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Abstract

Spatially explicit agent-based models (ABMs) have been widely utilized to simulate the dynamics 

of spatial processes that involve the interactions of individual agents. The assumptions embedded 

in the ABMs may be responsible for uncertainty in the model outcomes. To ensure the reliability 

of the outcomes in terms of their space-time patterns, model validation should be performed. In 

this paper, we propose the use of multiple scale spatio-temporal patterns for validating spatially 

explicit ABMs. We evaluated several specifications of vector-borne disease transmission models 

by comparing space-time patterns of model outcomes to observations at multiple scales via the 

sum of root mean square error (RMSE) measurement. The results indicate that specifications of 

the spatial configurations of residential area and immunity status of individual humans are of 

importance to reproduce observed patterns of dengue outbreaks at multiple space-time scales. Our 

approach to using multiple scale spatio-temporal patterns can help not only to understand the 

dynamic associations between model specifications and model outcomes, but also to validate 

spatially explicit ABMs.
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Introduction

A spatially explicit agent-based model (ABM) can provide a better understanding of real-

world phenomena by exploring the linkages between changes in model parameters and 

spatial patterns (An, Linderman, Qi, Shortridge, & Liu, 2005; Parker & Meretsky, 2004). In 

these models, the phenomena under study are driven by interactions between heterogeneous 

individual agents and between agents and their environments. Only some key assumptions 

are considered and simplified in the ABM to develop a parsimonious model. For example, in 

ABMs of infectious disease transmission among humans, human agents are often assumed 

to commute to the nearest school or workplace (Chao, Halstead, Halloran, & Longini Jr, 

2012; Mao & Bian, 2010). Given the critical role of routine movements of individuals in 

infectious disease transmission at the local scale (Balcan et al., 2009; Stoddard et al., 2009), 

the specification of human movements may be responsible for the uncertainty in simulation 
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results (i.e., the spatio-temporal patterns of epidemics). Therefore, model validation should 

be performed to understand the uncertainty arising from these assumptions and to improve 

the reliability of model outcomes.

Pattern-oriented modeling (POM) (Grimm & Railsback, 2012; Grimm et al., 2005) provides 

a conceptual framework to assess the applicability of models by comparing the patterns 

generated by model outcomes to observed patterns. Following POM, the assumptions 

embedded in the ABMs are suitable when various spatio-temporal patterns of the model 

outcomes are well reproduced (O’Sullivan & Perry, 2013). To assess the models, previous 

studies have used patterns of various model outcomes at a single space-time scale 

(Heppenstall, Evans, & Birkin, 2007; Narzisi, Mysore, & Mishra, 2006; Railsback & 

Johnson, 2011; Wang et al., 2018), but multiple scale spatio-temporal patterns of the 

simulated outcome of interest (i.e., space-time disease outbreaks patterns at macro and micro 

scales) have rarely been employed.

Model validation performed at multiple spatiotemporal scales should be explored for 

boosting model reliability and applicability. The multiple scale space-time pattern 

comparisons should be especially useful for understanding spatially and temporally 

clustered phenomena that often rely on targeted interventions, such as crime and disease 

outbreaks. The models would not be as useful when they reproduce either only macro scale 

patterns (i.e., the total number of events in the study area) or micro scale patterns (i.e., local 

clustering of risk). Therefore, it is important to understand how ABMs should be assessed by 

comparing multiple scale patterns of simulated outcomes and observations.

To address these issues, we examine the use of multiple scale spatio-temporal patterns for 

validation of spatially explicit ABMs. ABMs of dengue virus (DENV) transmission are used 

as the case study. Dengue is a considerable public health burden in tropical and subtropical 

developing countries (Halstead, 2008; WHO, 2012). The primary vector of DENV is the 

Aedes aegypti mosquito. The specific objectives of our study are twofold: 1) to explore the 

joint associations between the assumptions embedded in the model and model outcomes, 

and 2) to assess the model specifications by comparisons of multiple space-time scale 

patterns of observations to those of simulation outcomes. This study focuses on the 

evaluating the model assumptions, leaving calibration (or parametrization) aside. To achieve 

these goals, we design several models under different specifications and comprehensively 

examine the differences in spatio-temporal patterns of DENV outbreaks between models.

Multiple space-time scales for model validation

The purpose of validation of ABMs is to assess how well the model replicates a real-world 

phenomenon. Validation is performed by comparing simulated data to observations from real 

systems. The validation process can be executed with a variety of both spatial and aspatial 

(non-spatial) model outcomes (Parker, Manson, Janssen, Hoffmann, & Deadman, 2003). 

Importantly, spatially explicit ABMs enable the representation of dynamic spatio-temporal 

processes between individuals interacting within spatial environments. Since the patterns 

characterize a real-world phenomenon, the use of the patterns observed in the real system 
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need to be properly embedded in the model (Grimm & Railsback, 2012; Grimm et al., 2005; 

Latombe, Parrott, & Fortin, 2011).

The spatio-temporal patterns of model outcomes and observations are differently described 

at the different spatio-temporal scales. Therefore, spatio-temporal scales must be properly 

considered for exploring the patterns as follows (Figure 1): (1) macro spatial and temporal 

scale – spatially global and temporally long-term scale (e.g., annually aggregated disease 

outbreak cases), (2) micro spatial and macro temporal scale – spatially local and temporally 

long-term scale (e.g., long-term disease attack rates in a specific household), (3) macro 

spatial and micro temporal scale – global spatial scale and short-term temporal scale (e.g., 

weekly U.S. influenza cases), and (4) micro spatial and temporal scale – local spatial scale 

and short-term temporal scale (e.g., short-term disease outbreak patterns in a community). 

For example, for validation of ABMs of DENV transmission, the patterns of simulated 

outcomes need to be identified at macro and micro spatio-temporal scale, because the annual 

DENV cases are often aggregated at a district-level (Endy et al., 2002) and the DENV 

outbreaks are spatially clustered at short temporal intervals (Aldstadt, 2007; Yoon et al., 

2012).

Here, we do not argue that the patterns should be measured at all four spatio-temporal 

scales. The number of scales in which patterns that can be described depends on the data 

availability. According to the available data, model validation can also be performed at 

meso-spatial or temporal scales.

Case study: A spatially explicit ABM of DENV transmission

Study area and data

Our study area is based on a portion of northeastern Kamphaeng Phet (KPP) province in 

Thailand. As previously described (Kang & Aldstadt, 2017), realistic and synthetic 

environments were set up; in the realistic scenarios the locations of all buildings were drawn 

from a Lidar derived building dataset (Figure 2(a)), whereas in the synthetic environment 

buildings were randomly arranged (Figure 2(b)). In each scenario, the environment consisted 

of 3683 houses, 185 workplaces, and 8 schools. The locations are projected in Universal 

Transverse Mercator (UTM) system, zone 47 North.

A KPP household sample dataset collected 2009 (Thomas et al., 2015) was utilized, and the 

household configurations (age, gender, number of residents) were randomly drawn from 

these microdata. Approximately 11,700 individual people were placed in the 3683 houses. 

The population was updated each year with the addition of newborns and the removal of 

deaths and out-migrants. Birth rates and death/out-migration rates were calculated from 

population register data obtained from Department of Provincial Administration (DOPA), 

Ministry of Interior Thailand. Each of these population changes was applied to households 

selected at random. The population distribution for one simulation is shown in Figure 3. The 

shape of the population pyramid is atypical because many young adults are away working in 

urban centers.
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ABMs of DENV transmission

DENV outbreaks are spatially and temporally clustered at fine spatiotemporal scale 

(Aldstadt, 2007; Yoon et al., 2012) because of the short flight distance of Ae. aegypti 
(Harrington et al., 2001; Harrington et al., 2005). The vectors spread DENV within 

households and to neighboring houses. Mosquito movement is restricted by the spatial 

configuration of buildings (Harrington et al., 2005; Tsuda, Takagi, Wang, Wang, & Tang, 

2001), and mosquito population structure has an impact on DENV transmission patterns 

(Favier et al., 2005; Smith, Dushoff, & McKenzie, 2004). DENV consists of four distinct 

serotypes (DENV-1 to -4). Infection by any single serotype provides long-term immunity 

with transient cross-protection to other serotypes (Reich et al., 2013; Sabin, 1952; WHO, 

2012). These immunological interactions between serotypes can also influence the spatio-

temporal patterns of endemic transmission (Gubler, 2002; Salje et al., 2012).

To understand the dynamic natures of DENV transmission, many researchers have 

contributed to the development of spatially explicit ABMs, but they have not fully 

considered the characteristics of DENV transmission. The ABMs developed under a lack of 

knowledge may provide limited policy implications derived from simulations. In spite of the 

apparent importance of heterogeneous host populations with their serotype-specific 

immunity status (Salje et al., 2012), previous studies assume homogeneously mixed 

population (Knerer, Currie, & Brailsford, 2015), no distinction of serotypes (de Lima et al., 

2016; Karl, Halder, Kelso, Ritchie, & Milne, 2014; Padmanabha et al., 2015), and fail to 

preserve the immunity status of individuals year-to-year (Chao et al., 2012; Karl et al., 

2014). Thus, the assumption of heterogeneous serotype-specific immunity status of 

populations should be included in ABMs of DENV transmission.

In addition to heterogeneous immune status of individuals, joint associations of mosquito 

populations and spatial configurations of residential areas need to be considered (Kang & 

Aldstadt, 2017). The investigation on these joint associations provides a more 

comprehensive understanding of the ways that the assumptions embedded in the model 

influence spatio-temporal patterns of DENV transmission. The influences of the 

assumptions will be evaluated by comparing spatio-temporal patterns of the model outcomes 

to those of observations. This validation can help in evaluating and properly choosing the 

assumptions embedded in the model.

In this study, we developed a spatially explicit agent-based model composed of three 

components: (1) human agents, (2) mosquito agents, and (3) the environment in which 

human and mosquito agents interact with each other (for details, please see Overview, 

Design concepts and Details (ODD) protocol (Grimm et al., 2010) in Appendix Table A1). 

The simulations were run with eight scenarios that were jointly associated with three 

assumptions, as follows: mosquito population distribution, (Favier et al., 2005; Smith et al., 

2004), spatial configurations of residential area (Kang & Aldstadt, 2017), and individual 

human’s immunity status (Table 1). The details of each assumption will be provided in the 

following.

We ran 300 simulations for 20 years for each scenario. To consider time-varying behaviors 

of humans and mosquitoes, the DENV epidemics were simulated with a one-hour time step. 
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The last four years of outcomes were used to test how well the model replicated the 

observed patterns of DENV infection. Each individual’s exposure to DENV prior to 

initiation of the ABM was estimated based on an annual attack rate of 0.14. Since an initial 

state of the immunity status of individuals was not spatially structured, this burn-in period 

created a more realistic pattern of community-level immunity. The individual’s immunity 

status is likely similar to their neighbors, because of seasonal serotype-specific dominance in 

Thailand (Nisalak et al., 2003) and the focal nature of DENV transmission (Mammen Jr et 

al., 2008). This spatially patterned immunity was maintained in the preservation scenarios. 

In reset scenarios, the immunity status of each human agent was newly assigned at the 

beginning of each year based on each individual’s age. Therefore, immunity statuses were 

not clustered within the study area in the reset scenarios.

A human agent refers to an individual human. In our ABM, age-specific movement 

behaviors of individuals were considered, as follows: (1) an individual human spends the 

daytime (between 9 am to 5 pm) at his/her school (ages 5 to 19) or workplace (ages 20 to 

64), and the rest of time (between 5 pm to 9 am) at his/her home, and (2) the rest of people 

stay at their home all the time, as shown in Figure 4. People aged 5 to 64 commute to their 

schools/workplaces, and potentially interact with mosquito agents at their school/workplace 

in daytime and with mosquito agents at their home the rest of time. The movement patterns 

are identical on weekdays and on the weekend.

The health status of each individual agent is described with a susceptible, exposed, 

infectious, and recovered (SEIR) model. Since DENV is composed of four distinct 

serotypes, each individual has a SEIR status for each serotype. These SEIR statuses also 

determine the human’s movement. The sick individuals stay at their home until they recover. 

Once they recover, they restart their normal movement pattern. The cross-protection between 

serotypes lasts for 120 days (Chao et al., 2012). After 120 days, individuals become 

susceptible again to other serotypes that they have not yet been exposed to (Vaughn et al., 

2000). The parameters are provided in Appendix Table A2. These parameters are the same 

in every scenario.

In our model, only infected female mosquitoes become agents. Susceptible female mosquito 

populations are tracked at the household level (e.g., 42 per household in June). In other 

words, the number of mosquito population in the household are intended to describe 

mosquitoes’ breeding and feeding sites. When infectious human agents enter a building, 

there is a chance that they will be bitten by one or more of these susceptible vectors. The 

female mosquito becomes an agent by biting an infectious human agent. The infected female 

mosquitoes are able to transmit DENV to other collocated susceptible human agents during 

their life-time. Infected mosquitoes travel to nearby buildings (within 30m) with a 0.15 

probability every day (Chao et al., 2012). If there are several nearby buildings, the 

mosquitoes travel to a randomly selected one among them. The infected mosquitoes also 

occasionally travel to a distant building that is farther than 30 meters from their current 

building. This long distance travel occurs with a 0.01 daily probability (Figure 5) (Chao et 

al., 2012). Although a mosquito agent’s movement is evaluated once each day, its biting 

behaviors vary for four discrete time intervals (08-13 hours, 13-18 hours, 18-24 hours, and 

00-08 hours) with specific biting rates (0.08, 0.76, 0.13, and 0.03), respectively.
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We also assume that each mosquito agent’s survival is age dependent (Harrington et al., 

2001; Harrington et al., 2008; Harrington et al., 2005). All parameters with respect to 

mosquito agents are provided in Appendix Table A3.

Homogenous and heterogeneous mosquito populations are distinguished by the distribution 

of the mosquito population in the buildings. The number of mosquitoes is the same in every 

building in homogeneous scenarios (Figure 6(a)), whereas the number of susceptible 

mosquitoes varies in heterogeneous scenarios (Figure 6(b)). Both homogeneous and 

heterogeneous scenarios include seasonal variation in mosquito population. For the 

homogeneous scenarios, the number of mosquitoes in each building is set to 42 at the peak 

in June, and just two in February. In heterogeneous scenarios, the number of mosquitos in 

each building is drawn from a negative binomial distribution with the same monthly average 

as used in the homogeneous scenarios. In detail, the number of mosquitoes ranges between 

approximately 200 and 0 in June in heterogeneous scenarios, but the average number of 

mosquitos in all buildings in heterogeneous scenarios are similar to that (42) in 

homogeneous scenarios.

Observed spatiotemporal patterns of DENV transmission

At the macro spatio-temporal scale (i.e., spatially global and temporally long-term scale), 

spatiotemporal patterns of DENV transmission are described with estimated attack rates. 

Specifically, Endy et al. (2002) found the overall rate of DENV infections was 5.8 percent 

per year within the school population (i.e., children aged 4-16 years) in KPP.

At the micro spatiotemporal scale (i.e., spatially local and temporally short-term scale), 

spatiotemporal patterns of DENV incidence were captured with geographic cluster 

investigations. Yoon et al. (2012) explored the spatial pattern of dengue virus infections 

among children living nearby a child with a detected infection. The initiating cases were 

captured with a school-based surveillance system. The geographic cluster investigations 

enrolled other children living within a100-meter radius of the initiating case’s household. 

This methodology was able to capture other dengue infections that occurred approximately 

three weeks prior to and up to 15 days after detection of the first case reported in a cluster. 

Figure 7 shows the average of DENV infection rates among the children in 50 clusters by 

distance from the residential location of a detected DENV infection. Distance decay of the 

infection rates was found, the infection rates were: 35.3 % in index houses, 29.9 % in houses 

within 20 meters, 22.2 % in houses within 20-40 meters, 13.2 % in houses within 40-60 

meters, 14.4 % in houses within 60-80 meters, and 6.2 % in houses within 80-100 meters.

The DENV infection rates (Rj) denote the average of the DENV infection rates over 50 

clusters in each distance range (j), and were calculated by the following equation:

R j = i 1
n r ji

n
(1)

where rji denotes the DENV infection rates in cluster j, and n denotes the number of clusters 

(50).

Kang and Aldstadt Page 6

Int J Geogr Inf Sci. Author manuscript; available in PMC 2020 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Model evaluation measurement

To evaluate eight models across spatial and temporal scales, the sum of root mean square 

error (RMSE) measurement was used as a measure of fit, which is calculated by the 

following equation:

the sum of RMSE =
i 1

7
n 1
300 (Rn Oi)

2

n
2

(2)

where i denote the index of spatio-temporal patterns (i.e., overall DENV infection rates and 

DENV infection rates in each cluster), Rj is the DENV infection rates each simulation run, 

Oi denote the DENV infection rates in observed overall DENV infection rates (Endy et al., 

2002) and cluster-based DENV infection rates (Yoon et al., 2012).

Results and discussion

Results

In this study, we ran 300 simulations for each scenario. Following POM, ABMs must 

reproduce patterns in observed data if they are capturing the real-world system’s properties 

(Grimm & Railsback, 2012; Grimm et al., 2005). Here, validation was performed at multiple 

scales. Because of a lack of available data, we performed model validations at two multiple 

scales (i.e., macro spatio-temporal and micro spatio-temporal scales).

At the macro scale, the overall DENV infection rates of children aged 4 to 16 years were 

measured (Table 2) to compare the patterns to those reported by Endy et al. (2002). The rates 

refer to the average infection rates over 300 simulation runs. The results from simulations 

show two distinguishable patterns: 1) greater infection rates in herd immunity preservation 

scenarios than reset scenarios and 2) greater infection rates in realistic configuration 

scenarios than synthetic configuration scenarios (for details, please see the following 

descriptions).

In addition, the averages of the DENV infection rates of clusters were used for comparison 

at the micro scale. We measured the local DENV infection rates including the infections that 

occurred up to three weeks before and up to 15 days after randomly selected dengue 

infections, mimicking the methodology of Yoon et al. (2012). Figure 8 shows the average of 

the DENV infection rates of clusters in each distance interval. The details are provided in the 

Appendix Table A4. We found apparent differences in the spatio-temporal patterns among 

the results from simulations: (1) greater DENV infection rates in immunity preservation 

scenarios than those in immunity reset scenarios, and (2) lower dengue infection rates in 

neighboring houses (i.e., >0-20, >20-40, >40-60, >60-80, and >80-100 m) in synthetic 

configuration scenarios.

The greater DENV infection rates in immunity preservation scenarios are due to the spatial 

patterning of susceptible individuals. DENV is more likely to be transmitted to the 

household members of infected individuals, and to residents living in neighboring houses. 

Thus, the immunity statuses of neighboring individuals should be similar to each other with 
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pockets of high herd immunity or low herd immunity. The pockets of low herd immunity 

enable infections introduced from outside the study area to take hold and potentially affect a 

larger portion of the community. In the reset scenarios, the immunity status was reset every 

year and assigned based on each individual’s age. Therefore, the immunity statuses of 

people living in proximity with one another are often different, preventing outbreaks from 

taking hold in the community.

Figure 9 shows temporal changes in the susceptibility of children (i.e., aged 0 to 15), 

determined by dividing the susceptible child population by the total child population within 

each quadrat boundary. Each panel in Figure 9 depicts the pattern of susceptibility from one 

realization of the simulated epidemics in synthetic environments. The susceptibility in 

preservation scenario (Figure 9(a)) gradually changed over time due to the infections and 

deaths (the rates are decreased), and births (the rates are increased), whereas the pattern of 

susceptibility in reset scenarios (Figure 9(b)) dramatically changed each year. The patterns 

of temporal changes in the susceptibility can be explained through comparing one year to 

another (i.e., 17th to 18th, 18th to 19th, and 19th to 20th). In detail, temporal variability in 

relative levels of susceptibility at each grid cell in Figure 9 range from 0 – 9.5 % (from 17th 

to 18th), 0 – 13 % (18th to 19th), and 0 – 6 % (19th to 20th) in HeteroSynthPre scenarios, 

whereas they range from 1 – 40 % (17th to 18th), 0 – 25 % (18th – 19th), and 0 – 22 % (19th 

to 20th) in HeteroSynthReset scenarios. In addition, higher infections in HeteroSynthPre 

scenarios than HeteroSynthReset scenarios can be explained by the higher susceptibility in 

HeteroSynthPre scenarios. These results highlight the importance of preserving the 

immunity history of individuals in ABMs of DENV transmission.

In synthetic configuration scenarios, there are lower infection rates among neighboring 

children than in the realistic environment. This difference in patterns is due to fewer 

movement options of the infected-mosquito agents. Figure 10 shows the nearest neighboring 

building distances for each building in the realistic scenarios and one realization of a 

synthetic scenario. Given that mosquito movements in our models were mostly between 

buildings within 30m of each other, these results indicated the importance of the joint 

specification of mosquito agent movement and spatial configuration of the built 

environment.

Based on the sum of RMSE, we can evaluate to what extent the scenarios fit well with the 

observations and quantitatively validate the models (Table 3). The lowest value indicates the 

least discrepancy between spatio-temporal patterns of model outcomes and those of 

observed data. The model outcomes from HeteroRealPre and HomoRealPre scenarios most 

closely replicate the spatio-temporal patterns of DENV transmission at multiple spatio-

temporal scales. Several other models have lower RMSE values for the macros scale metric, 

but do match the local pattern as well. The scenarios with annual reset of immunity status do 

not match at the household-level (0m). The simulations performed in the synthetic 

environment do not match patterns observed among nearby households, specifically those 

within 60m.
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Conclusion

This study proposes the use of multiple scale patterns for validating spatially explicit ABMs. 

We employed a spatially explicit ABM of DENV transmission in which individual human 

and infected female mosquito agents interact with each other within the environment. To 

examine the impact of the model assumptions on the spatio-temporal patterns of model 

outcomes, we explored eight scenarios with varying residential location patterns, vector 

population structure, and handling of host population immunity status.

Our study demonstrates the advantages of using patterns observed at multiple scales for 

validating spatially explicit ABMs. When only comparing a single scale pattern, the best-fit 

model may well reproduce only that particular pattern. The ABMs that reproduce multiple 

scale space-time patterns of observations are more likely to be appropriate models of the real 

world system. The models may, therefore, result in an improved understanding of the spatio-

temporal process of interest. In addition, our proposed method assists in choosing proper 

model or sub-model assumptions. Multiple models representing the same phenomenon are 

often developed under different assumptions, and thus it is still challenging to choose which 

model specifications are appropriate to address the particular research questions. By 

measuring multiple scale space-time patterns of model outcomes from several model 

specifications, we can eliminate less appropriate models. Furthermore, the ABMs can be 

useful for policy makers to assess the potential impacts of interventions at the both macro 

and micro scales. We have chosen to weight the RMSE at each scale equally for ease of 

comparison and explanation. Future research will examine the relative weighting of 

measures of fit at different spatial and temporal scales. Uncertainty due to sampling error 

and potential bias due to coverage error when measuring global and local patterns will be 

key considerations.

Our multiple scale validation technique has allowed us to quantitatively evaluate the model 

specification choices in ABMs of DENV transmission. The results from the sum of RMSE 

measurement comparison indicate the importance of the assumptions used when developing 

spatially explicit ABMs of vector-borne disease transmission. HeteroRealPre and 

HomoRealPre scenarios including the assumptions of preserving immunity status of 

individuals and realistic spatial configurations of buildings more closely replicated the 

spatio-temporal patterns of DENV transmission. The different specifications of mosquito 

population structure did not result in large differences in model fit. Therefore, we argue that 

spatially explicit ABM studies of DENV transmission should incorporate careful 

specification of residential patterns and individual immunity status.

Depending on the study area and research questions being addressed it may be necessary to 

adjust model complexity and examine outcomes at additional spatial and temporal scales. 

Here we only considered commuting activities of individual humans although social 

activities many also be important determinants of the pattern of DENV transmission in a 

community (Reiner, Stoddard, & Scott, 2014; Stoddard et al., 2013). Therefore, the 

inclusion of social activities that may vary between weekdays and weekends in the model 

may result in outcomes that more closely duplicate the spatio-temporal patterns of 

observations. The scales of patterns examined in this study were determined by the available 

data, but patterns can be measured along spatial and temporal continua from micro to macro. 
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The most appropriate patterns for evaluating ABMs may vary widely depending on the 

application. For example, models that are purposed to particularly simulate a specific 

pattern, such as spatially clustered events within a few days of each other (e.g., repeat 

burglaries), micro space-time scale pattern would be important. Time series may play a more 

important role in validation when seasonality or feedbacks are drivers of the process under 

study. We have shown that patterns measured at multiple scales may be useful in the 

evaluation step of the model building process. One apparent next step along this line of 

inquiry includes examining the use of multiple scale patterns in the calibration phase of the 

model building procedure. A second associated research direction would be to test the 

relative value of patterns measured at different scales for discriminating between alternative 

models and parameterizations.
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Appendix

Our model is available in the following link (https://cloud.anylogic.com/model/64d09b7f-

fcd6-4b04-af26-834a26be569d?mode=SETTINGS). Because of the limited computational 

power of Anylogic cloud platform, only a small portion of our model has been uploaded. 

The platform supports to run only a particular scenario, HeteroRealPre scenario can be ran 

through Anylogic cloud platform. To test all eight scenarios, please download the source 

code from the above link and run the simulations using AnyLogic software. The free version 

of AnyLogic software will be available at the link (https://www.anylogic.com/downloads/).

Table A1 provides the ODD protocol of ABMs. Not applicable elements in ODD protocol 

are omitted.

Table A1.

Overview, Design concepts and Details of ABMs

Overview

Purpose To simulate a local-level DENV transmission with eight scenarios: (1) HeteroRealPre, (2) 
HeteroRealReset, (3) HeteroSynthPre, (4) HeteroSynthReset, (5) HomoRealPre, (6) 
HomoRealReset, (7) HomoSynthPre, and (8) HomoSynthReset

Entities, state 
variables, and 
scales

ABM consist of three entities: (1) human, (2) infectious female mosquito, and (3) building agents, 
and each entity has several state variables.
(1) Human agent
  • Age
  • Gender
  • Occupation status
  • House location: x-y coordinates
  • School/workplace location: x-y coordinates
  • Current location: x-y coordinates
  • SEIR states for all DENV serotypes
  • Cross immunity state
(2) Mosquito agent
  • Age
  • Serotype
(3) Building agent
  • Type

Kang and Aldstadt Page 10

Int J Geogr Inf Sci. Author manuscript; available in PMC 2020 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://cloud.anylogic.com/model/64d09b7f-fcd6-4b04-af26-834a26be569d?mode=SETTINGS
https://cloud.anylogic.com/model/64d09b7f-fcd6-4b04-af26-834a26be569d?mode=SETTINGS
https://www.anylogic.com/downloads/


  • Location: x-y coordinates

Process 
overview and 
scheduling

(1) Movement
  • Human: commuting process: school (aged 5-19) and workplace (aged 20-64)
  • Mosquito: moving around within 30 meters (15 % of probability) and random locations (1% of 
probability)
(2) The birth, death/out-migration and aging
  • January 1st every year, the certain amounts of individual humans are newly born and died/out-
migrated. The newly born humans are randomly assigned to houses.
  • January 1st every year, every individual gets older. The property (age) increases by one.
(3) scheduling for immunity
  • In reset scenarios, the immunity status of an individual is reset and assigned based on 
individual’s age.
(4) Biting
  • Mosquitoes bite humans with a certain probability
(5) Seasonal fluctuation of mosquito population
  • The counts of mosquito population vary to month as shown in Figure 6.

Design concepts

Basic principles The ABMs purpose to explore the impacts of model specifications in regard to (1) spatial 
configurations of buildings, (2) spatial distribution of mosquito population, and (3) immunity status 
of individual human. The model was expanded based on Chapter 4.

Sensing Each mosquito senses the neighboring houses to move around and human to bite in all buildings.

Interaction There is an interaction between humans and mosquitoes by biting process of mosquitoes.

Details

Initialization The model synthesizes human population within 3683 households.
Individual humans’ immune statuses to each serotype are assigned based on their ages with a 
certain probability (0.14).
For scenarios of heterogeneous mosquito population, the populations are determined by a negative 
binomial distribution (0.0344, 1.5) where 0.0344 and 1.5 denote number of failure and the 
probability of success.
For scenarios of synthetic environments, all buildings are randomly arranged.

Input data (1) locations of houses and schools identified from GPS data (Thomas et al., 2015)
(2) household census data (Thomas et al., 2015)
(3) birth and death/out-migration rates obtained from Department of Provincial Administration 
(DOPA), Ministry of Interior, Thailand.

Parameters The parameters of human and mosquito agents were provided in Table A2 and A3.

Table A2 and A3 provides a set of parameters employed in this model, which are the same 

as those of Kang and Aldstadt (2017). These parameters are the same in every scenario.

Table A2.

Parameters for human agents used in the model

Parameters Value Note

Incubation period 6 days Time between exposed and infectious stage in the SEIR model

Viremic period 4 days Time between infectious and recovered stage in the SEIR model

Recovered period 120 days Times for completely recovered from a specific serotype. After 120 days, an 
individual human becomes susceptible to other serotypes.

PMP 0.25 Probability of infectious mosquito to susceptible person transmission

PPM 0.1 Probability of infectious person to susceptible mosquito transmission

Introduction rate 0.00001 Daily probability of DENV infection from outside of study area

Annual attack rates 0.14 Annual infection rate used to simulate human population immunity at the beginning 
of simulation
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Table A3.

Parameters for mosquito agents used in the model

Parameters Value Note

Movement probability 0.15, 0.01 Daily movement rates within neighbors (0.15) and random 
locations (0.01)

Extrinsic incubation 
period

11 days Days to become infectious after biting an infectious human

Hazard rates 0.09, 0.08 Mosquitoes younger than 10 days (0.09) and older than 10 
days (0.08)

Biting rate 0.08, 0.76, 0.13, 0.03 Varies by time of day

Mosquito seasonality 4, 2, 8, 13, 34, 42, 21, 16, 
17, 13, 15, 8

The average number of mosquitoes in each building varies 
by month (January to December).

Table A4 provides the details of infection rates at a micro spatio-temporal scale.

Table A4.

Infection Rates at a micro spatio-temporal scale

Scenarios Infection 
Rates (0 m) 
(95 % CI)

Infection 
Rates (>0 - 
20 m) (95% 

CI)

Infection 
Rates (>20 - 
40 m) (95% 

CI)

Infection 
Rates (>40 - 
60 m) (95% 

CI)

Infection 
Rates (>60 - 
80 m) (95% 

CI)

Infection 
Rates (>80 - 

100 m) 
(95% CI)

HeteroRealPre 37.63 (37.13 
– 38.12)

19.54 (19.14 
– 19.94)

14.12 (13.86 
– 14.38)

5.84 (5.67 – 
6.02)

2.47 (2.36 – 
2.57)

1.22 (1.15 – 
1.29)

HeteroRealReset 10.89 (10.54 
– 11.24)

5.21 (5.00 – 
5.42)

3.73 (3.61 – 
3.86)

1.70 (1.62 – 
1.79)

0.77 (0.72 – 
0.82)

0.41 (0.37 – 
0.44)

HomoRealPre 36.82 (36.34 
– 37.30)

18.64 (18.26 
– 19.01)

13.27 (13.03 
– 13.51)

5.28 (5.13 – 
5.44)

2.31 (2.22 – 
2.41)

1.18 (1.12 – 
1.25)

HomoRealReset 10.59 (10.25 
– 10.93)

4.89 (4.70 – 
5.09)

3.50 (3.38 – 
3.62)

1.51 (1.44 – 
1.58)

0.72 (0.67 – 
0.77)

0.38 (0.35 – 
0.42)

HeteroSynthPre 40.51 (39.97 
– 41.04)

3.72 (2.93 – 
4.51)

2.08 (1.63 – 
2.53)

0.39 (0.23 – 
0.56)

0.16 (0.09 – 
0.23)

0.17 (0.10 – 
0.24)

HeteroSynthReset 7.49 (7.05 – 
7.94)

0.51 (0.18 – 
0.83)

0.33 (0.15 – 
0.51)

0.02 (0.00 – 
0.04)

0.02 (0.00 – 
0.06)

0.00 (0.00 – 
0.01)

HomoSynthPre 40.38 (39.88 
– 40.88)

3.40 (2.59 – 
4.20)

2.01 (1.61 – 
2.40)

0.26 (0.14 – 
0.37)

0.15 (0.07 – 
0.22)

0.13 (0.07 – 
0.18)

HomoSynthReset 8.26 (7.81 – 
8.71)

0.24 (0.03 – 
0.46)

0.22 (0.10 – 
0.34)

0.01 (0.00 – 
0.03)

0.03 (0.00 – 
0.06)

0.01 (0.00 – 
0.03)
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Figure 1. 
Spatio-temporal scale.
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Figure 2. 
Spatial configuration of buildings in the study area, a portion of Kamphaeng Phet province, 

Thailand. (a) Realistic spatial configuration; (b) Synthetic spatial configuration.
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Figure 3. 
Population pyramid.
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Figure 4. 
The movement activities of human agents.
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Figure 5. 
The movement activities of mosquito agents.
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Figure 6. 
Mosquito seasonality. (a) The building-level mosquito abundance in homogeneous mosquito 

population scenarios; (b) the average and range of building-level mosquito abundance in 

heterogeneous mosquito population scenarios (Kang and Aldstadt 2017).
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Figure 7. 
DENV infection rate in each distance range (Yoon et al. 2012).
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Figure 8. 
Spatio-temporal patterns of DENV infection rates in each distance range at micro scale.
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Figure 9. 
Temporal changes in susceptibility of children in the synthetic environments. (a): 

HeteroSynthPre, and (b): HeteroSynthReset.
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Figure 10. 
Distributions of distance to nearest building for each building in the study area. (a) Realistic 

configuration scenarios; (b) one realization of the synthetic configuration scenario.
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Table 1.

Model Description

Scenario Mosquito Population Spatial configurations Immunity Status

HeteroRealPre Heterogeneous Realistic Preservation

HeteroRealReset Heterogeneous Realistic Reset

HeteroSynthPre Heterogeneous Synthetic Preservation

HeteroSynthReset Heterogeneous Synthetic Reset

HomoRealPre Homogeneous Realistic Preservation

HomoRealReset Homogeneous Realistic Reset

HomoSynthPre Homogeneous Synthetic Preservation

HomoSynthReset Homogeneous Synthetic Reset
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Table 2.

Spatio-temporal patterns of DENV infection rates at the macro scale

Scenario DENV Infection Rate (95% CI)

HeteroRealPre 8.65 (8.50 – 8.79)

HeteroRealReset 2.79 (2.74 – 2.85)

HomoRealPre 9.08 (8.95 – 9.22)

HomoRealReset 3.12 (3.07 – 3.18)

HeteroSynthPre 4.06 (4.02 – 4.12)

HeteroSynthReset 0.67 (0.66 – 0.68)

HomoSynthPre 4.11 (4.07 – 4.15)

HomoSynthReset 0.67 (0.66 – 0.69)
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Table 3.

Summary of the sum of RMSE at each spatio-temporal scale

Scenarios Macro 0 m 0 – 20 m 20 – 40 m 40 – 60 m 60 – 80 m 80 – 100 m Sum Rank

HeteroRealPre 3.8593 9.0636 12.4959 9.3222 7.9791 12.1054 5.1484 59.9739 1

HeteroRealReset 3.165 25.1667 24.9215 18.624 11.6026 13.6902 5.8417 103.0117 5

HomoRealPre 4.0354 8.6539 12.9874 9.9115 8.3916 12.2395 5.1758 61.3951 2

HomoRealReset 2.8454 25.4116 25.195 18.844 11.7777 13.7385 5.8606 103.6728 6

HeteroSynthPre 1.9042 10.6633 29.0306 21.596 13.16 14.32 6.1638 96.8379 4

HeteroSynthReset 5.0962 28.8703 29.6554 22.0571 13.2184 14.433 6.2131 119.5435 8

HomoSynthPre 1.8331 10.1123 29.3925 21.2937 13.1374 14.3457 6.1585 96.2732 3

HomoSynthReset 5.1017 28.0647 29.7356 22.0679 13.2184 14.4217 6.21001 118.82 7
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