
SC I ENCE ADVANCES | R E S EARCH ART I C L E
GENET I CS
1Department of Pharmacology, Yonsei University College of Medicine, Seoul, Re-
public of Korea. 2Brain Korea 21 Plus Project for Medical Sciences, Yonsei Univer-
sity College of Medicine, Seoul, Republic of Korea. 3Electrical and Computer
Engineering, Seoul National University, Seoul, Republic of Korea. 4Severance Bio-
medical Science Institute, Yonsei University College of Medicine, Seoul, Republic
of Korea. 5Interdisciplinary Program in Bioinformatics, Seoul National University,
Seoul, Republic of Korea. 6Center for Nanomedicine, Institute for Basic Science
(IBS), Seoul, Republic of Korea. 7Yonsei-IBS Institute, Yonsei University, Seoul,
Republic of Korea.
*These authors contributed equally to this work.
†Corresponding author. Email: hkim1@yuhs.ac

Kim et al., Sci. Adv. 2019;5 : eaax9249 6 November 2019
Copyright © 2019

The Authors, some

rights reserved;

exclusive licensee

American Association

for the Advancement

of Science. No claim to

originalU.S. Government

Works. Distributed

under a Creative

Commons Attribution

NonCommercial

License 4.0 (CC BY-NC).
SpCas9 activity prediction by DeepSpCas9,
a deep learning–based model with high
generalization performance

Hui Kwon Kim1,2*, Younggwang Kim1,2*, Sungtae Lee1, Seonwoo Min3, Jung Yoon Bae1,
Jae Woo Choi1,4, Jinman Park1,2, Dongmin Jung1,4, Sungroh Yoon3,5, Hyongbum Henry Kim1,2,4,6,7†
We evaluated SpCas9 activities at 12,832 target sequences using a high-throughput approach based on a
human cell library containing single-guide RNA–encoding and target sequence pairs. Deep learning–based
training on this large dataset of SpCas9-induced indel frequencies led to the development of a SpCas9 activity–
predicting model named DeepSpCas9. When tested against independently generated datasets (our own and
those published by other groups), DeepSpCas9 showed high generalization performance. DeepSpCas9 is available
at http://deepcrispr.info/DeepSpCas9.
INTRODUCTION
CRISPR-Cas, a prokaryotic adaptive immune system, has been har-
nessed for genome editing in various species and cell types, including
human cells (1–6). The ability to accurately predict SpCas9 activity is
important for applications of genome editing (7–12). So far, several
computationalmodels that predict SpCas9 activity have been developed
on the basis of datasets of phenotypic changes of gene-edited cells
(7, 9, 11–17) or medium-sized datasets of SpCas9-induced indel fre-
quencies obtained by episomal plasmid–based library-on-library
approaches (10, 18, 19). However, the generalization performances
of these models have been limited (20), possibly because the quality
and size of the training datasets were not ideal. Most of the models
were developed using Cas9 activity datasets generated by phenotypic
analysis of gene knockouts (7, 9, 11–17), which can be biased by the
function of the corresponding genes and can include false negatives in
which indels are introduced at the target sequences but do not induce
functional knockouts (11); furthermore, for three models, the sizes of
the SpCas9-induced indel frequency datasets were just medium-sized
(10, 18, 19).

We recently reported a deep learning–based computational model
called DeepCpf1, which predicts AsCpf1 (Cpf1 from Acidaminococcus sp.
BV3L6) activity with a high generalization performance (21). Our high-
throughput evaluation of Cpf1 activity using lentiviral libraries of
guide RNA–encoding and target sequence pairs (22) enabled the gen-
eration of a large dataset of Cpf1-induced indel frequencies, which was
used as the training data forDeepCpf1. Although similar paired library-
based methods have recently been used to develop computational
models that predict the indel sequence patterns generated by Cas9-
induced double-strand breaks (23–25), a large dataset ofCas9-induced
indel frequencies has not been generated, preventing the development
of a Cas9 activity–predicting computational model with high general-
ization performance. Here, we developed a high-throughput method
for evaluating SpCas9-induced indel frequencies at tens of thousands
of target sequences by modifying our previously developed methods
for Cpf1 (22), which enabled the development of DeepSpCas9, a deep
learning–basedmodel that accurately predicts SpCas9 activities with a
high generalization performance.
RESULTS AND DISCUSSION
Generation of large datasets of SpCas9 activities through a
high-throughput evaluation
For a high-throughput evaluation of SpCas9 activities, we first prepared
a lentiviral library of 15,656 guide RNA–encoding and target sequence
pairs using a modification of the approach that we previously used for
Cpf1 evaluation (21, 22). The target sequences were selected from the
human genome and synthetic sequences without any information
about the activity of the corresponding single-guide RNAs (sgRNAs)
(detailed information is available in Materials and Methods). Oligo-
nucleotides containing these15,656 target sequenceswerearray-synthesized
in a way such that each oligonucleotide contained a target sequence
and a corresponding guide sequence for the sgRNA (fig. S1A). This pool
of oligonucleotides containing pairs of guide and target sequences
was polymerase chain reaction (PCR)–amplified and cloned into a
lentiviral plasmid using Gibson assembly (fig. S1B). Then, we cut
the resulting library plasmids at the 3′ end of the guide sequence
using Bsm BI and inserted the sgRNA scaffold sequence at the cut
site (fig. S1B). This two-step approach for generating plasmid libraries
was similarly used for generating double-guide RNA libraries (26–31)
and libraries of guide RNA–encoding and target sequence pairs for
the analysis of SpCas9-induced mutation patterns (23–25). Lentivirus
was first generated from this plasmid library and then used to treat
human embryonic kidney (HEK) 293T cells to make a cell library, in
which each cell contains a synthetic target sequence in its genome
and expresses the corresponding sgRNA (fig. S1C). Next, the cell
library was treated with SpCas9-encoding lentivirus, which led to
sgRNA-directed cleavage and indel formation at the integrated target
sequences with frequencies that depended on the sgRNA activity. The
target sequences were PCR-amplified and subjected to deep sequencing
tomeasure indel frequencies (21, 22). This high-throughput experiment
generated two datasets named HT_Cas9_Train and HT_Cas9_Test
(tables S1 and S2).
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Indel frequencies at the integrated target sequences are
highly correlated with those at the endogenous target sites
We next evaluated whether the indel frequencies at the integrated
synthetic target sequences correlated with those at the corresponding
endogenous target sites. For this determination, we generated a dataset,
named Endo_Cas9, of SpCas9 activities at 124 endogenous target sites
with different chromatin accessibility properties [50 targets at deoxy-
ribonuclease I (DNase I) hypersensitive (DHS) regions and 74 targets
at non-DHS regions; see table S3] because we previously found that
Cpf1 activity is significantly affected by chromatin accessibility (22).
We observed a strong correlation between indel frequencies at
integrated target sequences and those at endogenous sites (Spearman
R = 0.70, Pearson R2 = 0.53; Fig. 1A), which is higher than the correla-
tion previously reported using a medium-scale library-on-library
approach (18). Furthermore, we observed a weak tendency for
SpCas9-induced indel frequencies at DHS sites to be marginally or
merely higher than those at non-DHS sites (P = 0.018; Fig. 1B). In this
Kim et al., Sci. Adv. 2019;5 : eaax9249 6 November 2019
respect, SpCas9 differs fromCpf1, which elicitedmarkedly higher levels
of indels at DHS versus non-DHS sites (Fig. 1B) (22). When we
calculated the correlations between indel frequencies at integrated sites
and a subset of endogenous sites with similar chromatin accessibility,
the correlations were comparable regardless of chromatin accessibility
information (Fig. 1, C and D). This observation also contrasts with pre-
vious observations of Cpf1, for which there was a much higher correla-
tion between target site subsetswith similar chromatin accessibility (22).

Development of DeepSpCas9, a deep learning–based
computational model predicting sgRNA efficacy
We next attempted to develop an accurate computational model for
predicting SpCas9 activity. Using deep learning–based training on a
large dataset, we previously developed a computational model named
DeepCpf1 that predicts AsCpf1 activity in a highly accurate manner
(21). In this study, we usedHT_Cas9_Train (tables S1 and S2), a dataset
of SpCas9 activities at 12,832 integrated target sequences, which do not
Fig. 1. Correlations between indel frequencies at endogenous and integrated sites and effect of chromatin accessibility on indel frequencies. (A) Correlation
between indel frequencies at 120 endogenous and corresponding integrated target sequences. The Spearman correlation coefficients (R) and squared Pearson cor-
relation coefficients (R2) are shown. (B) Effect of chromatin accessibility on the activities of SpCas9 (left) and AsCpf1 (right) at endogenous sites. Indel frequencies at
endogenous sites were evaluated after transfection of plasmids encoding SpCas9 or AsCpf1 and guide RNAs. Indel frequencies at the target sites were compared after
being divided into two groups, DHS sites and other sites (non-DHS). The numbers of analyzed target sites are as follows: SpCas9, n = 50 for DHS target sites and n = 74
for non-DHS target sites; AsCpf1, n = 20 for DHS target sites and n = 35 for non-DHS target sites. The HEK-plasmid dataset from (20) was used for drawing this graph.
Error bars represent SEM. Statistical significances determined by Student’s t test are shown. (C and D) Correlation between indel frequencies at endogenous and
corresponding integrated target sequences at 50 DHS sites (C) and 70 non-DHS sites (D). The Spearman correlation coefficients (R) and squared Pearson correlation
coefficients (R2) are shown.
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include target sequences used to generate Endo_Cas9 (tables S2 and S3).
By training on HT_Cas9_Train using an end-to-end deep learning
framework (fig. S2) (32–34), which is a modification of what we previ-
ously used to generate DeepCpf1, we developed DeepSpCas9, a deep
Kim et al., Sci. Adv. 2019;5 : eaax9249 6 November 2019
learning–based regression model that predicts SpCas9 activity based
on target sequence composition. As a base model architecture, we used
a convolutional neural network (CNN) comprising one convolutional
layer and three fully connected layers. As the input sequence, we used
Fig. 2. Evaluation of machine learning–based computational models predicting Cas9 activities. (A) Cross-validation of DeepSpCas9 models trained on datasets of
varying sizes. Each dot represents the Spearman correlation coefficient between the measured indel frequency and the predicted activity from 10-fold cross-validation
(total n = 10 correlation coefficients). (B) Cross-validation of SpCas9 activity prediction models based on previously reported machine learning–based approaches. Each dot
represents the Spearman correlation coefficient between the measured indel frequency and the predicted activity from 10-fold cross-validation (total n = 10 correlation
coefficients). Statistical significances between the best, next-best, and third-best models are shown (Steiger’s test). In (A) and (B), the top, middle, and bottom lines in
the boxes represent the 25th, 50th, and 75th percentiles, respectively. Whiskers indicate the minimum and maximum values. The confidence intervals are described in
table S6. RT, regression trees. (C) Performance comparison of DeepSpCas9 with other prediction models using dataset Endo_Cas9 (n = 124 independent target sites) and two
published datasets (n = 4207 and 2060 independent target sites for datasets Hart 2015 and Xu 2015, respectively) as the test datasets. Error bars represent 95% confidence
intervals, which are described in detail in table S6. For clarity, results from statistical testing are shown only for DeepSpCas9 versus deep learning with an equal-sized filter,
DeepSpCas9 versus the best conventional machine learning–based model, and deep learning with an equal-sized filter versus the best conventional machine learning–based
model (left to right: *P = 1.4 × 10−2, DeepSpCas9 versus deep learning with an equal-sized filter; *P = 1.1 × 10−2, DeepSpCas9 versus SVM; *P = 4.6 × 10−2, deep learning with an
equal-sized filter versus SVM; Steiger’s test). ns, not significant. (D) Performance comparison of DeepSpCas9 and DeepSpCas9-CA (chromatin accessibility). The DeepSpCas9-CA
model was developed by fine-tuning the DeepSpCas9model using the Endo-1A dataset. DeepSpCas9 (left) and DeepSpCas9-CA (right) models were evaluated with the Endo-1B
dataset. The Spearman correlation coefficients (R) are shown. (E) Results from 10 iterations of fine-tuning and evaluation. Each dot represents the Spearman correlation coefficient
between the measured indel frequency and the predicted activity. A total of 10 (= 2 × 5) rounds of fine-tuning and subsequent testing results are shown.
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30–nucleotide (nt) sequences, which include 4–base pair (bp) left neighbor,
20-bp protospacer, 3-bp protospacer adjacent motif (PAM), and 3-bp
right neighbor sequences. The input sequences were converted into a
four-dimensional binary matrix by one-hot encoding. Given that
multiple filter sizes often improve the performance of CNNs (33), we
used a total of 210 multiple sized filters (100 3-nt filters, 70 5-nt filters,
and 40 7-nt filters) instead of the equal-sized filters that we previous-
ly used (fig. S2) (21). We conducted 10-fold cross-validation with
HT_Cas9_Train to evaluate the generalization performance of model
selection and training. We tested a total of 324 different combinations
of model hyperparameters (table S5) and selected as the final combina-
tion that led to the highest validation score calculated using Spearman
correlation coefficients between the experimentally measured and pre-
dicted activity levels. As the size of the training dataset for the cross-
validation increased, the average Spearman correlation coefficients
between experimentally obtained indel frequencies and predicted
scores from DeepSpCas9 steadily increased up to 0.77 (Fig. 2A).
When compared to conventional machine learning algorithms such
as support vector machine (SVM), L1-regularized linear regression,
L2-regularized linear regression, L1L2-regularized linear regression,
AdaBoost, random forest, and gradient-boosted regression trees, which
include those that previously showed competent performance for
SpCas9 activity prediction (7, 18), the Spearman correlations of
DeepSpCas9 in the cross-validation were significantly higher than
those of these conventional machine learning algorithms (versus
the second best model, SVM: P = 7.2 × 10−3, 7.5 × 10−4, 1.9 × 10−3,
1.1 × 10−4, 7.0 × 10−2, 5.9 × 10−6, 1.5 × 10−2, 2.0 × 10−4, 1.6 × 10−3, and
3.9 × 10−2 for each fold; versus the third best model, L2 regression: P =
2.5 × 10−7, 8.3 × 10−10, 1.9 × 10−8, 2.5 × 10−9, 1.9 × 10−3, 2.1 × 10−11,
2.0 × 10−7, 1.4 × 10−13, 8.8 × 10−10, and 2.0 × 10−4 for each fold) and
Kim et al., Sci. Adv. 2019;5 : eaax9249 6 November 2019
were similar to that of the equal-sized filter-based deep learningmodel
(P = 4.2 × 10−2, 2.9 × 10−1, 9.6 × 10−1, 9.7 × 10−1, 6.1 × 10−1, 9.0 × 10−1,
5.7 × 10−1, 2.9 × 10−1, 4.1 × 10−1, and 5.1 × 10−1 for each fold) (Fig. 2B).
Furthermore, when these algorithms were examined using the test da-
taset Endo_Cas9 (derived using target sequences that were never in-
cluded in the training dataset HT_Cas9_Train) and two previously
published datasets of Cas9 activities at endogenous sites [Hart 2015
(35) and Xu 2015 (16)], the Spearman correlation of DeepSpCas9 was
also higher than those of the conventional machine learning algorithms
and that of the equal-sized filter-based deep learning model (Fig. 2C),
indicating that DeepSpCas9 exhibited the best performance among all
of the models.

Considering chromatin accessibility information barely
improves SpCas9 activity prediction
Wepreviously improved the prediction ofCpf1 activities at endogenous
target sites by considering chromatin accessibility (21). To determine
whether such a consideration would also improve SpCas9 activity
prediction, we first divided the Endo_Cas9 dataset into paired sub-
sets (table S3; detailed information is available in Materials and
Methods). Then, we fine-tuned DeepSpCas9 using a data subset such
as Endo_Cas9_1A and binary chromatin accessibility information
from the Encyclopedia of DNA Elements (ENCODE) (36), leading
to the development of a fine-tuned model predicting SpCas9 activity
based on both target sequence information and chromatin accessibility.
When evaluated with the other data subset, Endo_Cas9_1B, as the test
dataset, the fine-tuned model showed performance comparable to that
of DeepSpCas9 (Fig. 2D).We next repeated this fine-tuning and sub-
sequent testing after exchanging the training and test datasets: We
used Endo_Cas9_1B as the training dataset for fine-tuning and
Fig. 3. Comparison of generalization performances of computational models predicting Cas9 activities. The heat map shows Spearman correlation coefficients
determined from DeepSpCas9 and previously reported models, which are arranged horizontally. The names of the vertically placed test datasets include information
about the cell line or species used. Other related parameters, such as the guide RNA expression method [U6 promoter–driven (U6) versus in vitro transcribed (IVT)], the
Cas9 activity analysis method [phenotypic change (phenotype) versus indel], and the number of analyzed sites, are also shown. Each gray box indicates the correlation
of a model tested against a test dataset that includes its own training dataset. In the evaluation against each test dataset, the statistical significance between the two
best models is indicated for the best model (from the top: ****P = 5.3 × 10−9, ****P = 1.8 × 10−10, ****P = 3.4 × 10−8, ****P = 1.1 × 10−13, ****P = 2.9 × 10−11, ****P = 3.9 ×
10−8, ***P = 2.5 × 10−4, *P = 3.7 × 10−2, and *P = 3.9 × 10−2; Steiger’s test).
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Endo_Cas9_1A as the test dataset. We also conducted these analyses
using the other four pairs of datasets. This total of 10 (= 2 × 5) rounds
of fine-tuning and subsequent testing revealed that the Spearman
correlations of these fine-tuned models are comparable to those of
DeepSpCas9 (Fig. 2E), suggesting that fine-tuning with chromatin
accessibility information barely improves the accuracy of DeepSpCas9
in predicting indel frequencies at endogenous sites. This result is in
line with the finding that SpCas9 activity is only slightly affected by
chromatin accessibility (Fig. 1B) and in strong contrast to DeepCpf1,
which showedmarkedly improved performance when chromatin ac-
cessibility information was considered (21).

DeepSpCas9 shows high generalization performance
To assess its generalization performance, we next evaluated
DeepSpCas9 using other sufficiently large published datasets (number
of target sequences, >100), derived from different studies from
independent laboratories (seven datasets generated using U6
promoter–driven sgRNAs and three datasets generated using in vitro
transcribed sgRNAs) (7, 10, 14, 16, 18, 35, 37–39), as test data and com-
pared the results with those of other SpCas9 activity–predicting
programs (7, 10, 13–16, 18, 39). For a fair comparison of generalization
performances, we excluded correlations of models tested against their
own training datasets (20). We found that the Spearman correlations of
DeepSpCas9were the highest among those of nine previously published
models in all seven tests against datasets generated using U6 promoter–
driven sgRNAs and that statistical significance was observed for five of
the seven tests when compared with the second best models (Fig. 3),
suggesting thatDeepSpCas9 has the highest generalization performance
compared to any of the other computational models predicting SpCas9
activity. DeepCRISPR (13), a recently reported deep learning computa-
tional model trained using datasets of phenotypic changes of cells
containing Cas9-induced gene edits, showed a lower generalization
performance as compared to Doench 2016 (rule set 2 or sgRNA de-
signer), which was developed before DeepCRISPR. When tested
against the three datasets generated using in vitro transcribed
sgRNA, the Spearman correlations of DeepSpCas9 were the highest
together with those of CRISPRscan, which was generated for the pre-
diction of in vitro transcribed sgRNA activities. Neither Doench
2016 (7) nor CRISPRscan (10) showed the highest Spearman correla-
tions for datasets of both U6 promoter–driven and in vitro transcribed
sgRNAs. Together, these data suggest that the generalization per-
formance of DeepSpCas9 is high.

We provide a web tool that enables accurate prediction of SpCas9
activity by DeepSpCas9 at http://deepcrispr.info/DeepSpCas9 and
provide code for incorporation of DeepSpCas9 into existing tools
(Supplementary Code). Given thatDeepSpCas9 has high generalization
performance, we expect that it will greatly facilitate genome editing
using SpCas9.
MATERIALS AND METHODS
Oligonucleotide library design
A pool of 17,840 oligonucleotides was array-synthesized by and pur-
chased from Twist Bioscience (San Francisco, CA). We designed
each oligonucleotide to contain a 20-nt guide sequence for the
sgRNA, a BsmBI restriction site, a 20-nt barcode sequence (barcode 1),
a second BsmBI site, a 15-nt barcode sequence (barcode 2), and the
corresponding 30-nt target sequence including a PAM (fig. S1A). Bar-
code 1 was inserted between the two BsmBI sites to reduce template
Kim et al., Sci. Adv. 2019;5 : eaax9249 6 November 2019
switching during PCR amplification of the oligonucleotide library
(29). Barcode 2, placed upstreamof the target sequence, was used to iden-
tify each guide RNA and target sequence pair after deep sequencing.

For the target sequences for the oligonucleotide pool, we extracted
sequences from the human genome and generated random synthetic
sequences without any information about the activity of the correspond-
ing sgRNAs. We first randomly extracted 9824 target sequences from
the GeCKOv1 library (40), excluding those with BsmBI sites in their
sequences. From 1841 target sequences from the coding sequences of
three human and six mouse cell surface marker–encoding genes (14)
and 2549 sequences fromgenes related to resistance against vemurafenib,
selumetinib, and 6-thioguanine (7), we obtained 1804 and 2484 target
sequences, respectively, after excluding sequences containing BsmBI
sites. For training the algorithm with guide sequences with extreme
GC content, we randomly generated synthetic input sequences con-
taining anNGGPAMwith a total length of 30 nt using in-house Python
scripts (Supplementary Code) and subsequently selected 998 input se-
quences containing guide sequences with extremely low or high GC
content (≤20% or ≥80%). In addition, 546 endogenous target se-
quences from human coding and noncoding genes of interest designed
for other studies in our laboratory were included; for this group, five
unique barcodes per target sequencewere used to yield fivefold coverage
for each target site. Together, the set of 17,840 oligonucleotides is com-
posed of 9824 + (1804 + 2484) + 998 + (546 × 5) oligonucleotides.

Plasmid library preparation
Preparation of the plasmid library containing guide RNA and cor-
responding target sequence pairs involved a two-step cloning process:
Gibson assembly followed by restriction enzyme–induced cutting and
ligation (fig. S1). Thismultistepprocedure effectively preventeduncoupling
between guide RNA and target sequence pairs during PCR amplification
of the oligonucleotide pool (29). The multistep cloning protocol was
adapted and modified from a previously described process (31).
Step I: Generation of the initial plasmid library containing
guide and target sequence pairs
The Lenti-gRNA-Puro plasmid (#84752, Addgene) (22) was linearized
with Bsm BI enzyme [New England Biolabs (NEB), Ipswich, MA] at
55°C for 6 hours. After digestion, the vector was treated with 2 ml of
calf intestinal alkaline phosphatase (NEB) at 37°C for 30min and then
gel-purified using a MEGAquick-spin Total Fragment DNA Purifica-
tion kit (iNtRON Biotechnology, Seongnam, South Korea).

The oligonucleotide pool was PCR-amplified using Phusion
Polymerase (NEB); the primers are described in table S4. The amplicons
were gel-purified on a 4% agarose gel and assembled with the cut Lenti-
gRNA-Puro plasmid described above using a NEBuilder HiFi DNA
Assembly kit (NEB). After incubation at 50°C for 1 hour, the assembled
products were purified using aMEGAquick-spin Total Fragment DNA
Purification kit (iNtRONBiotechnology) and transformed into electro-
competent cells (Lucigen, Middleton, WI) with a MicroPulser electro-
porator (Bio-Rad, Hercules, CA). Transformed cells were seeded onto
Luria-Bertani (LB) agar plates supplemented with carbenicillin (50 mg/ml)
and incubated at 37°C for 16 hours. A small fraction (20 ml) of the culture
was separately spread to calculate the library coverage; the resulting
library coverage ranged from 200× to 220× the initial number of oligo-
nucleotides (i.e., 17,840). Total colonies were harvested, and plasmids
were extracted using a PlasmidMaxiprep kit (Qiagen,Hilden, Germany).
Step II: Insertion of the sgRNA scaffold
The initial plasmid library generated in Step I was digested with Bsm
BI (NEB) for 9 hours and treated with 2 ml of calf intestinal alkaline
5 of 9
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phosphatase (NEB) at 37°C for 30 min. The digested product was
size-selected via 0.8% agarose gel electrophoresis and purified using
a MEGAquick-spin Total Fragment DNA Purification kit (iNtRON
Biotechnology).

Separately, a synthesized insert fragment containing the sgRNA
scaffold was cloned into a TOPO vector (T-blunt vector, SolGent,
Daejeon, South Korea). The insert fragment sequence is as follows
(the sgRNA scaffold with a poly-T sequence is in bold, and the BsmBI
cut sites are underlined): CGTCTCTGTTTTAGAGCTAGAAATAG-
CAAGTTAAAATAAGGCTAGTCCGTTATCAACTT-
GAAAAAGTGGCACCGAGTCGGTGCTTTTTTGGGAGACG.

Subsequently, the TOPO vector containing the insert fragment
was digested with BsmBI (NEB), and the 83-nt insert fragment
was gel-purified on a 4% agarose gel. A ligation reaction was per-
formed using 40 ng of this purified insert and 100 ng of the cut initial
plasmid library vector described above (fig. S1). Following an overnight
incubation at 16°C, the reaction product was heat-inactivated at 65°C
for 10min and column-purified. The purified product was transformed
into electrocompetent cells (Lucigen) with a MicroPulser electro-
porator (Bio-Rad). Transformed cells were seeded onto LB agar
plates supplemented with carbenicillin (50 mg/ml) and incubated for
16 hours at 37°C. A small fraction of the culture was separately
spread on an LB plate with carbenicillin (50 mg/ml) to calculate the
library coverage. Accordingly, we obtained a final plasmid library
coverage of 25× to 30× the initial number of oligonucleotides (i.e.,
17,840). Colonies were harvested and plasmids were extracted using
a Plasmid Maxiprep kit (Qiagen).

Lentivirus production
HEK293T cells (American Type Culture Collection) were maintained
in Dulbecco’s modified Eagle’s medium (DMEM) supplemented with
10% fetal bovine serum (FBS; Gibco, Waltham MA). For lentivirus
production, transfer plasmids containing the gene of interest, psPAX2,
and pMD2.G were mixed at a weight ratio of 4:3:1 to yield a total of
20 mg of the plasmid mixture, which was then delivered to 80 to 90%
confluent HEK293T cells using Lipofectamine 2000 (Invitrogen,
Carlsbad, CA). At 12 hours after transfection, cells were refreshed
with 10 ml of growth medium. The supernatant containing the virus
was collected at 36 hours after the initial transfection, filtered
through a Millex-HV 0.45-mm low protein–binding membrane
(Millipore, Darmstadt, Germany), divided into aliquots, and frozen
at −80°C until use. To determine the virus titer, viral aliquots were
serially diluted and transduced intoHEK293T cells in the presence of
polybrene (8 mg/ml). The untransduced cells and serially diluted
virus-treated cells were cultured in the presence of puromycin (2 mg/ml)
or blasticidin S (20 mg/ml) (InvivoGen). When almost all of the un-
transduced cells had died, the number of surviving cells in the virus-
treated population was counted to estimate the viral titer as previously
described (40).

Cell library generation
HEK293T cells (9.0 × 106) were seeded into a 150-mm tissue culture
dish and incubated overnight. The cells were transduced with the
lentiviral library at a multiplicity of infection (MOI) of 0.3 in the
presence of polybrene (8 mg/ml) and incubated overnight (15 to
18 hours). To remove untransduced cells, the cells were cultured
in the presence of puromycin (2 mg/ml). To preserve its diversity,
the cell library was maintained at a quantity of at least 9.0 × 106 cells
throughout the study.
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Cas9 delivery into the cell library
A total of 1.8 × 107 cells (two 150-mmculture dishes with 9.0 × 106 cells
per dish) from the cell library were transduced with SpCas9-encoding
lentiviral vectors at anMOIof 5 inDMEMsupplementedwith 10%FBS
and polybrene (8 mg/ml). After overnight incubation (15 to 18 hours),
the culture medium was replaced with DMEM supplemented with
10% FBS and blasticidin S (20 mg/ml) (InvivoGen). The cultures were
harvested at 2.9 days after transduction.

Measurement of indel frequencies at endogenous sites
A total of 124 target sites were selected from the 546 endogenous
targets, which are described above in the oligonucleotide library
design section, by stratified random sampling (50 targets for DHS
regions and 74 targets for non-DHS regions). HEK293T cells were
transfected with a mixture of 100 ng of plasmid encoding sgRNA
(pRG2; #104174, Addgene) and 100 ng of plasmid encoding SpCas9
(pRGEN-Cas9-CMV/T7-Puro-RFP; purchased from ToolGen, Seoul,
Korea) at a density of 1.0 × 105 cells per well in a 96-well plate using
TransIT-X2 (Mirus Bio, Madison, WI) according to the manufac-
turer’s instructions. Following an overnight incubation, the culture
medium was replaced with DMEM containing puromycin (2 mg/ml).
Cells were harvested and subjected to deep sequencing 3.7 days after
the transfection. The average value of indel frequencies from the trip-
licate studies was used as the representative indel frequency for each
target site.

Deep sequencing
Genomic DNAwas extracted from cell pellets using aWizard Genomic
DNA Purification kit (Promega, Fitchburg, WI). For the high-
throughput experiment, integrated target sequences were PCR-
amplified using 2X Taq PCR Smart mix (SolGent). A total of 576 mg
of genomic DNAwas used for the first PCR to achieve over 3000× cov-
erage over the library (assuming 10 mg of genomic DNA for 106 cells)
(22). We performed 288 independent 50-ml PCRs with an initial
genomic DNA concentration of 2 mg per reaction. The PCR products
were then combined into a single pool and purified with aMEGAquick-
spin Total Fragment DNAPurification kit (iNtRONBiotechnology);
20 ng of purified product was subsequently PCR-amplified using
primers containing both Illumina adaptor and barcode sequences
(table S4). For the cells transfected with SpCas9- and sgRNA-encoding
plasmids, we carried out the independent first PCRs in a 20-ml re-
action volume containing 40 ng of initial genomic DNA template
per sample. Then, a second PCR to attach the Illumina adaptor and
barcode sequences was conducted in a 20-ml reaction volume using
0.2 ml of the unpurified product from the first PCR. The resulting
amplicons were gel-purified and analyzed using HiSeq or MiniSeq
(Illumina, San Diego, CA). The primers used for PCRs are shown in
table S4.

Analysis of indel frequencies
Deep sequencing data were analyzed using in-house Python scripts
(SupplementaryCode),whichweremodified frompreviously used code
(22). Each guide RNAand target sequence pair were identified using the
unique 15-nt barcode sequence located upstreamof the target sequence.
Insertions or deletions located around the expected cleavage site (i.e., the
8-nt region centered on themiddle of the cleavage site) were considered
to be Cas9-induced mutations. To exclude the background indel fre-
quencies originating from array synthesis and PCR amplification pro-
cedures, we normalized the observed indel frequency by subtracting the
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background indel frequency determined in the absence of Cas9 delivery
according to the function

Indel Frequency ð%Þ
¼ Indel read� ðTotal read� background indel frequencyÞ

Total read� ðTotal read� background indel frequencyÞ � 100

To increase the accuracy of the analysis, deep sequencing datawere
filtered; target sequences with deep sequencing read counts below 200
and background indel frequencies above 8% were excluded as simi-
larly performed previously (21).

Calculation of chromatin accessibility
DNase-sequencing (DNase-seq) narrow peak data from ENCODE
(36) were used to calculate chromatin accessibility as previously de-
scribed (21). For each target site, 23 bases of the PAM plus protospacer
sequence were aligned to the hg19 human reference genome using
bowtie (41). Only the target sites that overlapped with DNase-seq nar-
row peaks were considered as DNase I hypersensitive target sites.

Generation of paired subsets of the Endo_Cas9 dataset
We divided the Endo_Cas9 dataset into paired subsets by stratified
random sampling from strata of DHS and non-DHS sites so that a
similar ratio of DHS/non-DHS sites was assigned to each subset. We
named the resulting data subset pairs Endo_Cas9_1A and Endo_
Cas9_1B.We then repeated this stratified random sampling to generate
four more pairs of data subsets, designated Endo_Cas9_2A and Endo_
Cas9_2B, etc. (table S3).

Convolutional neural network
CNNs (32) are one of the most robust deep learning architectures
applicable to locally correlated data and have been successfully im-
plemented in DNA sequence–related research such as the prediction
of CRISPR-Cpf1 guide RNA activity (21), transcription factor binding
affinity (42), and DNA sequence accessibility (43). CNNs consist of
three types of layers: a convolutional layer, a pooling layer, and a fully
connected layer. In the convolutional layer, various filters are applied
to the data, which allows the network to obtain features from local
regions rather than the whole. In the pooling layer, several operations
(max, average, etc.) are used to effectively decrease the dimensions and
“pool out” useful features from local features extracted from the previ-
ous convolutional layer. Convolutional layers and pooling layers are
usually interchanged at the initial steps of the CNN, and fully connected
layers are constructed in the latter phases. The fully connected layer
combines the pooled features byweighted sumand a nonlinear function
to get the final function as the solution. Compared to simple multilayer
perceptron models, CNNs exploit strong heuristics for locally related
data. This characteristic has resulted in CNN-based models outper-
forming the majority of the previously used models in various fields
of research.

Multiple filter sizes
In CNNs, for each layer, the filter size should be experimentally
determined during the model selection phase, as the optimal filter size
for the best performance is unknown. In GoogLeNet (33), an inception
module was used to overcome this manual process. In an inception
module, various sizes of filters are used in one layer as shown in fig.
S2. Along with several other techniques, GoogLeNet demonstrated a
Kim et al., Sci. Adv. 2019;5 : eaax9249 6 November 2019
significant gain in performance compared to the original CNN.Accord-
ingly, we adopted the multiple filter size technique from the inception
module as our basic module for DeepSpCas9.

Development of DeepSpCas9
DeepSpCas9 is a deep learning–based computational model for SpCas9
activity prediction. The training data consisted of the high-throughput
dataset (HT_Cas9_Train; table S1) and is used for 10-fold cross-validation
during the model selection phase. Thirty-nucleotide-long input se-
quences, which include 4-bp left neighbor, 20-bp protospacer, 3-bp
PAM, and 3-bp right neighbor sequences, were converted into a four-
dimensional binary matrix by one-hot encoding (fig. S2). DeepSpCas9
has one convolutional layer and one pooling layer at the front, as well
as three fully connected layers with a dropout rate of 0.3 in each layer.
The adopted convolutional layer includes an inception module with
a total of 210 filters (100, 70, and 40 filters at 3, 5, and 7 nt in length,
respectively). The pooling layer and three fully connected layers use
ReLU activation functions. We tested a total of 324 different models
(details in table S5) and selected the model and training epoch that
produced the highest validation score calculated using Spearman
correlation coefficients between the experimentally measured and
predicted activity levels. After selecting the optimal hyperparameters,
we used the full training dataset with selected hyperparameters to train
the final model.

For the development of DeepSpCas9-CA (chromatin accessibility),
we fine-tuned DeepSpCas9 using a data subset generated by stratified
random sampling of the Endo dataset (e.g., Endo-1A) and binary chro-
matin accessibility information. We added a fully connected layer with
60 U that transformed the binary chromatin accessibility information
into a 60-dimensional vector, which enabled the integration of the
sequence feature vector and chromatin accessibility information
through element-wise multiplication. The regression output layer per-
forms a linear transformation of the outputs and calculates the predic-
tion scores for SpCas9 activity.We applied a dropout rate of 0.3, amean
squared error, as the objective function, and an Adam optimizer with a
learning rate of 10−3 in both layers. DeepSpCas9 and DeepSpCas9-CA
were implemented using TensorFlow (44).

Training of conventional machine learning–based models
We trained seven models based on conventional machine learning al-
gorithms, i.e., SVM, L1-regularized linear regression, L2-regularized
linear regression, L1L2-regularized linear regression, AdaBoost, ran-
dom forest, and gradient-boosted regression trees. All of the models
were implemented using scikit-learn (version 0.19.1) (45). A total of
627 features, which included position-independent and position-
dependent nucleotides and dinucleotides, melting temperature,
GC counts, and the minimum self-folding free energy, were extracted
as previously described (7, 21). We performed 10-fold cross-validation
for model selection among the regularization parameters and hyper-
parameter configurations, the number of which is comparable to the
number of hyperparameter configurations used for the development
of DeepSpCas9 (324). For L1-, L2-, and L1L2-regularized linear regres-
sion, over 250 points that were evenly spaced between 10−6 and 106 in
log space were searched to optimize the regularization parameter. For
SVM, we searched over 225 models from the following hyperparam-
eters: penalty parameter C and kernel parameter g, 15 points that were
evenly spaced between 10−3 and 103. For random forest, AdaBoost,
and gradient-boosted regression tree, we searched over 192 models
selected from the following hyperparameter configurations: the number
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of base estimators (chosen from [50, 100, 200, 400]), the maximum
depth of the individual regression estimators (chosen from [50, 100,
200, expanded until all leaves are pure]), the minimum number of
samples to split an internal node (chosen from [2, 4]), the minimum
number of samples to be at a leaf node (chosen from [1, 2]), and the
maximum number of features to consider when looking for the best
split (chosen from [all features, the square root of all features, the binary
logarithm of all features]).

Performance comparison of DeepSpCas9 with other models
We compared the prediction performance of DeepSpCas9 with those
of the conventional machine learning–based models trained on the
high-throughput dataset and other previously reported prediction
models (7, 10, 13–16, 18, 39). The performance of each prediction
modelwas evaluated by the Spearman correlation coefficients between
experimentally measured sgRNA activities and prediction scores from
eachmodel.We used the Endo dataset generated in this study and the
other 14 published datasets from other groups that were large enough
(number of target sequences, >100) (7, 10, 14, 16, 18, 35, 37–39)
collected by Haeussler et al. (20). In these test datasets, the target se-
quences included in the HT_Cas9_Train dataset were excluded. Fur-
thermore, for a fair comparison of generalization performances, we
excluded correlations of models tested against their own training
datasets (20).

Statistical significance
To compare the indel frequencies betweenDHS and non-DHS sites, we
used the two-tailed Student’s t test under the null hypothesis that the
indel frequencies of the two groups are the same (Fig. 1B). To compare
the Spearman correlation between prediction scores from two models
(Fig. 2, B to E), we used Steiger’s test, which is used for testing two
dependent correlation coefficients from exactly the same dataset. Statis-
tical significance was determined using PASW Statistics (version 18.0,
IBM) and Microsoft Excel (version 16.0, Microsoft Corporation).
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