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Abstract: Osteoarthritis (OA) is a common degenerative joint disease characterized by cartilage degradation, syno-
vitis, subchondral bone sclerosis and osteophyte formation. Current therapeutic approaches for OA are not curative 
and only temporarily alleviate symptoms. In recent years, pre-clinical experiments and clinical trials have dem-
onstrated that mesenchymal stem cell (MSC) related therapy is a promising option for the treatment of cartilage 
lesions and OA. MSCs isolated from bone marrow (BMSCs) have been widely used in animal models and clinic prac-
tice to demonstrate their chondrogenic potential, however the incidence of BMSC donors is low. Adipose derived 
mesenchymal stem cells (AMSCs) are a more easily accessible source of stem cells for OA treatment. MSC related 
therapies for cartilage lesions and OA include tissue engineering of MSC transplantation, scaffold-free injection of 
stem cells and cell-free injection of exosomes into the injured joints. Although a great deal of effort is required at the 
basic and clinical research fronts, the promise is that improved cell-based therapies will ultimately lead to the repair 
of damaged or diseased joints, and MSC exosome therapy for OA could be a safer, cheaper and a more effective 
treatment modality. MSC related therapy is predicted to become a regular and routine regenerative medicine for OA 
treatment in future clinical practice.

Keywords: Mesenchymal stem cells, cartilage, osteoarthritis, stem cell tissue engineering, intra-articular injection, 
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Introduction 

Osteoarthritis (OA) is a common degenerative 
joint disease characterized by cartilage degra-
dation, synovitis, subchondral bone sclerosis 
and osteophyte formation [1]. The World Health 
Organization (WHO) estimate that 10% of men 
and 18% of women aged 60 years and older 
have symptoms of OA, 80% of which suffer 
from movement activity disorders [2]. It is pre-
dicted that the population aged over 60 years 
will expand significantly by the year 2050, 
reaching well over 2 billion globally [3]. This 
growing geriatric population will lead to an 
increased global incidence of OA. Although OA 
is principally associated with ageing, its etiolo-
gy is complex and multifactorial, including  
biological and biomechanical factors [4]. 
Pathogenic factors include obesity, joint trau-
ma, joint infection, previous rheumatoid arthri-
tis, muscle weakness, metabolic disorders, 
orthopaedic disorders, disorders of bone turn-

over and genetics. These factors act alone or in 
synergy to initiate a cascade of pathophysiolog-
ical reactions within the joint [5].

OA patients suffer from persistent pain, stiff-
ness and disability. Conventional treatment 
includes exercise, physical therapy, life style 
changes and pain medications. For early stage 
OA, clinical therapy includes nonsteroidal anti-
inflammatory drugs (NSAIDs), hyaluronic acid 
(HA) injections, simple analgesics and cortico-
steroid injections. These approaches temporar-
ily alleviate the symptoms rather than treat the 
pathogenesis or reverse the OA process. Joint 
replacement surgery including osteotomy, 
arthroscopic surgery and arthroplasty is per-
formed in severe cases [6, 7]. Although these 
methods are effective, approximately 30% of 
patients remain unsatisfied. Joint replacement 
has a limited life span, often requiring complex 
revisions, and is unsuitable for the ever-growing 
population of younger patients with early OA 
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who have an active life style [8]. To-date, there 
is no radical curative treatment and novel ther-
apies for OA are urgently required. In recent 
years, mesenchymal stem cell (MSC) related 
therapies during the treatment of cartilage 
lesions and OA have demonstrated promise.

MSCs, a precursor of connective tissue cells, 
can be isolated from many adult organs. MSCs 
are multipotent progenitor cells that possess 
self-renewal capability and can differentiate 
into multiple lineages including adipocytes, 
osteoblasts and chondrocytes [9]. Synovial-
derived stem cells display greater chondrifica-
tion but the evidence of their potential is limited 
to preclinical studies [10]. MSCs isolated from 
bone marrow (BMSCs) have been widely used 
in animal models and some clinical cases to 
investigate their chondrogenic potential for OA 
treatment. Since a large number of adipose 
derived mesenchymal stem cells (AMSCs) are 
accessible and the incidence of BMSC donors 
is low, AMSCs represent a more readily avail-
able source of stem cells. Compared with 
BMSCs, AMSCs are more easily cultured and 
grow more rapidly [11]. The main benefits of 
AMSCs are their ease of isolation, manipulabil-
ity, potential for proliferation and differentia-
tion, and their telomerases are less affected  
by age than BMSCs [12]. Further studies have 
shown that MSCs also possess powerful immu-
noregulatory and anti-inflammatory activity that 
is largely mediated by paracrine factors and 
contributes to tissue repair. The combination of 
these features makes MSCs attractive seed 
cells in the treatment of OA.

Articular cartilage degeneration and subchon-
dral bone deterioration in OA

OA is the clinical syndrome manifested by joint 
pain and the loss of joint form and function 
caused by the articular cartilage degeneration 
and subchondral bone deterioration [13-16]. 
Articular cartilage is a tenacious and tensile 
load-bearing connective tissue that covers the 
surface of joints. The synovitis in the early and 
late stages of OA is associated with alterations 
in cartilage. Catabolic and proinflammatory fac-
tors are produced by the inflamed synovium 
and alter the balance of cartilage matrix anabo-
lism and catabolism, leading to the production 
of redundant proteolytic enzymes, giving rise to 
cartilage breakdown [17, 18]. The changes in 
cartilage and subchondral bone cause further 

synovitis, resulting in a vicious cycle. Progressive 
synovitis aggravates clinical symptoms and 
stimulates further joint degeneration [19]. 

Chondrocytes are the main cell type in cartilage 
tissue. Articular cartilage does not contain 
blood vessels, nervous tissue, or lymphatic 
vessels [20]. Chondrocytes are spatially isolat-
ed by a large quantity of extracellular matrix 
(ECM) and are responsible for the synthesis 
and maintenance of the ECM [21, 22]. The 
macromolecular framework of ECM developed 
by chondrocytes includes collagens (type II col-
lagen), proteoglycans (mainly aggrecan) and 
bioactive factors. The supply of chondrocyte 
nutrients and the disposal of metabolic waste 
occur through the ECM [23-25]. The activity of 
chondrocytes, including their response to stim-
uli, controls the synthesis of new ECM compo-
nents, a process influenced by ageing [26-28]. 
The ability of cartilage repair declines with 
increasing age, manifested by a decline in 
chondrocyte number leading to age-associated 
changes in ECM composition [29, 30]. These 
changes result in degeneration of the cartilage 
and limit its ability of repair [31-33]. In recent 
years, accumulating evidence suggests that OA 
should be considered a disease of the whole 
joint [34]. Articular cartilage and subchondral 
bone form an integral unit that undergoes 
uncontrolled catabolic and anabolic remodel-
ing during OA development [35, 36].

Tissue engineering of MSC transplantation for 
cartilage lesions and OA 

Cartilage engineered through autologous chon-
drocyte implantation (ACI) was first reported by 
Brittberg and colleagues in 1994 and surgical 
ACI has since been used to repair chondral 
lesions for more than 20 years [37, 38]. ACI 
requires cartilage to be taken either from an 
intact portion of the damaged joint or from 
other joints of the patient. The cartilage is then 
expanded in culture and transplanted into the 
defective area of the joint [39]. Initial ACI clini-
cal trials proved promising. However, treatment 
disadvantages included additional donor site 
morbidity of healthy articular cartilage, poor 
functionality and quality of the synthesized 
ECM, and limited technical efficacy in patients 
older than 40 years [40-42]. In recent years, 
MSCs have emerged as an alternative cell type 
to circumvent the drawbacks of ACI. 
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MSCs can differentiate into chondrocytes in 
response to several chondrogenic signals 
including TGF-β superfamily activators and in 
combination with scaffolds [43, 44]. MSCs 
have been widely used in tissue engineering 
during cell transplantation in animal models of 
cartilage lesions and OA treatment (Table 1). In 
large animal models of cartilage lesions or OA, 
cartilage regeneration resulted from tissue 
engineering using specific biomaterial and 
MSCs, indicating its promise for clinical appli-
cation [45, 46]. In small animal models, MSCs 
combined with biomaterials also facilitated 
hyaline-like cartilage occurrence. Transplanta- 
tion of MSCs encapsulated in self-assembled 
peptide hydrogels showed chondroprotection 
and reduced subchondral bone mineral density 
in rat OA models [47].

Recent clinical trials have indicated the poten-
tial to improve patient’s symptoms and regen-
erate articular cartilage using surgical implan-
tation of MSCs into focal articular cartilage 
defects (Table 1). In a cohort study, Nejadnik 
and coworkers reported 72 matched (lesion 
site and age) patients who underwent cartilage 
repair using chondrocytes or BMSCs. Compared 
with chondrocytes, BMSC transplantation was 
equally effective to relieve pain and improve 
the patient’s quality of life, independently of the 
patient’s age. Furthermore, BMSC-based treat-
ment was less invasive and reduced both mor-
bidity and operative costs [48]. In clinical prac-
tice, using various culture methods, BMSCs 
that retain their capacity for chondrogenic dif-
ferentiation have been successfully used to 
treat cartilage defects. Sporadic case reports 
have demonstrated that treatment using autol-
ogous BMSCs with specific biomaterials leads 
to significant clinical and radiological improve-
ments in OA patients following surgical trans-
plantation [49-52]. The first large-scale clinical 
trial was performed in 24 knees of 24 OA 
patients who underwent a high tibia osteotomy. 
The autologous BMSCs embedded in collagen 
gel were implanted into the articular cartilage 
defect in the medial femoral condyle of 12 
patients and covered with autologous perioste-
um at the time of surgery. The other 12 sub-
jects served as cell-free controls. Both control 
and BMSC implanted groups functionally 
improved, but hyaline cartilage was observed 
only after addition of BMSCs [53]. The same 
research team further reported the safety and 
effectiveness of autologous BMSC transplanta-

tion for long term cartilage repair. Cell-gel com-
posite was transplanted into 45 joints of 41 
patients from January 1998 to November 2008 
and followed up to 11 years and 5 months. 
Neither tumours nor infections were observed 
between 5 and 137 (mean 75) months of fol-
low-up surveys suggesting autologous BMSC 
transplantation is safe and applicable for OA 
treatment [54]. Koh and colleagues transplant-
ed autologous AMSCs to full-thick articular 
lesions in 37 knees of 35 OA patients and retro-
spectively evaluated the knees using second-
look arthroscopic surgery. The mean Interna- 
tional Knee Documentation Committee (IKDC) 
and Tegner activity scale scores were signifi-
cantly improved using AMSC implantation. The 
ICRS (International Cartilage Repair Society) 
overall repair grades at second-look arthroscop-
ic surgery improved to different degrees and 
94% patients manifested good to excellent sat-
isfaction. High body mass index (BMI) and large 
lesion size were important factors affecting the 
outcome. These studies indicated that during 
the early stages of application, AMSC trans-
plantation can improve cartilage repair in OA 
[55]. 

In summary, MSCs with scaffold were implant-
ed into fixed and damaged sites and could 
repair defects in tissue engineering for carti-
lage lesions and OA treatment. Few studies 
have transplanted MSCs without scaffolds to 
the specific defects covered with periostea or 
according to the local adherent technique. 
Preclinical and clinical studies have verified 
that tissue engineering can successfully repair 
cartilage lesions and the damage of cartilage 
and subchondral bone in OA. This therapy is 
comparatively suitable for the treatment of rel-
atively large defects and severe OA. Larger 
cohorts of OA patients are required before 
MSC-based tissue engineering can be used in 
large-scale clinical applications.

Scaffold-free MSC injections for cartilage le-
sions and OA

Recently, animal experiments and clinical trials 
have highlighted the potential of percutaneous 
intra-articular MSC injections in treating articu-
lar cartilage degeneration in OA (Table 2). In 
animal models, OA is primarily induced by sur-
gery, such as anterior cruciate ligament tran-
section (ACLT) or combined medial meniscus 
transection (MMT) [31]. In an adult minipig 
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Table 1. Preclinical and clinical studies of MSC transplantation for cartilage lesions and OA treatment
Cell type Scaffold Subjects Injured type and position Results Reference
Autologous BMSC Chitosan with TGF-β3 Sheep Partial-thickness lesions in the internal 

groove of the patellae
Implantation of BMSCs mixed with a chitosan scaffold and TGF-β3 
resulted in hyaline like cartilage filling the defects.

[45]

Autologous BMSCs β-tricalcium phosphate Sheep Osteochondral defects in the media femoral 
condyle

In the group of BMSCs with scaffold, hyaline-like tissue covered the defec-
tive surface. In scaffolds without cells, the defect was clearly visible.

[46]

Allogeneic BMSCs Self-assembled peptide hydrogels Rats OA model by ACLT and medial collateral liga-
ments transected

The transplantation group showed chondroprotection and reduced sub-
chondral bone mineral density compared to the OA group.

[47]

Autologous BMSCs N/A 72 patients Knee articular cartilage defects Compared with chondrocytes, BMSC-based treatment groups appeared 
less invasive and reduced both morbidity and operative costs.

[48]

Autologous BMSCs Collagen gel 2 patients Full-thickness articular cartilage defects in 
patellae

Defects were repaired with fibrocartilage. Pain and walking ability of the 
patients improved significantly.

[49]

Autologous BMSCs Collagen gel 1 patient A full-thickness cartilage defect in the 
medial femoral condyle

Arthroscopy revealed the defect was filled with a hyaline-like type of 
cartilage tissue. Clinical symptoms improved significantly. The patient 
could regain his previous activity levels and experienced less pain or other 
complications.

[50]

Autologous BMSCs Collagen gel 3 patients Full-thickness articular cartilage defects of 
the patellofemoral joints

The patients’ clinical symptoms improved and the improvements have 
been maintained over the follow-up periods (17-27 months). The defects 
were repaired with the regeneration tissue.

[51]

Autologous BMSCs Platelet-rich fibrin glue 5 patients Full-thickness cartilage defects of femoral 
condyles

All patients’ symptoms improved over the follow-up period of 12 months. 
Average Lysholm and RHSSK scores showed significant improvement. 

[52]

Autologous BMSCs Collagen gel 24 patients Articular cartilage defects in the medial 
femoral condyle

Both implanted groups underwent a high tibia osteotomy improved func-
tionally but hyaline cartilage was observed only after addition of BMSCs.

[53]

Autologous BMSCs Collagen gel 41 patients Knee, hip, elbow, or ankle OA Neither tumours nor infections were observed between 5 and 137 (mean 
75) months of follow-up surveys.

[54] 

Autologous AMSCs N/A 35 patients Full-thickness articular cartilage lesion in 
OA knees

The ICRS repair grades at second-look arthroscopic surgery were im-
proved at different degrees in patients filled with AMSC suspensions.

[55] 
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Table 2. Preclinical and clinical studies of scaffold-free MSC injection for OA treatment
Cell type Solution medium Subjects Injured type and position Results Reference
Autologous BMSCs HA Minipigs A cartilage defect in the 

medial femoral condyle 
In the MSCs with HA treated groups, the tissue of the filling of the defects was hy-
aline-like, with good integration, thickness and surface regularity. Cells resembled 
well-differentiated chondrocytes and were surrounded by a metachromatic matrix. 

[56]

Autologous BMSCs Basal media Sheep OA model by ACLT with MMT Knee OA treated with BMSCs was observed in macroscopical and histological 
retardation of cartilage destruction.

[57]

Autologous AMSC or BMSCs Culture media Sheep OA model by ACLT with MMT The tested knee injected intra-articularly AMSCs or BMSCs showed regenerated 
cartilage. The injected cells had been filled in areas of cartilage damage and the 
regeneration cartilage produced extracellular matrix.

[58]

Autologous BMSCs HA Goats OA model by ACLT with MMT Autologous BMSCs injection resulted in regeneration of the medial meniscus 
and a reduction in osteophyte remodeling, subchondral sclerosis and articular 
cartilage degradation. 

[59]

Allogeneic AMSCs HA Rabbits OA model by ACLT The cartilage defect and surface wear of the AMSC injection group was lower 
and the histological scoring and cartilage components were significantly better 
compared with the control group injected with HA alone.

[63]

Allogeneic AMSCs PBS Rats OA model by ACLT Intra-articular injection of allogeneic AMSCs in OA rats delayed joint degeneration. 
AMSCs also protected chondrocytes from the damage induced by inflammatory 
factors.

[64]

Allogeneic AMSCs Mouse serum with mouse 
albumin

Mice OA model by articular-injec-
tion collagenase

Thickening of the synovial lining, formation of osteophytes were significantly 
inhibited, and the destruction of cartilage was inhibited in the groups treated with 
cell injection.

[65]

Xenogenic Equine UC-MSC PBS Rabbits OA model by MMT Cartilage fibrillation was lower in the early treatment group. OA synovium exhibit-
ed reduced expression of MMP13 in the early cell-treated group. In vitro, UC-MSC 
paracrine exerted anti-inflammatory and anti-catabolic effects on synoviocytes.

[66]

Human MSCs PBS or HA Guinea pigs Spontaneous OA Injection of human MSCs resulted in the regeneration of articular cartilage in the 
spontaneous OA animal models.

[67]

Human MSCs or rat MSCs PBS Rats OA model by MMT Human MSCs enhanced meniscal regeneration in a manner similar to rat MSCs, 
and human MSC injection increased the expression of rat type II collagen and 
inhibited OA progression.

[68]

Autologous BMSCs PBS A male patient Keen OA Patient knees had significant cartilage and meniscus growth, as well as increased 
range of motion and decreased pain scores.

[70]

Autologous BMSCs Saline with serum albumin 4 patients Keen OA The number of stairs climbed and the pain on the VAS improved for all 4 patients. 
The improvement for physical examinations was mainly for crepitus. The improve-
ment of the motion range was minor.

[71]

Autologous BMSCs Physiological serum 6 female patients Keen OA Pain, functional status of the knee and walking distance were improved. MRI 
displayed an increase in cartilage thickness, extension of the repair tissue and a 
considerable decrease in the size of edematous subchondral patches.

[72]

Allogeneic BMSCs HA 55 patients A partial medial meniscec-
tomy

Patients receiving BMSCs experienced significant reductions in pain and reduced 
OA progression. Subchondral sclerosis and osteophyte formation were also 
reduced. The results of MRI revealed regrowth of the meniscus and reduced OA 
progression. 

[73]

Autologous AMSCs HA with PRP 4 patients Osteonecrosis in the right 
femoral head or knee OA

All patients injected with autologous AMSCs showed positive changes. Probable 
bone formation was clear in osteonecrosis patients, and cartilage regeneration 
was observed in the OA patients. 

[74]

Autologous AMSCs Saline 18 patients Knee OA Intra-articular injection with high-dose (1.0×108) AMSCs into the OA knee im-
proved function and pain of the knee joint without causing adverse events, and 
reduced cartilage defects by regeneration of hyaline-like articular cartilage.

[75]
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model of cartilage lesions, BMSC injection 
enhanced cartilage healing both morphologi-
cally and histologically [56]. In OA sheep mod-
els, intra-articular injection of autologous 
BMSCs or AMSCs could slow the progression of 
OA and regenerate cartilage through the pro-
duction of ECM [57, 58]. Autologous BMSC 
injection in a goat OA model resulted in the 
regeneration of the medial meniscus, a reduc-
tion in osteophyte remodeling, subchondral 
sclerosis and articular cartilage degradation 
[59]. In addition, other preclinical experiments 
in large OA animal models, including porcine or 
beagle dogs, demonstrated that intra-articular 
injection of autologous or allogeneic MSCs 
alone or synergistically with other factors ame-
liorated induced OA [60-62]. Likewise, MSCs 
improved the symptoms in small OA animal 
models, including rabbit, rat and mouse [63-
65]. In addition, direct transplantation of xeno-
geneic MSCs or human MSCs into the knee 
joints of OA animal models could prevent carti-
lage degradation and promote meniscal regen-
eration [66-68]. 

A number of clinical trials assessing the bene-
fits of BMSCs or AMSCs for OA treatment have 
been initiated [69]. In a patient with severe OA 
of the knee that ordinarily requires a total knee 
replacement, significant cartilage and menis-
cus growth on MRI, decreased modified visual 
analogue scale (VAS) pain scores, and incre- 
ased range of motion were observed in res- 
ponse to six months of BMSC injection. The 
treatment course included the injection of cul-
tured BMSCs suspended in phosphate buff-
ered saline (PBS), with supplementary 10% 
platelet lysate (PL) and 10 ng dexamethasone 
injections for chondrogenic stimulation [70]. 
Other preliminary studies reported a reduction 
in pain and improvement in 4 of 6 patients with 
knee OA after injection autologous BMSCs  
[71, 72]. A long term treatment and follow-up 
study was reported by Vangsness and cowork-
ers in phase I/II trials including 55 patients 
from 7 institutions receiving single injections of 
BMSCs. Cells were injected into the knee joint 
7-10 days after operative meniscectomy and all 
patients were followed-up for 2 years. Those 
who received BMSCs experienced a significant 
reduction in pain and reduced OA progression. 
Subchondral sclerosis and osteophyte forma-
tion were also reduced compared to placebo 
controls. The results of MRI revealed regrowth 
of the meniscus and OA progression had been 

reduced [73]. AMSC injections have also been 
investigated for the treatment of OA. Injections 
of AMSCs in two patients with osteonecrosis in 
the right femoral head or in two patients with 
knee OA, led to significant positive changes as 
assessed by MRI. Probable bone formation was 
clear in the osteonecrosis patients, and carti-
lage regeneration was visible in OA patients 
[74]. The clinical and radiological improvements 
with AMSC injections were also directly related 
to the specific number of cells injected. An 
intra-articular injection of 1.0×108 AMSCs 
(high-dose group) into the OA knee significantly 
improved pain and function without causing 
adverse events, and reduced the size of carti-
lage defects through the regeneration of thick 
hyaline-like articular cartilage. Patients in the 
mid-dose group (5.0×107 AMSCs) showed 
improvement in some clinical outcomes, but 
those in the low-dose group (1.0×107 AMSCs) 
showed no improvement in the majority of out-
come measures [75]. 

To summarize, intra-articular injection of MSCs 
into damaged joints is comparatively simple 
and easy method for OA treatment. Preclinical 
and clinical studies verify that MSCs can suc-
cessfully inhibit the degeneration of cartilage 
and subchondral bone in OA. MSC therapy is 
suitable for use in mild or moderate OA patients, 
with comparable benefits. Further studies are 
now warranted to promote and improve MSC 
injections for their application to routine clinical 
treatment.

MSC functional mechanisms and potential 
therapeutics of MSC exosomes 

The use of MSCs to repair cartilage tissue is 
based on their ability to act as chondroprogeni-
tors to replace injured cartilage or as regenera-
tive cells to stimulate cartilage repair by endog-
enous cells. Increasing evidence suggests that 
MSCs secrete a wide range of trophic factors 
that modulate the injured tissue environment 
to orchestrate subsequent regenerative pro-
cesses including cell migration, proliferation, 
differentiation and matrix synthesis [76, 77]. 
MSCs reduce tissue damage, inhibit fibrous 
remodeling and apoptosis, stimulate stem cell 
proliferation, promote angiogenesis and de- 
crease oxidative stress through regulating TGF-
β, VEGF, ADAMTSs MMPs, TIMPs et al [78, 79]. 
MSCs not only contribute to tissue regenera-
tion, but also have an efficacious immune regu-
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lation and anti-inflammatory effects through 
regulating several molecules such as prosta-
glandin E2 (PGE2), interferon (IFN)-γ, interleu-
kins (ILs) et al [80, 81]. The capacity of MSCs, 
MSC-based therapies, MSC functionality, and 
the potential mechanisms by which MSCs 
improve cartilage lesions and OA treatment are 
summarized in Figure 1. In recent years, it was 
reported that exosomes play a leading role in 
the efficacy of MSC-based therapies in mediat-
ing tissue repair. MSC exosomes provide new 
perspectives for the development of cell-free 
and ready-to-use therapy for for treatment of 
cartilage lesions and OA. 

Exosomes are extracellular vesicles with a 
diameter range of 30-150 nm that in essence 
are intraluminal vesicles (ILVs) formed by the 
inward budding of endosomal membranes dur-
ing the maturation of multivesicular bodies 
(MVBs). Exosomes are secreted through the 
fusion of multivesicular endosomes with the 
cell membrane, while microvesicles (diameter 
range of 50-5000 nm) are secreted through 
forward budding of the plasma membrane [82, 
83] (Figure 2A). A large number of cells secrete 
exosomes which can be found in most bodily 
fluids including blood, urine, cerebrospinal liq-

uid, breast milk and saliva, and this process is 
conserved throughout evolution from bacteria 
to humans and plants [84, 85]. MSC exosomes 
are derived from adipose tissue, bone marrow, 
fetal tissues, the umbilical cord and embryo. 
Mass spectrometry and microarray analysis 
revealed that MSC exosomes carry a complex 
cargo of nucleic acids (mRNA and miRNA), pro-
teins and lipids [86] (Figure 2B). 

Recent studies have shown that MSC exo-
somes can promote the repair of heart, liver 
and skin tissue [87-89]. MSC exosomes have 
also been reported to mediate cartilage repair 
and regeneration in recent preclinical studies 
(Table 3). Zhang and colleagues first demon-
strated the effects of human embryonic MSC 
(EMSC) exosomes on cartilage repair. In these 
studies, cartilage defects were induced on the 
trochlear grooves of distal femurs of 12 adult 
rats. After 12 weeks, the exosome-treated 
defects showed complete cartilage and sub-
chondral bone recovery, and other characteris-
tic features including hyaline cartilage with  
regular surface, complete adherence to the 
adjacent cartilage, and ECM deposition that 
closely resembled that of age-matched con-
trols without operation. In contrast, the contra-

Figure 1. Schematic of MSC-based therapies for cartilage lesions and OA. The benefits of MSCs include their capac-
ity to self-renew, differentiate, and to secrete growth factors and cytokines. The tissue engineering of MSCs seeded 
in hydrogel polymers induce cartilage regeneration and subchondral bone improvement; in very rare case, the cell 
transplantation is performed without the scaffold. The intra-articular injection of MSCs suspended in media play 
important roles in immunomodulation and reduced inflammation. Both of these therapies maintain cartilage and 
bone hemostasis and inhibit OA progression. The molecular mechanisms of MSC function involve the differential 
expression of anabolic and catabolic genes including collagen type II, MMP13, ADAMTS and VEGF, and secreted 
factors including IFN-γ, IL-10, TNF-α and IL-6. Upward red arrows indicate increased gene expression and downward 
red arrows indicate decreased gene expression.
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lateral PBS-treated defects exhibited only 
fibroid repair cartilage [90]. Using destabiliza-
tion of medial meniscus (DMM) surgery, Wang 
and coworkers performed two animal section 
experiments including 32 mice, which followed 
intra-articular injection of either human EMSCs 
or their exosomes. The results of Osteoarthritis 
Research Society International (OARSI) scores 
and molecular mechanisms demonstrated that 
both intra-articular injections alleviated carti-
lage destruction and matrix degradation in the 
DMM model. Further in vitro experiments illus-
trated that these effects were exerted through 
EMSC-derived exosomes [91]. In collagenase-
induced OA mouse models, Cosenza and col-
leagues found that exosomes derived from allo-
geneic BMSCs protected mice from developing 
OA by protecting cartilage and bone from deg-
radation [92]. The in vitro studies also revealed 
chondroprotective and anti-inflammatory func-
tions of exosomes in OA, as observed in chon-
drocyte models [91, 92]. In OA osteoblast mod-
els, Vian and coworkers indicated that exo- 
somes from AMSCs downregulated the senes-
cence features and corrected the metabolism 
of abnormal osteoblasts [93]. Interestingly, fur-
ther study indicated that exosomes from gene 

vector or chemical synthetic modified MSCs 
could alter the expression of certain miRNA or 
long noncoding RNA (lncRNA) and affect OA 
treatment. For example, in rat models estab-
lished by ACLT and MMT, exosomes from miR-
140-5p-overexpressing human synovial mes-
enchymal stem cells (SMSCs) successfully 
slowed the progression of early OA and prevent-
ed severe damage to knee articular cartilage. 
In the OA+SMSC-140-Exos group, the cartilage 
matrix consisting of type II collagen was signifi-
cantly better than that of the OA+SMSC-Exos 
group. Functional and molecular analysis in 
vitro indicated that SMSC-140-Exos enhanced 
the proliferation and migration of articular 
chondrocytes without influencing ECM secre-
tion [94]. In collagenase-induced OA mouse 
models, exosomes from miR-92a-3p-overex-
pressing human MSCs (MSC-miR-92a-3p-Exos) 
inhibit the progression of early OA and prevent-
ed the severe damage to knee articular carti-
lage better than MSC-Exos. The study in vitro 
demonstrated MSC-miR-92a-3p-Exos promot-
ed cartilage proliferation and matrix genes 
expression more effecitively in MSCs and pri-
mary human chondrocytes, respectively [95]. 
In addition, exosomes from human MSC trans-

Figure 2. Biogenesis of MSC exosomes and the function of intra-articular injection of MSC exosomes for OA treat-
ment. A. MSC exosome biogenesis. Exosomes originate from the inward invagination of the plasma membrane, and 
are formed as multivesicular bodies (MVBs) which composed of intraluminal vesicles (ILVs). Exosomes are secreted 
by fusion of the MVB with the plasma membrane, while microvesicles are secreted through the forward budding 
of plasma membrane. B. The contents of exosomes include transmembrane proteins, internal proteins (cytosolic, 
cytoskeletal, and growth factors), internal lipids, internal miRNAs and mRNAs. C. The function of intra-articular in-
jection of MSC exosomes for OA treatment including inhibiting cartilage degeneration (CD) and subchondral bone 
deterioration (SBD), reducing osteophyte formation (OF) and resisting synovial inflammation (IF).
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Table 3. Preclinical studies of MSC exosome injection for cartilage lesion and OA treatment
Cell type Solution medium Subjects Injured type and position Results Reference
Human EMSCs PBS Rats Cartilage defects on the troch-

lear grooves of distal femurs
Exosome-treated defects showed cartilage and subchondral bone recovery, 
and the regenerated hyaline cartilage and ECM deposition closely resembled 
the age-matched controls without operation. Contralateral PBS-treated defects 
exhibited only fibroid repair cartilage.

[90]

Human EMSCs PBS Mice OA model induced by DMM 
surgery on the knee joints 

Intra-articular injection of EMSCs alleviated cartilage destruction and matrix 
degradation. Further in vitro studies illustrated that these effects were exerted 
through EMSC-derived exosomes. These exosomes maintained the chondro-
cyte phenotype. Intra-articular injection of exosomes successfully impeded 
cartilage destruction.

[91]

Allogeneic BMSCs Saline Mice OA model induced by articular-
injection of collagenase 

Microvesicles/microparticles (MPs) and exosomes exerted similar chondro-
protective and anti-inflammatory functions in vitro and protected mice from 
developing OA in vivo.

[92]

Human SMSCs overexpressing miR-140-5p Saline Rats OA model induced by ACLT and 
MMT 

Exosomes derived from SMSCs transfected with miR-140-5p lentivectors 
(SMSC-miR-140-Exos) successfully prevented OA in rats. In OA+SMSC-miR-
140-Exos treated group, the cartilage matrix consisted of type II collagen 
which was significantly better than the OA+SMSC-Exos group. 

[94]

Huaman BMSCs overexpressing miR-92a-3p PBS Mice OA model induced by articular-
injection of collagenase

Exosomes derived from BMSCs transfected with miR-92a-3p mimics (MSC-
miR-92a-3p-Exos) inhibit the progression of early OA and prevented the severe 
damage to knee articular cartilage better than MSC-Exos group in OA mice.

[95]

Human MSCs knocking down lnc-KLF3-AS1 PBS Rats OA model induced by articular-
injection of collagenase

Exosomes derived from MSC transfected with scramble Lentivirus (MSCscram-
ble-Exos group) promoted cartilage repair and chondrocyte proliferation better 
than MSCsi-KLF3-AS1-Exos group in OA rats.

[96]
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fected with scramble lncRNA-KLF3-AS1 pro-
moted cartilage repair significantly better than 
si-lncRNA-KLF3-AS1 group in a rat model of OA 
[96]. Therefore, intra-articular injection of MSC 
exosomes impeded the progression of OA and 
partly restored the injured joint to a normal 
state. The function of intra-articular injection of 
MSC exosomes for OA treatment included the 
ability to inhibit cartilage degeneration and sub-
chondral bone deterioration, reducing osteo-
phyte formation and resisting synovial inflam-
mation (Figure 2C). Thus, MSC exosomes pro- 
vide a new opportunity for OA treatment and 
drug-delivery therapy. Intra-articular injection 
of chemosynthetic miRNA mimics are relatively 
safe and efficient for OA treatment and MSC 
exosomes provided optimal media to package 
and transport them.

The mechanisms underlying cartilage regener-
ation by MSC exosomes have not been eluci-
dated as for other therapeutic efficacies report-
ed for MSC exosomes. MSCs are stromal sup- 
port cells that function to maintain a homeo-
static tissue microenvironment. MSC exosomes 
are rich in ECM proteins and enzymes that can 
modulate and restore ECM homeostasis [82, 
86]. The immunomodulation of MSCs is medi-
ated largely through the secretion of trophic 
factors. However, this activity is not limited to a 
single secreted factor and most likely occurs 
through the synergism of multiple factors [97], 
reflected by the ability of some MSC exosomes 
to contain over 200 proteins [82, 98]. Many of 
Noncoding RNA including miRNAs and lncRNAs 
packaged in MSC exosomes are potent regula-
tors of some key genes and signal transduction 
pathways in OA [96, 99-101]. For example,  
exosomes that highly-expressed miR-140-5p 
derived from human SMSCs block alternative 
Wnt signaling via repressing RalA and activat-
ing SOX9 in vitro, and regulate Col II, aggren-
can, Col I expression to enhance cartilage tis-
sue regeneration in vivo [94]. Exosomes derived 
from miR-92a-3p overexpressing increased the 
expression levels of COL2A1, COL9A1, COMP 
and SOX9 and decreased COL10A1, RUNX2, 
MMP13 via targeting WNT5A in vitro, and alter 
the expression of Wnt5a, ColII, aggrencan, 
Mmp13 to enhance chondrogenesis and sup-
press cartilage degradation in vivo [95]. 
LncRNA-KLF3-AS1 promotes chondrocyte pro-
liferation and cartilage repair and MSC exo-
somes derived from lncRNA-KLF3-AS1 overex-

pression promote proliferation and inhibit 
apoptosis of chondrocytes via lncRNA-KLF3-
AS1/miR-206/GIT1 axis in osteoarthritis [96, 
101]. Exosomes from rat MSCs stimulated by 
TGF-β1 promote chondrocyte proliferation and 
cartilage repair through TGF-β1/miR-135b/Sp1 
pathway [102]. 

In a word, MSC exosomes are now widely 
accepted as the principal therapeutic agents 
that mediate the many therapeutic efficacies of 
MSCs. Exosome production is more amenable 
to cell culture techniques and genetic manipu-
lation, ensuring their cost-effective production. 
MSC exosome therapy for OA represents a 
potentially safer, cheaper and more effective 
treatment modality than MSC-based cell 
therapy. 

Conclusion

To-date, the two major types of pre-clinical and 
clinical approaches for OA therapies are based 
on either tissue-engineering implantation of 
MSCs or scaffold-free injection into the injured 
joint. Increasing experimental and clinical data 
have emerged to support the use of MSCs for 
the repair of cartilage lesions and OA treat-
ment. MSC exosomes, especially with certain 
miRNA packaged demonstrate great potential 
as therapeutics for articular cartilage defects 
and OA treatment. BMSCs have been widely 
used in animal models and in the clinic to inves-
tigate their chondrogenic potential and treat-
ment effects for OA. AMSCs now represent a 
potential source of stem cells for OA treatment, 
demonstrated in a small number of preclinical 
and clinical studies. 

However, MSC associated treatment for OA is 
not used routinely in the clinic and many prob-
lems restrict its use. In pre-clinical studies, the 
optimized conditions for MSC culture in vitro 
and the mechanisms of MSC treatment in vivo 
require further studies. In clinical trials, the dif-
ferent types of therapy according different 
classes of OA patients, how to culture MSC, 
how to select the types of MSCs, how to stor-
age and transport MSCs, how to select the 
media to transport MSCs to the injured joint, 
how to evaluate the therapeutic efficacy and 
safety of MSCs, and how to execute blind inves-
tigations in large cohorts are all issue that need 
to be solved. In addition, in the context of carti-
lage repair, important questions regarding ther-
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apeutic efficacy and safety of MSC exosomes  
in large animal studies remain. The treatment 
effect of MSC related therapies will be 
enhanced with those problems resolved. At 
present, MSC-based therapies are not suitable 
for regeneration of large cartilage lesions in 
severe OA patients and the criteria of optimal 
scaffold, cell dose, injected times and intervals 
are not definite. In addition, MSC exsome ther-
apy has not been used in clinical trials.

Although a great deal of effort is required at the 
basic and clinical research fronts, the promise 
of MSCs in cartilage tissue engineering or cell 
therapy is clear. MSC exosomes may represent 
the most effective clinical strategy once trials 
have been fully controlled and their benefits 
and safety fully assessed. In the future, MSC 
related therapy could ultimately become a reg-
ular and routine regenerative medicine for OA 
treatment in clinic practice.
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