantly change after 

50-100 ps of sampling. Furthermore, the standard deviations do not decrease when the 

simulations are extended to 200 ps. This is suggestive that computational resources could be 

better utilized by repeating many, short simulations from different starting positions rather 

than performing extended sampling of a single simulation, as is done here.61,62

Table 1 lists the mean signed and unsigned errors of BAR analysis for the ligand binding 

free energies. The errors are shown for the MM→QM and ba→QM transformations 
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evaluated with 2, 3, or 6 evenly spaced λ-states and as a function of simulation time. The 

rows labeled L∙P, L+P, and net correspond to errors in ΔA(aq)
MM′ QM(L ⋅ P), 

ΔA(aq)
MM′ QM(L + P), and ΔΔAnet

MM ∕ MM QM ∕ MM(L ⋅ P), respectively. For each analysis, we 

exclude the first half of the simulation as equilibration.

The mean signed errors produced by BAR are quite small for both reference potentials, 

irrespective of simulation time (20 ps versus 200 ps) or the number of simulated states (Nλ = 

2 or Nλ = 6). Like the solvation free energy test set, the net free energy signed error standard 

deviations decrease when the number of simulated states increases from Nλ = 2 to Nλ = 3 

and Nλ = 6. The net free energy mean unsigned errors generally decrease from 0.4 to 0.1 

kcal/mol as the length of the simulation is increased from 20 ps to 200 ps; however, the 

benefit of using the “ba” reference potential is not as apparent for the T4 lysozyme ligand 

binding test set than it was for the set of solvation free energy calculations.

The aggregate results up to this point suggest that TI and BAR results are very accurate even 

using only end-state simulations, particularly with the use of reference potentials. On the 

other hand, the IEXP and DEXP methods, have large errors using only end-state simulations 

that can be only modestly improved by use of the reference potentials. This is an important 

negative result to report, as the IEXP and DEXP methods with 2 windows require an actual 

simulation at only one end-state state, and thus are designated as “1-state” approaches, 

which could be made highly efficient if simulation with the expensive QM/MM potentials 

could be avoided completely. Hence, before proceeding further, we strive to gain some 

insight as to the origin of the accuracy of the TI/BAR versus IEXP/DEXP methods and their 

dependence on reference potential in the context of phase space overlap.

3.3 Analysis of phase space overlap of ΔU(λ) distributions from end-state simulations as 
a function of reference potential

Here we examine the phase space overlap between end-states, as measured by the 

probability distribution of ΔU(λ) values.53 This overlap is a means of establishing similarity 

of the trajectories of the end-states. Figure 6 uses the acetate molecule as a representative 

example to compare the discrepancy between the DEXP and IEXP free energy calculations 

(ΔA(aq)
MM′ ∕ MM QM ∕ MM) and end-state energy distribution overlap for the MM→QM 

transformation of acetate in solution.

The overlap of the end-state distributions are constructed by generating histograms of 

potential energy differences between the two states. Dynamics are performed with the 

QM/MM Hamiltonian, the MM and QM/MM energies are evaluated, and the difference ΔU 
= UMM − UQM/MM is histogrammed (the black circles in Figure 6). An analogous histogram 

of energy differences is made by analyzing the frames of the MM trajectory (the red circles 

in Figure 6). The distributions are well approximated by Gaussian functions, which are the 

solid lines in Figure 6. The Gaussian representation of the ΔU distribution generated by the 

QM/MM trajectory is
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gQM ∕ MM(ΔU) = ζQM ∕ MM ∕ πe
−ζQM ∕ MM(ΔU − μQM ∕ MM)2

(11)

where μQM/MM is the mean ΔU value, the exponent is ζQM ∕ MM = (2σQM ∕ MM
2 )−1, and 

σQM/MM is the standard deviation of ΔU values. The Gaussian representation from the MM 

trajectory is written analogously. We measure the “percent overlap” between the two 

distributions according to Eq. 12

% overlap = 100
〈gQM ∕ MM, gMM〉

max(〈gQM ∕ MM, gQM ∕ MM〉, 〈gMM, gMM〉) (12)

where ⟨u, ν⟩ = ʃ u(x)ν(x)dx is an inner-product. Equation 12 is maximum (with a value of 

100) when the two distributions have the same mean and standard deviation. The 

distributions shown in Figure 6 have been translated along the ΔU axis such that ΔU = 0 is 

the midpoint between the two distribution means.

The percent overlap of the distributions in Figure 6 increase when the reference potential is 

changed from MM to “b”, “ba”, and “bad”; however, the “badq” model lowers the overlap 

relative to “bad”. The difference between the DEXP and IEXP estimates of the free energy 

similarly decrease by changing the reference potential from MM to “b”, “ba”, and “bad”, but 

the “badq” model increases the error relative to “bad”.

Figure 7 illustrates the behavior of the end-state overlaps (Eq. 12) for the entire solvation test 

set as a function of reference potential. Figure 7 similarly shows the average free energy gap 

between the DEXP and IEXP free energy calculations. There are 17 black circles for each 

reference potential, which correspond to the 17 small molecules in aqueous phase. The solid 

line and vertical bars are the mean and standard deviations. The trend of the overlaps with 

respect to reference potential are similar to that of the acetate molecule in that overlap is 

minimal for the MM model (no reference potential) and maximum for “ba” and “bad” 

reference potentials. The difference between the DEXP and IEXP calculations closely 

follow the inverse-correlation trend of mean percent overlap between the two end-states. 

Kofke and collaborators have developed other descriptors of phase space overlap between 

two states A and B.97-103 We shall focus on two metrics that Wu and Kofke have devised.
101,102 The first is based on the overlap of total energy distributions:

KBA = 2∫
−∞

∞∫
−∞

UA1
pAA(UA1)pBA(UA2)dUA1dUA2 (13)

where pAA(U) and pBA(U) are the probability distributions of state A energies observed 

within the simulations of state A and B, respectively. The expression for KAB is similarly 

written. The value of KBA varies from 0 to 2 and is an indicator of an offset of pBA(U) 

relative to pAA(U). That is, if pBA(U) is centered left (the negative U direction) of pAA(U), 

then 1 < KBA ≤ 2, and if pBA(U) is centered right of pAA(U), then 0 ≤ KBA < 1. In the 

present work, states A and B are the MM′ and QM/MM models, respectively, and we 
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numerically evaluate KBA and KAB upon fitting the observed potential energies to Gaussian 

distributions. The integration was performed using SciPy’s “quad” function to numerically 

approximate the integral with a precision of 10−10.104 The second metric is based on the idea 

of relative entropy, which is related to the transformation’s dissipated work.101,102 The 

relative entropies can be used to define measures that indicate whether the sampling between 

the two states is adequate:

ΠA, B =
sA
sB

WL((N − 1)2 ∕ 2π) − 2sA (14)

where N is the number of samples, WL(x) is the Lambert W function, and

sA = β〈UB − UA〉A − βΔAA B (15)

The expressions for ΠB,A and sB are written similarly. The energy difference UB − UA 

within Eq. 15 can be replaced by the work required to transform state A to B wA→B if 

Jarzynski’s equation is used in nonequilibrium work simulations. Wu and Kofke proposed 

the heuristic ΠA,B > 0 as indicating the presence of sufficient sampling for an accurate free 

energy evaluation. As pointed out by Boresch and Lee Woodcock,53 the rigorousness of the 

criteria can be questioned when it is applied to real world data, which often does not satisfy 

the implicit conditions assumed within the metric’s formulation. The Π metric assumes the 

observed phase spaces between the forward and reverse directions are subsets of one another 

but, in practice, only a partial overlap relation is often fulfilled. We evaluated the K and Π 
metrics for the end-states of ΔA(aq)

MM′ QM ∕ MM(A) and summarize the results in Figure 8.

The Wu and Kofke overlap metrics are very close to unity and exhibit anticorrelation 

between KMM′,QM and KQM,MM′. The overlap metric based on the energy difference ΔU 
(Eq. 12) appears to be a better qualitative indicator of the trend of energy gaps between the 

DEXP and IEXP estimates of the free energy correction. The ΠMM′,QM and ΠQM,MM′ bias 

metrics are very similar to each other and its mean value mimics the differences in the 

DEXP and IEXP energy gaps shown in Figure 7 That is, the Π values are largest for the “ba” 

and “bad” models and the energy gaps are smallest for those models as well.

At this stage it is clear that the IEXP and DEXP methods alone are not easily made accurate 

unless many λ windows are used. For end-state-only approaches, the IEXP and DEXP 

methods are not very accurate, and can be only modestly improved by use of reference 

potentials. The TI and BAR methods, on the other hand, are both accurate even in the 

absence of an ad hoc reference potential due mainly to the linearity of the thermodynamic 

integration profile, and can be made highly accurate with the use of reference potentials 

(particularly the “ba” reference potential) that increase the phase space overlap between end-

state distributions. These results provide the foundation from which we propose a robust, 

accurate method for MM′→QM free energy transformations.
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3.4 BAR Book-ending to QM (BBQm) method for robust, accurate MM′→QM free energy 
transformations

Here we consider two efficient end-state approaches for MM′→QM free energy 

transformations, and compare their accuracy for solvation free energies and relative ligand 

binding energies. As described previously, the λ=0 state will be the full MM/MM or MM

′/MM state with energy U0, and the λ=1 state will be the full QM/MM state with energy U1.

Simulations for a λ state require energy and force evaluations at very short time step 

intervals (typically every 1 fs, as in the present work) in order to propagate the equations of 

motion. Once the simulation is performed, only the statistically independent samples from 

the trajectory need be revisited for calculating the relavant average, ⟨e−βΔU⟩, to obtain a free 

energy estimate. That is, a 1-state approach is most efficient, as it requires a molecular 

simulation only for the fast MM/MM or MM′/MM end-state models. On the other hand, a 

“2-state” approach requires molecular simulations at both the λ=0 (fast MM/MM or MM

′/MM end-state models) and λ=1 (slow QM/MM end-state model). However, if a simulation 

at the λ=1 QM/MM end-state is performed, the trajectory data from the simulation can be 

used to develop an optimized “ba” reference potential using the force matching scheme 

described above to improve phase space overlap and accuracy in the MM′→QM free energy 

transformation. The additional MM→MM′ free energy component is trivial to conduct. In 

light of these consideation, we examine the accuracy of “1-state” and “2-state” approaches, 

both with and without the “ba” reference potential as follows:

EA - A “1-state” approach whereby simulations are performed at only the λ=0 

(MM/MM) state, and the Zwanzig equation is used to determine the free energy. The 

unmodified MM potential (GAFF) is used as the reference potential.

EA* - Identical to EA, except the “ba” reference potential is used.

BBQm - A “2-state” approach whereby simulations are performed at both the λ=0 

(MM/MM) and λ=1 (QM/MM) states, and the BAR method is used to determine the 

free energy. The unmodified MM potential (GAFF) is used as the reference potential.

BBQm* - Identical to BBQm, except the “ba” reference potential is used.

As will be demonstrated in the next section, the “1-state” approaches are more efficient than 

the “2-state” approaches, but as we show in this section, are not always accurate. Also note 

that we consider a “1-state” approach using the “ba” reference potential, which may seem 

paradoxical as this reference potential required optimization with respect to a QM/MM 

simulation at the λ=1 end-state. We did this in order to explore the degree to which such a 

reference potential might improve the accuracy of the “1-state” approach, and if this 

appeared promising, it might motivate the development of a transferable reference potential 

that did not require an explicit QM/MM simulation.

Figure 9 compares the accuracy of the absolute solvation free energies between the 1-state 

EA/EA* and 2-state BBQm/BBQm* approaches. The reference values are calculated from 

pure-MM simulations with our best estimates of the MM→QM corrections. Our best 

estimate of the MM→QM corrections are the average of the 5 values corresponding to the 

estimates made by the 5 reference potentials (MM, “b”, “ba”, “bad”, and “badq”), each 
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simulated at 11 λ values for 200 ps and analyzed with TI. That is, we calculated 

ΔΔAnet
MM ∕ MM QM ∕ MM(A) (Eq. 2) and ΔΔAnet

MM ∕ MM QM ∕ MM(L ⋅ P) (Eq. 5) five times. 

The calculation of the 5 values differ only by the free energy pathway. The pathways differ 

by which MM′ is used as an intermediate state. The free energy value is pathway 

independent, however, so our best (most unbiased) estimate of the free energy correction is 

the average of our 5 calculated values. The predicted solvation free energies are based on the 

same pure-MM simulations as the reference values, but different procedures are used for 

calculating the MM′→QM correction as described above. Figure 10 differs from Figure 9 

only by removing the pure-MM component of the calculations, such that the plot shows the 

predicted MM→QM corrections versus the reference MM→QM corrections. The vertical 

and horizontel bars in Figs. 9-10 are the standard errors of the model and reference free 

energy values, respectively.

Comparing the accuracy of the absolute solvation free energy values (Figure 9), the EA 

mean unsigned error is 0.95 kcal/mol improves to 0.43 kcal/mol when the ba reference 

potential is used. The BBQm mean unsigned error, on the other hand, is 0.23 kcal/mol and is 

reduced to 0.10 kcal/mol for BBQm*. In other words, the “ba” reference potential 

significantly improves the EA estimate, but the EA* errors continue to be far worse than the 

BBQm and BBQm* results. The coefficient of determination (R2 values are very close to 

unity in all cases because the absolute solvation free energy of the ions (not shown on the 

scale of the figure) are reasonably well accounted for by the underlying pure-MM 

contribution to the free energy. Figure 10 removes the pure-MM contribution to the 

reference and model free energies; it more clearly shows the correlation between the model 

and reference MM→QM corrections for all data in the solvation energy test set. The highest 

coefficient of determination occurs for BBQm* with the “ba” reference potential (R2 = 

0.999). The EA and EA* coefficients of determination are considerably lower (0.857 and 

0.971, respectively).

We now turn our attention to analysis of the accuracy of relative ligand binding free energy 

values for the T4 lysozyme ligand binding test set (Figure 2). These transformations require 

consideration of not only unbound ligands in a homogeneous aqueous environment, but also 

bound ligands in the heterogeneous environment of a solvated protein (T4 lysozyme).

Figure 11 compares predicted relative ligand binding free energies for the 1-state EA/EA* 

and 2-state BBQm/BBQm* approaches to reference values; that is, ΔΔA(lig) = ΔA(lig) − 

ΔA(BNZ). The reference values are calculated from pure-MM simulations with our best 

estimates of the MM→QM corrections. The predicted free energies are based on the same 

pure-MM simulations as the reference values, but different procedures for calculating the 

MM′→QM correction are used, as described above. Figure 12 differs from Figure 11 only 

by removing the pure-MM component of the calculations, such that the plot shows the 

predicted MM→QM corrections versus the reference MM→QM corrections. The vertical 

and horizontel bars in Figs. 11-12 are the standard errors of the model and reference free 

energy values, respectively.

The comparison of the relative ligand binding free energy errors yield similar results to those 

made above for the solvation free energy test set. Specifically, the EA* errors are 
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approximately half of the EA errors, the BBQm errors are nearly half the size as the EA* 

errors, and the BBQm* errors are nearly half those of BBQm. The use of a “ba” reference 

potential significantly improves both “1-state” and “2-state” methods. The ligands are 

structurally similar to one another; they are all beznene-like structures with little-to-no 

polarity, and most of them lack signficant conformational flexibility. It is not surprising that 

their ligand binding free energies are all within 4 kcal/mol of each other. This is in contrast 

to the range of solvation free energies, which considered polar and nonpolar molecules and 

even some charged ions. The challenge often encountered in ligand binding applications is 

not necessarily to estimate the binding free energies in lieu of experiment, but to simply rank 

the ligands from strongest to weakest binding. In this respect, we are particularly interested 

in whether the 1- and 2-state analysis methods are well-correlated with the reference 

calculations. The coefficient of determination (R2) values for EA/EA* methods are 

0.512/0.919, whereas for BBQm/BBQm* they increase to 0.962/0.992. Figure 12 removes 

the pure-MM contribution to the reference and model free energies, and it more clearly 

shows the correlation between the model and reference MM→QM corrections for all data in 

the T4 lysozyme ligand binding test set. The highest coefficient of determination occurs for 

BBQm* with the “ba” reference potential (R2 = 0.884), whereas for all other methods the 

coefficients of determination are considerably lower (0.045-0.723).

3.5 Performance of the BBQm and EA methods

In this section we examine the performance of the MM′→ QM transformations for the 

BBQm and EA methods discussed in the previous section. Recall, the BBQm is a “2-state” 

approach that requires a QM/MM simulation to be performed at one of the end-states, and it 

was demonstrated to be accurate and robust. The EA method is a “1-state” approach 

requiring only reanalysis of an MM simulation trajectory at statistically independent points, 

and it was demonstrated to be much less accurate and robust. The timing results here are 

only for the MM′→ QM transformations, and does not depend on the particular MM 

reference potential.

The observed molecular dynamics sampling rates of the MM′→QM simulations, using a 1 

fs timestep, are shown in tables 2 (absolute solvation test set) and 3 (T4 lysozyme ligand 

binding test set). These timings are of particular interest because the ab initio QM/MM 

energy and forces are evaluated at each step of dynamics. The “Reanalysis Rate” columns do 

not perform the dynamics using a QM/MM potential; instead, these calculations evaluate the 

QM/MM potential at each saved frame from a pure-MM trajectory. The trajectory frames are 

written once every 500 steps, so these rates are roughly 500 times larger than the simulation 

rates. The QM/MM simulations are performed on a single node equipped with two, 18-core 

Intel Xeon E5-2695 v4 processors running at 2.1 GHz. Of the 36 cores, 1 core is reserved for 

calculating the pure-MM energy and forces, and 35 cores are used to evaluate the QM/MM 

energy and forces. The columns labeled “CPU cost” are the total number of wallclock hours 

required to evaluate the absolute solvation energy ΔAsolv
QM (table 2) or relative ligand binding 

free energy ΔΔAb
QM (table 3) on 1 node. These costs do not include GPU usage, which is 

nearly the same for all molecules/ligands. The pure-MM simulations performed for the 

evaluation of ΔA(aq)
MM MM′(A), ΔA(aq)

MM ∕ MM(A A∗), ΔA(aq)
MM ∕ MM(L′ + P L + P), and 

Giese and York Page 20

J Chem Theory Comput. Author manuscript; available in PMC 2019 November 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



ΔA(aq)
MM ∕ MM′(L+P) approximately yield 62 ns/day on 1 GPU for all solutes/ligands. 

Similarly, the pure-MM simulations performed for the evaluation of 

ΔA(aq)
MM ∕ MM(L′ ⋅ P L ⋅ P) and ΔA(aq)

MM MM′(L ⋅ P) yield 28 ns/day on 1 GPU for all ligands. 

In table 3, the total CPU cost is completely determined by the evaluation of the MM′→QM 

simulations, whose sampling rates are provided. In table 2, the total CPU cost also includes 

a minor contribution from the gas-phase simulations used to calculate ΔA(gas)
MM ∕ MM(A A∗)

and ΔA(gas)
MM MM′(A), which approximately yield 4000 ns/day on 1 CPU core for all 

molecules.

Clearly there is tremendous computational cost advantage in using a “1-state” EA approach 

that does not require an explicit QM/MM simulation (requiring 1 fs time steps) at the final 

end-state. However, as discussed in the previous section, this computational advantage is 

counterbalanced by a significant loss of accuracy that can only partially be improved by 

inclusion of an optimized reference potential. In the present demonstration that reference 

potential was derived from a QM/MM simulation at the end-state, which of course would 

not be practical in the sense that if such a simulation were performed, it may as well be used 

for the more accurate BBQm approach. This nonetheless suggests that, should sufficiently 

enhanced reference potentials become available that do not require explicit QM/MM 

simulations at the final end-state, one might be able to considerably improve the accuracy of 

the fast “1-state” EA-type methods. A promising direction for exploration of such reference 

potentials may be possible through new machine learning approaches.105,106 In the future, it 

would be of interest to test whether ad hoc MM′ parametrizations could be avoided by using 

modified GAFF force field parameter files specifically designed to be consistent with the 

QM Hamiltonian of choice based on the existing infrastructure for atom-type assignment.

4 Conclusions

In this work we performed MM→QM/MM free energy corrections for solvation and T4 

lysozyme ligand binding free energy test sets using a series of reference potentials that 

reparametrized the MM bond parameters; bond and angle parameters; bond, angle, and 

dihedral parameters; or the bonded parameters and atomic charges, using a force-matching 

nonlinear optimization procedure to reproduce ab initio QM/MM forces in aqueous solution. 

For each reference potential, a benchmark reference free energy correction was generated by 

performing 200 ps of sampling using periodic PBE0/6-31G* QM/MM simulations at 11 

intermediate-states. Convergence of the free energy corrections was examined as a function 

of simulation time, analysis method (TI, BAR, and forward and reverse Zwanzig’s relation), 

the number of intermediate simulations used in the analysis, and the reference potential.

We found that optimizing the MM reference potential’s bond and angle parameters 

decreased the mean unsigned errors produced by either forward or reverse application of 

Zwanzig’s equation; however, no significant reductions were made by further parametrizing 

the dihedral force constants nor atomic charges. This observation is likely related to the 

chosen data sets, which contain a number of small molecules and relatively rigid fragments 

(e.g., benzene rings) that lack significant dihedral flexibility and whose torsions are already 
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well-modeled by the MM force field. Previous work has also concluded that bond stretching 

and angle bending differences between the low- and high-level potentials are partially 

responsible for the poor convergence of Zwanzig’s equation24,25,33,36,38,54-56,107 and, for 

moderately large molecules, the torsion potentials may be responsible for observed 

differences in preferred conformations.107 As should be expected,38,68,108,109 free energy 

estimates based on Zwanzig’s equation did not converge to the reference free energy 

estimate without using a number simulated intermediate states, whereas TI and BAR 

analysis both yielded excellent mean unsigned errors, even when only the two end-state 

simulations were used. It is also not suprising that the use of force-matched referenced 

potentials reduced the mean unsigned errors. We did, however, assess the improvements 

made by a systematic series of force-matched potentials to ascertain the relative importance 

of the various force field terms in the fit. With respect to the solvation free energy test set, 

the standard deviation of the TI and BAR signed errors decreased when the MM reference 

potential’s bond parameters were optimized, and the further decreased when the bond and 

angle parameters were optimized; however, no significant benefit was found upon 

optimizing the dihedral force constants nor atomic charges. The MM and force-matched 

optimized reference potentials yielded very small errors when applied to the T4 lysozyme 

ligand binding free energy test set. The accuracy of all methods often did not significantly 

improve upon extending the simulation sampling from 50 ps to 200 ps, which suggests that 

computational resources could be better utilized by reperforming short simulations several 

times and averaging the results.61,62

Overall, we demonstrate the BAR book-ending to QM (BBQm) method, a 2-end-state 

approach that uses a QM/MM simulation for both reference potential generation and free 

energy sampling, is highly accurate and robust, and ready to take on broad applications. The 

“1-state” exponential averaging (EA) approach that requires only MM simulation is 

extremely fast, but does not achieve good accuracy. Use of a tailored reference potential 

improves the accuracy, but the resulting errors are still 2 to 4 times larger than BBQm. 

Nonetheless, the efficiency of the “1-state” EA approach motivates the idea of developing 

enhanced reference potentials, possibly through machine learning techniques, that improve 

accuracy while not sacrificing speed.
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1: 
Thermodynamic cycles for correcting solvation free energies (left) and ligand binding free 

energies (right) with QM “book-ending” corrections. It is assumed that the molecule/ion 

being solvated or the ligand that is binding is to be treated as the QM region, and the 

surrounding region that makes up the aqueous solution or aqeuous protein environment is 

modeled using an MM framework to give rise to the final QM/MM potential. In the case that 

an MM′ reference potential is used for the QM atoms as an intermediate, we designate the 

combined potential as MM′/MM, and for consistency, when the unmodified MM potential is 

used for both we designate the potential as MM/MM.
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Figure 2: 
List of 17 molecules/ions in the solvation test set, and 8 molecules in the T4 lysozyme 

ligand binding test set.
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Figure 3: 
Analysis of linearity of the ⟨∂U/∂λ⟩λi profiles for reference simulations using 11 λ windows 

(λi = 1, ⋯ 11). Average slopes, squared linear correlation coefficients, or coefficients of 

determination (R2), and sum of squares deviations from linear regression of the ⟨∂U/∂λ⟩λi 
profiles are shown for the unmodified MM potential, and intermediate MM′ reference 

potentials using both the solvation test set (top) and T4 lysozyme ligand binding test set 

(bottom).
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Figure 4: 
The solvation free energy mean unsigned errors of the MM→QM transformations using 

different analysis methods and MM′ intermediate Hamiltonian states. See Supporting 

Information for corresponding plot of mean signed errors.
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Figure 5: 
Convergence of the solvation free energy mean unsigned errors of the MM→QM 

transformations for 2 λ window (i.e., end-state only) simulations as a function of simulation 

time in ps. In each case, the first half of the simulations were considered as “equilibration” 

and the second half considered as “production” and used for statistical data collection. See 

Supporting Information for corresponding plot of mean signed errors.
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Figure 6: 
Left: Free energy gap between DEXP and IEXP. Right: Energy-difference histograms of the 

MM→QM transformations of acetate in aqueous environments.
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Figure 7: 
Left: Average gaps between DEXP and IEXP for the solvated-phase MM-to-QM free energy 

calculations. Right: End-state distribution overlaps in the aqueous phase. The circles are 

individual data points. The solid line traces the mean, and the vertical bar is the standard 

deviation.
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Figure 8: 

Left: Wu and Kofke overlap metrics between the end-states of ΔA(aq)
MM′ QM ∕ MM(A). Right: 

Wu and Kofke Π metrics. Each dot corresponds to one of the molecules in the solvation test 

set. The line passes through the mean value. The vertical bars are the standard deviation.
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Figure 9: 
Predicted solvation energies versus reference values for 1-state EA/EA* and 2-state BBQm/

BBQm* methods. These methods use either GAFF (EA/BBQm) or “ba” (EA*/BBQm*) as a 

reference potential. Only the neutral molecule solvation free energies can be viewed on the 

scale being shown, but the coefficient of determination (R2) and mean signed, unsigned and 

root-mean-square errors correspond to the entire solvation test set including the ions not 

shown in the figure.
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Figure 10: 
Predicted MM→QM corrections to the MM solvation energies versus reference values for 

1-state EA/EA* and 2-state BBQm/BBQm* methods. These methods use either GAFF (EA/

BBQm) or “ba” (EA*/BBQm*) as a reference potential. Data for the entire solvation test set 

(including ions) are shown.

Giese and York Page 38

J Chem Theory Comput. Author manuscript; available in PMC 2019 November 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 11: 
Predicted relative ligand binding free energies versus reference values for 1-state EA/EA* 

and 2-state BBQm/BBQm* methods. These methods use either GAFF (EA/BBQm) or “ba” 

(EA*/BBQm*) as a reference potential. The free energy values are relative to benzene.
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Figure 12: 
Predicted MM→QM corrections to the ligand binding relative free energy differences versus 

reference values for 1-state EA/EA* and 2-state BBQm/BBQm* methods. These methods 

use either GAFF (EA/BBQm) or “ba” (EA*/BBQm*) as a reference potential. The free 

energy values are relative to benzene.
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Table 1:

Mean signed and unsigned errors of the MM→QM and ba→QM ligand binding free energies computed from 

BAR, relative to the 11 λ-state reference TI calculations.

MM ba

Env. Time Nλ =2 Nλ =3 Nλ =6 Nλ =2 Nλ =3 Nλ =6

Mean signed errors (kcal/mol)

L∙P 200 ps −0.03 ± 0.08 −0.02 ± 0.08 −0.04 ± 0.03 0.01 ± 0.08 −0.00 ± 0.07 −0.02 ± 0.03

100 ps −0.05 ± 0.15 −0.03 ± 0.12 −0.03 ± 0.03 −0.06 ± 0.09 −0.02 ± 0.06 −0.02 ± 0.06

50 ps −0.06 ± 0.17 −0.11 ± 0.18 −0.05 ± 0.11 0.02 ± 0.17 −0.01 ± 0.10 −0.00 ± 0.10

20 ps 0.04 ± 0.39 0.03 ± 0.32 0.08 ± 0.20 −0.04 ± 0.23 −0.03 ± 0.20 −0.00 ± 0.18

L+P 200 ps 0.00 ± 0.25 −0.10 ± 0.13 −0.03 ± 0.11 −0.00 ± 0.12 0.02 ± 0.09 −0.02 ± 0.05

100 ps −0.04 ± 0.16 −0.02 ± 0.13 0.01 ± 0.08 0.06 ± 0.10 0.09 ± 0.16 0.05 ± 0.10

50 ps 0.13 ± 0.42 0.03 ± 0.25 0.05 ± 0.13 0.11 ± 0.36 0.10 ± 0.22 0.04 ± 0.15

20 ps −0.07 ± 0.67 −0.11 ± 0.32 −0.10 ± 0.14 −0.02 ± 0.42 0.24 ± 0.43 −0.08 ± 0.34

Net 200 ps −0.03 ± 0.25 0.08 ± 0.17 −0.00 ± 0.10 0.02 ± 0.14 −0.02 ± 0.11 0.01 ± 0.05

100 ps −0.00 ± 0.14 −0.01 ± 0.11 −0.05 ± 0.06 −0.11 ± 0.17 −0.11 ± 0.19 −0.07 ± 0.11

50 ps −0.19 ± 0.47 −0.15 ± 0.37 −0.10 ± 0.16 −0.09 ± 0.47 −0.11 ± 0.30 −0.05 ± 0.23

20 ps 0.11 ± 0.75 0.14 ± 0.51 0.18 ± 0.23 −0.01 ± 0.60 −0.27 ± 0.54 0.08 ± 0.47

Mean unsigned errors (kcal/mol)

L∙P 200 ps 0.05 ± 0.08 0.06 ± 0.05 0.04 ± 0.03 0.06 ± 0.05 0.06 ± 0.03 0.03 ± 0.02

100 ps 0.13 ± 0.09 0.09 ± 0.08 0.04 ± 0.03 0.09 ± 0.06 0.04 ± 0.04 0.05 ± 0.04

50 ps 0.12 ± 0.13 0.15 ± 0.15 0.09 ± 0.06 0.12 ± 0.10 0.06 ± 0.07 0.08 ± 0.06

20 ps 0.31 ± 0.21 0.26 ± 0.16 0.16 ± 0.13 0.17 ± 0.14 0.14 ± 0.14 0.13 ± 0.11

L+P 200 ps 0.15 ± 0.19 0.10 ± 0.13 0.08 ± 0.08 0.09 ± 0.08 0.07 ± 0.05 0.03 ± 0.04

100 ps 0.13 ± 0.09 0.10 ± 0.09 0.06 ± 0.04 0.09 ± 0.07 0.14 ± 0.11 0.08 ± 0.07

50 ps 0.32 ± 0.29 0.22 ± 0.11 0.10 ± 0.09 0.28 ± 0.24 0.16 ± 0.18 0.12 ± 0.09

20 ps 0.53 ± 0.36 0.28 ± 0.16 0.14 ± 0.09 0.35 ± 0.19 0.39 ± 0.28 0.31 ± 0.13

Net 200 ps 0.15 ± 0.19 0.11 ± 0.15 0.08 ± 0.06 0.11 ± 0.08 0.10 ± 0.05 0.03 ± 0.05

100 ps 0.10 ± 0.08 0.09 ± 0.06 0.06 ± 0.05 0.15 ± 0.12 0.17 ± 0.13 0.10 ± 0.08

50 ps 0.38 ± 0.31 0.25 ± 0.30 0.13 ± 0.13 0.29 ± 0.36 0.19 ± 0.25 0.14 ± 0.18

20 ps 0.63 ± 0.35 0.39 ± 0.33 0.23 ± 0.18 0.47 ± 0.33 0.49 ± 0.32 0.43 ± 0.14
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Table 2:

Ab initio QM/MM simulation and reanalysis rates of the condensed and gas-phase simulations used to 

calculate solvation free energies. The columns of CPU cost are the number of wallclock hours required to 

calculate ΔAsolv
QM ∕ MM using 1 node to produce 200 ps of sampling for the MM′→ QM transformations. 

QM/MM simulations are performed on a single node equipped with two, 18-core Intel Xeon E5-2695 v4 

processors running at 2.1 GHz.

Solute Simulation Rate
ps day−1

Reanalysis Rate
ns day−1

CPU cost
wallclock hours

aq gas aq gas BBQm* EA*

H2O 640 6600 320 3300 8.4 0.2

H3O+ 640 4850 320 2425 8.7 0.2

NH4
+ 640 3600 310 1800 9.0 0.2

CH3NH3
+ 602 1080 301 540 12.6 0.2

CH3OH 589 1700 294 850 11.2 0.2

CO3
2 − 580 980 290 490 13.4 0.2

C2H6 571 1180 285 590 12.7 0.2

C2H5OH 464 695 232 347 17.4 0.2

CH3CO2
− 425 555 212 277 20.2 0.2

CH3CONH2 344 474 172 237 24.3 0.2

C(NH2)3
+ 312 378 156 189 28.3 0.2

(CH2)4O 183 219 91 109 48.4 0.3

C6H6 147 169 73 84 61.3 0.3

C6H5OH 108 137 54 68 79.8 0.3

C6H5Cl 104 120 52 60 86.5 0.3

C6H5NH2 98 118 49 59 90.0 0.3

C6H14 94 109 47 54 95.4 0.4
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Table 3:

Ab initio QM/MM simulation and reanalysis rates of the bound and unbound-state simulations used to 

calculate the ligiand binding free energies. The columns of CPU cost are the number of wallclock hours 

required to calculate ΔAb
QM ∕ MM using 1 node to produce 200 ps of sampling for the MM′→ QM 

transformations. QM/MM simulations are performed on a single node equipped with two, 18-core Intel Xeon 

E5-2695 v4 processors running at 2.1 GHz.

Ligand Simulation Rate
ps day−1

Reanalysis Rate
ns day−1

CPU cost
wallclock hours

L∙P L+P L∙P L+P BBQm* EA*

BNZ 131 147 66 74 69.4 0.1

PXY 63 65 32 33 150.3 0.3

OXE 60 62 30 31 157.7 0.3

BZF 60 61 30 31 159.0 0.3

DEN 53 54 27 27 179.8 0.4

IND 56 57 28 29 170.3 0.3

N4B 36 36 18 18 267.2 0.5

I4B 34 34 17 17 282.9 0.6
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