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Abstract: The activating receptor natural killer group 2, member D (NKG2D) is involved in both innate and adap-
tive immunities, and functions as a “master switch” in determining the activation status of natural killer (NK) cells. 
NKG2D binds to a diverse family of ligand molecules, which are only expressed at low levels in normal cells but can 
be upregulated by a cellular stress response. The NKG2D-NKG2D ligand (NKG2DL) pathway has been considered 
to be promising target for immunotherapy because of the selective expression of “stress-induced ligands” on tumor 
cells and the strong NK cell activating potency of NKG2D. Diverse strategies that are aimed at targeting the NKG2D 
pathway for cancer therapy are based on a thorough understanding of this mechanism, as well as that of NKG2D-
mediated cancer immunity. In this review, we summarize the major findings regarding the antitumor immune re-
sponse mediated by the NKG2D receptor and its ligands, and discuss the potential clinical applications of targeting 
the NKG2D/NKG2DL pathway for immunotherapy in cancer patients.
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Introduction

Cancer immunotherapy is now considered a pil-
lar of cancer treatment, alongside surgery, che-
motherapy, and radiation; the primary focus of 
immunotherapy is the adaptive immune sys- 
tem [1]. However, growing evidence has shown 
that some cancers are preferentially attacked 
by natural killer (NK) cells. NK cells constitute  
a key part of the innate immune system that 
plays a vital role in antitumor and antiviral 
mechanisms [2]. In recent years, NK cells have 
shown promise for cancer immunotherapy ow- 
ing to their unique ability to identify and kill 
transformed cells without any prior sensitiza-
tion. Thus, research focusing on the antitumor 
immune effect of NK cells has become one of 
the hotspots of tumor immunology. 

NK cells possess a variety of activating and 
inhibitory receptors, and the functional out-
come of NK cell activity is strictly governed by 
the complex integration of signals between the 
activating and inhibitory receptors that bind  
to stress-regulated molecules (Figure 1A) [3]. 
Among the activating receptors, the natural 

killer group 2, member D (NKG2D) receptor - 
which is involved in both innate and adaptive 
immunities and functions as a “master switch” 
in determining the activation status of NK cells 
(Figure 1B) - was first identified in 1991 [4]. Its 
function was subsequently reported in 1999 
[5]. Studies have demonstrated that NKG2D is 
expressed not only in NK cells, but also in other 
immune cells, such as natural killer T (NKT) 
cells, activated or memory CD8+ TCR-αβ T cells, 
a small subset of CD4+ T cells, approximately 
25% of spleen TCR-γδ T cells, and activated 
murine macrophages [6]. NKG2D, via binding to 
NKG2D ligands (NKG2DLs), plays an important 
role in the immune response, including immune 
surveillance, antimicrobial immune response, 
and antitumor effects [7]. Moreover, it has been 
reported that cells from epithelial and lymphoid 
malignancies escape immune surveillance in 
NKG2D-deficient mice. Even though many stud-
ies on NKG2D and its ligands have been report-
ed, elucidation of their mechanisms still requir- 
es further investigation. In this review, we sum-
marize the major findings regarding the antitu-
mor immune response mediated by the NKG2D 
receptor and its ligands, and discuss the poten-
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tial clinical applications of targeting the NKG2D/
NKG2DL pathway for immunotherapy in cancer 
patients.

NKG2D and its ligands

NKG2D and its signaling pathway

In humans, NKG2D, also known as killer cell 
lectin-like receptor subfamily K, member 1 
(Klrk1), is encoded by the NK gene complex [8]. 
NKG2D is a type II lectin-like transmembrane 
activating receptor, implicated in the regulation 
of NK cell function [9]. The NKG2D molecule 
consists of two β-sheets, two α-helices, and 
four disulfide bonds. Figure 2 describes the  
signaling pathway mediated by the NKG2D/
NKG2DL axis. The activation of NKG2D differs 
from that of other activating receptors on NK 
cells because its intracellular segment has no 
signaling element [10]. Moreover, NKG2D has 
two distinct isoforms (NKG2D-S: the short iso-
form and NKG2D-L: the long isoform) that are 
produced as a result of alternative splicing. 
NKG2D-S and NKG2D-L interact with the adap-
tor, DNAX-activating protein of 10 kDa (DAP10) 
or KARAP (also known as adaptor DNAX-ac- 
tivating protein of 12 kDa, DAP12) signaling 
subunits [11]. The NKG2D-L homodimer inter-
acts with transmembrane DAP10 in the cell 
membrane for activating intracellular signaling, 
which recruits other molecules essential for the 
downstream signaling pathway and induces a 
series of cytotoxic responses when triggered 
[12, 13]. DAP10 is a membrane protein which 
contains a Tyr-X-X-Met (YXXM) motif in its cyto-
plasmic domain, and which recruits and acti-
vates the p85 subunit of phosphatidylinositol 
3-kinase (PI3K) by mediating the tyrosine phos-
phorylation of YXXM motifs by Src family tyro-
sine kinases when NKG2D is cross-linked with 
its ligands [12]. Activation of PI3K is required 

Figure 1. Activation of NK cells by the NKG2D/NKG2DL pathway. A. The balance of signals mediated by activation 
and inhibition of specific receptors determines the activation of NK cells. B. Tumor cells overexpress NKG2DLs that 
can be recognized by the NKG2D receptor, which function as a “master switch” and elicits NKG2D-mediated cyto-
toxicity. This figure was created using Adobe Illustrator.

Figure 2. NKG2D/NKG2DL interaction activates NK 
cells. The activating receptor NKG2D can directly 
bind to a diverse family of ligand molecules ex-
pressed on the surface of tumor cells. In NK cells, 
NKG2D interacts with either DAP10 (both human 
and mouse) or DAP12 (mouse only) and induces cy-
totoxicity and IFN-γ production. DAP10/YXXM-medi-
ated signaling regulates NK cell cytotoxicity via the 
Grb2 and PI3K pathway, while the NKG2D-DAP12 
complex is involved in IFN-γ production through the 
Syk and ZAP70 pathway. NKG2D, Natural killer group 
2, member D; NKG2DLs, NKG2D ligands. This figure 
was created using Adobe Illustrator.
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for the phosphorylation of the downstream 
anti-apoptotic kinase, Akt, and initiating the 
extracellular signal-regulated kinase (ERK) 1/2 
MAP kinase bypass, both of which are com- 
pulsory for mobilization of Ca2+ mediated by 
NKG2D, cell-mediated cytotoxicity, and the cell 
survival pathway. Moreover, asparagine in the 
YXXM motif can also recruit the transfer pro-
tein, growth factor receptor-bound protein 2 
(Grb2) to initiate MAP kinase bypass [10], there-
by activating NK cells. In T cell receptor signal-
ing, Grb2 seems to have the ability to recruit 
and activate the Ras-Sos pathway [8]. Recent 
studies have shown that NKG2D-S can interact 
with DAP10, as well as transiently associate 
with the immunoreceptor tyrosine-based acti-
vation motif (ITAM)-containing DAP12 [14] - de- 
pending on the activation status of the mouse 
cells - which then activates spleen tyrosine 
kinase (Syk) and zeta-chain-associated protein 
kinase 70 (ZAP70) [15, 16]. Unlike DAP10, whi- 
ch is involved in mediating cytotoxicity, DAP12 
is mainly involved in interferon-gamma (IFN-γ) 
production [17, 18]. However, human NKG2D 
cannot interact with DAP12 [19] because hu- 

mans only express the NKG2D-L isoform, while 
mice express both the NKG2D-L and NKG2D-S 
isoforms [20]. 

NKG2D ligands

Humans have two main types of ligands that 
bind to NKG2D [21-23], a family of class-I ch- 
ain-related proteins A and B (MICA and MICB) 
and a family of six cytomegaloviral unique long 
16 (UL16)-binding proteins (ULBP 1-6). In mice, 
five different retinoic acid early transcript 1 
(RAET1) isoforms (RAET1 α, β, γ, δ, and ε), three 
different histocompatibility H60 isoforms (H60 
a, b, and c), and one murine UL16-binding pro-
tein-like transcript 1 (MULT1) have been identi-
fied [24-26]. 

The structures of NKG2DLs in humans and 
mice are similar (Figure 3). The ligands can be 
classified into three different classes based on 
their structure. MICA and MICB are transmem-
brane proteins with three extracellular domains 
that are analogous to the α1-α3 domains of the 
major histocompatibility class Ia (MHC Ia) pro-

Figure 3. The structure of NKG2DLs. Humans have two main types of ligands for NKG2D (left panel): a family of 
class-I chain-related proteins A and B (MICA and MICB) and a family of six cytomegaloviral UL16-binding proteins 
(ULBP 1-6). Mouse NKG2DLs are mainly RAET1 isoforms, H60 families, and MULT1 (right panel). The structure of 
NKG2DLs in humans and mice is similar. The ligands can be classified into three general structures. MICA and MICB 
are transmembrane proteins with three extracellular domains analogous to the α1-α3 domains of MHC Ia proteins. 
The remaining human NKG2DLs and all mouse NKG2DLs contain two domains analogous to α1 and α2 of MHC 
Ia proteins but lack the α3-like domain. The structures (Protein Data Bank codes) of MICA-human NKG2D (1HYR), 
ULBP3-human NKG2D (1KCG), and (RAE-1β)-mouse NKG2D (4PP8) are shown.
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teins. Other human NKG2DLs and all mouse 
NKG2DLs contain two domains that are analo-
gous to the α1 and α2 domains of MHC Ia pro-
teins, but lack the α3-like domain [27]. ULBP-1, 
-2, -3, and -6 are glycosylphosphatidylinositol 
(GPI)-anchoring receptors, while ULBP-4 and -5 
have a transmembrane domain and a cytoplas-
mic tail [28]. Notably, stressed and malignant 
transformed cells have been found to express 
higher levels MICA and MICB on their surface 
than those of conventional MHC class I mole-
cule [8, 29, 30]. 

The dual function of NKG2D/NKG2DL in tu-
mor immunity

The significance of NKG2D/NKG2DL pathway 
regulation in controlling tumor progression and 
immune recognition has been demonstrated in 
numerous experimental animal models and 
clinical data [31]. These studies highlighted the 
controversy over the role of NKG2D and its 
ligands in tumor immunity and the potential sig-
nificance of the NKG2D/NKG2DL pathway in 
the treatment of cancer (Figure 4) [32].

NKG2D/NKG2DL-mediated immune surveil-
lance

The function of NKG2D differs between NK 
cells and other immune cells. Studies have de- 
monstrated that activating signals mediated  
by the NKG2D/NKG2DL pathway can override 
the signals induced by the inhibitory receptors, 
thereby allowing NKG2D to acts as a “master 
switch” for activating NK cells [33]. Thus, the 
NKG2D signaling pathway can mediate a direct 
killing effect in NK cells. Nevertheless, its effect 
is controversial in CD8+ T cells. Seminal work by 
Raulet [34] indicated that NKG2D functions as 
a costimulatory molecule in CD8+ T cells, there-
by resulting in enhanced CD8+ T cell function 
[30, 35]. 

NKG2D is a multifunctional receptor that can 
directly bind to a diverse family of ligand mole-
cules expressed on the surface of target cells 
without antigen presentation, thereby resulting 
in the activation or synergistic stimulation of 
immune effectors [36] and the subsequent 
release of preformed granules containing cyto-
lytic proteins such as perforin and granzymes 
that are mediate a killing effect in tumor cells 
[37]. Experimental evidence indicates that NK- 
G2D-mediated immune responses play a criti-
cal role in tumor surveillance, and that the 
NKG2D pathway can modulate tumorigenesis 
and tumor progression, which is particularly 
significant for inhibiting tumor cell metastasis.

The expression of NKG2DLs on the surface of 
tumor cells is induced by transcriptional upreg-
ulation due to cellular or genomic stress, and 
while it is usually expressed in most epithelial-
derived tumor cells, such as ovarian cancer, 
colon cancer, and leukemia, it is rarely dete- 
cted in healthy adult tissues [38, 39]. More- 
over, when cells are exposed to DNA-damaging 
agents, specific cytokines, or cell proliferation 
agents, the expression of these ligands incre- 
ases [40]. Increasing evidence has confirmed 
that the NKG2D/NKG2DL pathway is essential 
for the development of many malignancies. In 
healthy individuals, MICA/B expression has 
been detected in some normal tissues such as 
gastrointestinal epithelial cells, but the expres-
sion levels are low and in many cases rare. 
NKG2DLs are upregulated when cells undergo 
malignant transformation or when they are ex- 
posed to other forms of stress such as oxida-
tive stress and viral infection.

Figure 4. The dual functions of NKG2D/NKG2DL 
in tumor immunity. A. Induction of NKG2DLs on tu-
mor cells induces immune surveillance via binding 
to NKG2D receptors expressed on NK and T cells. 
B. Failure to kill tumor cells due to the shedding of 
NKG2DLs by metalloproteinases. TGF-β allows im-
mune surveillance escape by inhibiting T and NK cell 
function. NKG2D, Natural killer group 2, member D; 
sNKG2DLs, soluble NKG2D ligands. This figure was 
created using Adobe Illustrator.
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NKG2D/NKG2DL-mediated immune escape

NK cells also play an essential role in the 
escape of tumor cells from immune surveil-
lance via NKG2D/NKG2DLs. Pooled data from 
clinical trials show the association between 
NKG2D expression and cancer cells, as evi-
denced by the significantly higher expression  
of NKG2D in mononuclear cells in patients with 
early gastric cancer compared with that obser- 
ved in advanced gastric cancer [41]. Further, 
patients with malignant tumors exhibit a de- 
crease in the percentage of NKG2D-positive NK 
cells. Thus, decreased NKG2D expression in 
NK cells may be one of the critical mechanisms 
underlying NK cell dysfunction in cancer. The 
downregulation of NKG2D may be due to the 
production of soluble NKG2DLs by tumor cells 
that regulates not only expression of the NK- 
G2D receptor in immune cells, but also the 
amount of NKG2DLs in tumor cells. Soluble 
NKG2DLs, produced via proteolytic shedding 
from the surface of cancer cells by the activity 
of a disulfide isomerase (ERp5) and several 
proteases belonging to the a disintegrin and 
metalloprotease (ADAM) and matrix metallo-
proteinase (MMP) families, operate as immuno-
suppressive molecules that mediate malignant 
tumor cell evasion from the immune recogni-
tion pathway in advanced cancers [42, 43]. 
Research has demonstrated that high serum 
concentrations of soluble NKG2DLs [44, 45] 
may suppress tumor immunity and NK cell ac- 
tivity via downregulation of NKG2D expression 
or proteolytic shedding of MICA/B, thereby con-
tributing to an escape from the tumor immuno-
surveillance machinery [42, 46]. Previous stud-
ies have reported that high expression of solu-
ble NKG2DLs is correlated with the tumor node 
metastasis (TNM) stage in patients with breast 
cancer [47], and with poor clinical outcomes  
for multiple cancer types, including melanoma, 
neuroblastoma, prostate cancer, kidney can-
cer, multiple myeloma, and chronic lymphocytic 
leukemia [42, 48-52]. Moreover, accumulating 
data suggest that soluble ligands for NKG2D 
can limit the efficacy of the immune checkpoint 
blockade [53]. 

Zhang et al. [54] engineered transgenic adeno-
carcinomas in a mouse prostate model (TRA- 
MP) to investigate the response of soluble 
NKG2DLs to a murine CTLA-4-targeting anti-
body. Increased levels of soluble MIC were 
associated with poor efficacy with respect to 

antibody therapy and reduced survival of the- 
se animals. However, co-administration of an 
sMIC-neutralizing antibody along with the anti-
CTLA4 antibody could improve the clinical res- 
ponse and alleviate treatment-induced colitis 
in animals [54]. Accordingly, increased serum 
levels of soluble NKG2DLs may not only serve 
as novel indicators of solid cancers, but can 
also provide a potential evasion mechanism by 
which cancer cells escape from NKG2D-medi- 
ated immune cell attack. 

In addition to soluble NKG2DLs, cytokines and 
regulatory cells within the tumor microenviron-
ment participate in the NKG2D-mediated tu- 
mor escape mechanism. The proinflammatory 
cytokine, IFN-γ downregulates MICA and ULBP 
expression and impairs NKG2D-mediated cyto- 
lysis by NK cells in melanoma and glioma cells 
[55]. In addition to IFN-γ, the cytokine trans-
forming growth factor-β (TGF-β), an immuno-
suppressant secreted by tumors of different 
histotypes, aids the immune evasion by inhibit-
ing T and NK cell function. These results were 
also supported by the finding that the expres-
sion of NKG2DLs and NKG2D receptors in im- 
mune cells is downregulated by TGF-β treat-
ment [56]. Eisele et al. [57] found that TGF-β 
production is increased during tumor growth 
and malignant progression, and it selectively 
mediates the transcription of MICA, ULBP2, 
and ULBP4, while the mRNA and cell surface 
expression of MICB, ULBP1, and ULBP3 remain 
unaffected. The function of TGF-β not only in- 
volves disruption of the NKG2D/NKG2DL rec-
ognition system on NK cells, but also involves 
mediating NKG2DLs expression in CD8+ T cells 
[58, 59]. Therefore, cytokines are involved in 
the regulation of immune responses and play 
an important role in tumor immunotherapy.

Targeting NKG2D/NKG2DL for cancer immu-
notherapy

Tumor cells expressing high levels of NKG2DLs 
can be effectively eliminated by NK cells, but 
the NKG2DL levels decreased in late-stage tu- 
mors, and thus, the induced immune response 
is weak. Therefore, strategies that focus on en- 
hancing NKG2D expression in immune cells, 
increasing the expression of NKG2DLs in tu- 
mor cells, and eliminating soluble NKG2DLs 
could effectively activate the antitumor immu- 
ne response (Figure 5). 
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Targeting NKG2D expression

The therapeutic effects of NK-based immuno-
therapy can be achieved by upregulating NK- 
G2D expression in immune cells (Table 1). 
Thus, identifying and understanding the role of 
multiple transcription factors that regulate 
NKG2D expression on the cell surface through 
its ligands is of utmost importance. A variety of 
soluble common γ chain-related cytokines, 
such as IL-2, IL-12, IL-18, and IL-15 [60], have 
been reported to positively or negatively modu-
late the expression of NKG2D on the cell sur-
face, and have been widely used in antitumor 
treatments [16]. IL-2, a crucial cytokine in can-
cer therapy, enhances NK cell cytotoxicity by in- 
creasing NKG2D expression in CD16+ NK cells 
in patients with malignancies [61]. However, 
Anderson et al. [62] reported that in normal 
mice, high-dose rIL-2 therapy (600,000 IU) 
induced systemic side effects, such as vascu-
lar leak syndrome, fever, hypotension, and 
hepatocyte necrosis due to activation of the 
vascular endothelium. Though lowering the IL-2 
dose can ameliorate the side effects, but it also 

sure [65]. These data suggest that IL-15 may 
also have a therapeutic potential for the treat-
ment of solid tumors. 

Targeting NKG2D ligand expression

Other than therapies that target NKG2D expres-
sion, recent studies have indicated that post-
transcriptional mechanisms may also regulate 
surface expression of NKG2DL in tumor cells 
(Table 1). Many studies have identified several 
pathways that participate in the regulation of 
NKG2DLs. For example, methylselenol (CH3- 
SeH)-generating selenium compounds trigger- 
ed immune activation through the induction  
of MICA and MICB transcription, at both the 
transcriptional and post-transcriptional levels, 
and inhibited soluble ULBP2-mediated immu-
nosuppression [66]. The increased expression 
of NKG2DLs in response to environmental per-
turbation could be more readily be attributed to 
the activation of the epidermal growth factor 
receptor (EGFR) pathway. EGFR activation re- 
sulted in cellular re-localization of the AU-rich 
element RNA-binding (AUF1) protein, which typi-
cally destabilizes the NKG2DL mRNA by target-

Figure 5. Strategies for targeting the NKG2D/NKG2DL axis for cancer immu-
notherapy. A variety of cytokines, such as IL-2, -12, -15, and -18, can modu-
late the function of NK cells. Strategies, such as CH3SeH HDAC, microRNA, 
and targeting post-transcriptional mechanisms, also play an important role 
in NKG2D-mediated cytotoxicity by regulating the NKG2DL expression on 
the tumor cell. Chemotherapy, irradiation and ionizing radiation, and current 
cancer therapeutic modalities induce DNA damage and upregulate the ex-
pression of NKG2DLs in cancer via the ATM/ATR pathway. Small molecule 
inhibitors blocking MMP and ADAM were developed to decrease shedding of 
soluble NKG2DLs. NKG2DL, NKG2D ligands; MMP, matrix metalloprotease; 
ADAM, a disintegrin and metalloprotease; HDAC, histone deacetylase. This 
figure was created using Adobe Illustrator.

reduces the efficacy of immu-
notherapy. In contrast to the 
limited antitumor efficacy of 
IL-2 alone, a low dose of IL- 
2 (100 U/ml) combined with 
IL-18 (75 ng/ml) enhanced 
NKG2D expression without 
causing IL-2-related toxicity in 
cancer patients [63]. More- 
over, mutant forms of IL-2  
with reduced affinity for 
IL-2Rα can also minimize the 
many IL-2 related side effe- 
cts. A fusion protein compo- 
sed of an IL-2Rα-deficient IL-2 
and orthopoxvirus major his-
tocompatibility complex class 
I-like protein (OMCP) selec-
tively activated IL-2 signaling 
only in NKG2D-bearing cells, 
and decreased the growth 
and viability of both solid and 
liquid tumors [64]. Studies 
have shown that NKG2D ex- 
pression was increased and 
IFN-γ production was partially 
recovered by overnight treat-
ment with IL-15 - a cytokine 
with structural similarity to 
IL-2 - following tumor expo-
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ing AU-rich elements conserved within the 3’ 
end of most human NKG2D ligand genes [67]. 
The E2F family transcription factor-mediated 
pathway plays a vital role in regulating the cell 
cycle and may directly activate Raet1 genes in 
cancer cell lines and may be involved in the pro-
liferation of normal cells [68]. Oncogenes, such 
as BCR/ABL, are known to directly control MICA 
and ULPB expression [69, 70]. Moreover, the 
mRNA levels of NKG2DLs could be regulated by 
microRNA (miRNA) under specific circumstanc-
es via targeting their 3’-untranslated region (3’-
UTR). Previous studies have identified a group 
of endogenous cellular miRNA [71], such as 
miR-20a, miR-93, miR-106a, miR-373, and 
miR-520d, which could regulate MICA and 
MICB expression by targeting the 3’-UTR sites 
in MICA and MICB mRNA in human cancer cells 
as well as in normal cells, such as human fore-

skin fibroblasts and human umbilical vein endo-
thelial cells. Members of the miR-17-92 cluster, 
especially miR-20a, reportedly decrease the 
expression of MICA and MICB by targeting the 
3’-UTR region and downregulate ULBP2 expres-
sion via the MAPK/ERK pathway in ovarian 
tumors, glioma, and normal breast cell lines 
[72-75]. MicroRNA-34a (miR-34a) reportedly 
acts as a tumor suppressor in multiple tumors 
[76]; however, the role of miR-34a in the regula-
tion of NKG2DLs expression is controversial. 
miR-34a could induce MICB expression by 
upregulating ataxia telangiectasia and Rad3-
related (ATR) protein kinase in hepatocytes and 
hepatocellular carcinoma (HCC) cells that have 
low E2F1 levels, while on the other hand, it 
could also decrease MICB expression via down-
regulating the transcription factor E2F1 in HCC 
cells [77, 78]. Taken together, further studies 

Table 1. Strategies targeting the NKG2D/NKG2DL pathway for cancer immunotherapy
Targeting Agent Function NK cell functions Ref
NKG2D expression

Cytokines (IL-2, -18, and -15) ↑ NKG2D receptor ↑ Cytotoxicity [61-64]
NKG2D ligands

CH3SeH ↑ MICA, MICB
↑ ULBP2 mRNA

↑ Cytotoxicity [66]

EGFR activation ↑ MICA, ULBP2 ↑ Cytotoxicity [67]
miR-20a ↓ MICA, MICB ↓ Cytotoxicity [72-75]
miR-34a both induce and reduce MICB ↑ IFN-γ [77, 78]
HDAC inhibitor Entinostat ↑ MICA, MICB

↑ NKG2D receptor
↑ Cytotoxicity [80]

Romidepsin ↑ MICA, MICB ↑ Cytotoxicity [81, 82]
TMZ or IR ↑ MICA, MICB, ULBP2, RAE-1, MULT-1 n.d. [83]
Cisplatin ↑ MICA, MICB ↑ Cytotoxicity [84]
MG132 ↑ MICB ↑ Cytotoxicity [85]
Bortezomib and ionizing radiation ↑ MICB, ULBP1 ↑ Cytotoxicity [86]
Hp ↑ MICB, ULBP1, ULBP2, ULBP3 ↑ Cytotoxicity [87]
HPPH ↑ MICA ↑ Cytotoxicity [88]

soluble NKG2D ligands
MMPI-IV + IL-15 ↑ MICA, MICB, ULBP2, ULBP3

↓ sMICA
↑ Cytotoxicity [94]

MMP14 shRNA ↓ sMICA ↑ Cytotoxicity [95]
MMP2 shRNA ↓ sMICA n.d. [52]
Blocking ADAM10 and ADAM17 ↑ ULBP2

↓ sULPB2
↑ IFN-γ [98, 99]

mAb 7C6 ↑ MICA, MICB
↓ sMICA

↑ Cytotoxicity [101]

↑ increase; ↓ decrease; CH3SeH, metabolite methylselenol; TMZ, Temozolomide; IR, irradiation; MMP, matrix metalloprotease; 
HDAC, histone deacetylase; MMPI-IV, MMP-2/MMP-9 inhibitor IV; Hp, hematoporphyrin; HPPH, 2-[1-hexyloxyethyl]-2-devinyl 
pyropheophor-bide-a; ADAM, a disintegrin and metalloprotease; mAb 7C6, monoclonal antibodies (mAbs) that bind to the a3 
domain; n.d., not done.
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on the post-transcriptional regulation mecha-
nisms of NKG2DL expression might provide 
new insights into the development of novel can-
cer treatments.

Considering the evidence that NKG2DLs ex- 
pression could be stress-induced, drugs that 
act as DNA damaging agents, proteasome in- 
hibitors, or histone deacetylase (HDAC) inhi- 
bitors (HDACIs) could be used as antitumor 
agents.

In recent years, at least 18 HDACs have been 
identified with different functions. Several HD- 
ACs are overexpressed in tumor cells [79]. HD- 
ACIs are therefore considered as promising 
anticancer drugs owing to their ability to regu-
late NKG2DL expression in tumor cells. Zhu et 
al. [80] found that entinostat, a selective HD- 
ACI, can not only enhance the expression of 
NKG2DLs MICA and MICB in human cancer 
cells, but can also simultaneously increase the 
expression of the activating receptor, NKG2D in 
human NK cells, indicating the potential of enti-
nostat to improve the efficacy of NK cell activity 
against solid tumors such as carcinomas and 
osteosarcomas. Romidepsin, a cyclic peptide 
HDACI, reportedly enhanced NK cell cytotoxici-
ty in vitro and in vivo, and significantly increased 
MICA/B expression in acute lymphoblastic leu-
kemia and non-Hodgkin lymphoma cells [81, 
82]. However, these HDACIs did not increase 
the expression of NKG2DLs in mononuclear 
cells from healthy volunteers, thereby indicat-
ing the specificity of HDACI-mediated repres-
sion of NKG2DL expression in tumor cells. 

Mounting evidence has shown that chemoth- 
erapy and irradiation (IR) can affect NKG2DL 
expression. Temozolomide (TMZ), an alkylating 
agent that induces DNA damage, reportedly 
induced the expression of NKG2DLs in vitro 
and in vivo in a variety of murine and human 
glioblastoma models [83]. Moreover, patients 
treated with TMZ and IR had increased levels of 
NKG2DLs [83]. Studies show that cisplatin-
based adjuvant chemotherapy might enhance 
NK cell-mediated cytotoxicity through upregu-
lating the expression of MICA and MICB in  
non-small cell lung cancer (NSCLC) cells via  
the ataxia-telangiectasia-mutated (ATM)- and 
Rad3-associated protein kinase (ATR) path-
ways [84]. Additionally, MG132 [85], a protea-
some inhibitor, can upregulate the expression 
of MICB, cause DNA damage, and activate key 

molecules in the DNA damage response path-
way. Combined treatment with bortezomib (a 
potent proteasome inhibitor used as the first-
line treatment for multiple myeloma) and ioniz-
ing radiotherapy could upregulate the expres-
sion levels of NKG2DLs, increase the sensitivity 
of NK92 cells to myeloma cells, and enhance 
the NK cell-mediated anti-tumor immune res- 
ponse, compared with bortezomib alone [86].

Photodynamic therapy (PDT) has been appro- 
ved by the Food and Drug Administration (FDA) 
as a clinical anticancer modality for the treat-
ment of various types of malignancies. It is sug-
gested that NK cells can be activated through 
PDT-mediated immune responses. In addition, 
mRNA levels of the ULBP1 and ULBP2 in the 
SNU-1 human gastric tumor cell line, and the 
MICA/B, ULBP1, ULBP2, and ULBP3 in the 
SW-900 human lung cancer cell line increas- 
ed after treatment with PDT - using sublethal 
doses of hematoporphyrin (Hp) - leading to 
increased susceptibility of cancer cells to NK 
cells [87]. MICA expression was significantly 
induced in human colon carcinoma Colo205 
cells and murine CT26 tumors after PDT treat-
ment with a second-generation photosensitiz-
er, 2-[1-hexyloxyethyl]-2-devinyl pyropheophor-
bide-a (HPPH), and the induction of MICA was 
associated with an increased NK cell killing 
effect. However, in contrast to the upregulation 
of MICA, PDT treatment did not result in incre- 
ased expression of either MICB or any of the 
ULBP family members [88]. 

Targeting soluble NKG2D ligands

Clearance of soluble NKG2DLs or inhibition of 
NKG2DL shedding can also have therapeutic 
effects (Table 1). MMPs and ADAM are involved 
in the shedding of NKG2DLs, such as MICA, 
MICB, and ULBP. Pharmacological inhibition of 
either MMPs and/or ADAM reduced the level of 
released NKG2DLs, increased cell surface 
expression, and reversed their immunosurveil-
lance escape properties. MMPs are expressed 
in nearly all human cancers and play a crucial 
role in promoting tumor angiogenesis, growth, 
and metastasis. Increased MMP expression is re- 
ported to be strongly associated with tumor 
aggressiveness, stage, and patient prognosis 
[89, 90]. Overexpression of MMP-3 has been 
shown to promote mammary carcinogenesis 
and induce spontaneous disease progression 
[91]. MMP-2 levels detected in serum and can-
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cer tissue could be used as indicators of the 
severity of breast cancer invasion and tumor 
size [92]. Shiraishi et al. found that MMP-9 
expression was inversely associated with NK- 
G2DL (MICA/B, ULBP-2 and -3) expression in 
vitro, and MMP inhibitors could restore the ex- 
pression of NKG2DLs in clinical gastric tumor 
samples, thereby improving their susceptibility 
to NK cells in vitro [93]. Therefore, nearly every 
member of the MMP family has become an 
attractive target for development of therapeu-
tics. Treatment of lung adenocarcinoma (ADC)-
Coco cells with the MMP-2/MMP-9 inhibitor IV 
(MMPI-IV) led to improved NK cell-dependent 
cytotoxicity, mediated mainly by NKG2D [94]. 
MMP14 can mediate MICA shedding, and its 
expression in MICA-positive tumor cells regu-
lated the sensitivity of tumor cells to NK cell kill-
ing. Short hairpin RNA (shRNA) suppression of 
MMP14 expression blocked the MICA shedding 
independent of ADAMs [95]. Moreover, MMP2 
shRNA could significantly suppress MICA pro-
teolytic shedding in renal cell carcinoma, sug-
gesting that MMP is involved in the proteolytic 
release of soluble MICA, which contributes to 
tumor escape from immune surveillance ma- 
chinery [52]. Furthermore, inhibitors targeting 
ADAM have also been reported to have antitu-
mor effects. The ADAM family has been impli-
cated in the proteolytic shedding process of 
membrane-associated proteins and is, there-
fore, associated with the regulation of key cel-
lular signaling pathways in the tumor microenvi-
ronment [96]. ADAM 17 (also known as tumor 
necrosis factor-alpha converting enzyme, TACE) 
is involved in various biological processes, in- 
cluding tumorigenesis, invasiveness, and tu- 
mor growth in vitro and in vivo [97]. ADAM10 
promotes glioma cell migration and modulates 
the immunogenicity of glioblastoma-initiating 
cells (GICs). Previous studies have indicated 
that the expression of ADAM17 in glioma is 
approximately 4.8-fold higher than that in nor-
mal human brain tissue. The results reported 
by Wolpert et al. showed that blocking ADAM10 
and ADAM17 function with specific pharmaco-
logical inhibitors or gene silencing through 
small interfering RNAs (siRNAs) enhanced the 
ULBP2 expression on the tumor cell surface 
[98]. Moreover, the concentration of soluble 
ULBP2 (sULBP2) in the serum decreased, while 
the mRNA level of ULBP2 remained unchang- 
ed. Therefore, inhibition of ADAM10 and AD- 
AM17 led to enhanced immune recognition by 
NK cells in a ULBP2-dependent manner [98].  

In addition, two hydroxamate compounds, LT4 
and MN8, which are specific inhibitors of AD- 
AM10 and ADAM17, were synthesized to verify 
whether inhibition of ADAM10 in Hodgkin lym-
phoma (HL) cells could restore the activation of 
the NKG2D-dependent anti-lymphoma T cell 
response [99]. The results showed that the new 
LT4 and MN8 compounds could reduce the 
shedding of NKG2DLs and enhance the binding 
of the NKG2D receptor. In addition, HL cells 
exposed to these inhibitors showed increased 
sensitivity to NKG2D-dependent cell killing 
exerted by NK and γδ T cells. However, only 
nonspecific inhibitors are available at present; 
therefore, this therapeutic option will not be 
available in the near future. 

In addition to small molecule inhibitors, anti-
bodies targeting the site of proteolytic shed-
ding in a highly specific manner (the membrane-
proximal MICA and MICB α3 domains) were 
designed to prevent loss of MICA and MICB 
from the cell surface [100]. These antibodies 
increased the density of the stimulatory MICA 
and MICB ligands on the surface of tumor  
cells, inhibited tumor growth, and induced 
NK-mediated immunity in a humanized mouse 
model [101]. However, Deng et al. found that 
shedding MULT1, a high-affinity NKG2D ligand 
in mice, enhanced antitumor immune respons-
es by promoting NK cell activation and tumor 
rejection in vivo [102]. These inconsistent re- 
sults may be due to a lower affinity of soluble 
MICA and MICB for the NKG2D receptor than 
MULT1 [21], which may also explain why the 
shed MICA and MICB do not stimulate an 
immune response. As MICA and MICB are wide-
ly expressed in various human cancers, the 
development of antibodies targeting MICA and 
MICB holds considerable importance for the 
treatment of both solid and hematological 
malignancies [27, 103-105]. These antibodies 
could be used in combination with established 
treatments, such as radiotherapy and chemo-
therapy, which upregulate NKG2DL expression, 
along with a drug delivery system to enhance 
the delivery of toxic payloads to tumor cells, or 
with other immunotherapies to activate immu- 
ne cells and overcome the protective antitu- 
mor immunity.

Conclusion

In summary, the NKG2D/NKG2DL pathway in- 
volves multiple effector cell types for control-
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ling tumor progression. The function of NK cell 
inhibitory receptors often dominates that of 
activated receptors, thereby preventing au- 
tologous cells from being killed by NK cells. 
However, the activation signal mediated by the 
NKG2D receptor can bypass the traditional 
inhibitory signaling pathway and is, therefore, 
not subject to SHP phosphorylation. Numerous 
studies on the NKG2D/NKG2DL axis have re- 
vealed the complexity of the system, and in the 
past several decades, we have gained new in- 
sight into the various aspects of the NKG2D/
NKG2DL pathway in tumor development, and  
a wider understanding of tumor immune esca- 
pe from NKG2D-mediated immune recognition. 
Moreover, an advanced understanding of the 
NKG2D axis has provided support for the use  
of NKG2D/NKG2DL in cancer immunotherapy. 
Diverse strategies targeting multilayered regu-
lation mechanisms of NKG2D-mediated can- 
cer immunity can be employed in cancer treat-
ment, including the regulation of NKG2D expre- 
ssion and its ligands, and the clearance of sol-
uble NKG2DL shedding from the surface of 
tumor cells. 

Significant progress has been made in NKG2D-
mediated immunotherapy; however, NK cell tar-
geting of tumors and specifically accumulating 
NK cells in or around the tumor are essential to 
ensure maximum killing effects. Moreover, th- 
erapy mediated by monoclonal antibodies and 
cytokines based on the NKG2D/NKG2DL axis 
signaling pathway might have side effects. In 
short, it is necessary to develop optimized and 
individualized treatment strategies to fully uti-
lize the antitumor function of the NKG2D/NKG- 
2DL axis. Further studies are needed to iden- 
tify new immunological therapy agents and to 
open new avenues with the aim of restoring or 
improving the antitumor immune response.
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