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Abstract

Part of the ventral striatal division, the nucleus accumbens (NAc) drives the circuit activity of an entire macrosystem about reward
like a “flagship,” signaling and leading diverse conducts. Accordingly, NAc neurons feature complex inhibitory phenotypes that
assemble to process circuit inputs and generate outputs by exploiting specific arrays of opposite and/or parallel neurotransmitters,
neuromodulatory peptides. The resulting complex combinations enable versatile yet specific forms of accumbal circuit plasticity,
including maladaptive behaviors. Although reward signaling and behavior are elaborately linked to neuronal circuit activities, it
is plausible to propose whether these neuronal ensembles and synaptic islands can be directly controlled by astrocytes, a powerful
modulator of neuronal activity. Pioneering studies showed that astrocytes in the NAc sense citrate cycle metabolites and/or ATP
and may induce recurrent activation. We argue that the astrocytic calcium, GABA, and Glu signaling and altered sodium and
chloride dynamics fundamentally shape metaplasticity by providing active regulatory roles in the synapse- and network-level
flexibility of the NAc.
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GluA2 AMPA receptor—alpha-amino-3-hydroxy-5-
methyl-4-isoxazole propionate receptor

I0S Intrinsic optical signal

Meth Methamphetamine, N-methyl-amphetamine
mGIuR5 Group 1 metabotropic Glu receptor

NAc Nucleus accumbens

NMDA N-methyl-D-aspartate

Nqo2 NAD(P)H dehydrogenase, quinone 2 gene
PAPs Perisynaptic astrocytic processes

PV Parvalbumin

Pvalb Parvalbumin gene

Sgms?2 Sphingomyelin synthase gene

SOM Somatostatin

SSA Succinic semialdehyde

SSADH Succinic semialdehyde dehydrogenase enzyme
Succinate  Sucn

Sucnrl Succinate receptor 1 gene

VTA Ventral tegmental area

Organization of the Nucleus Accumbens

Nucleus accumbens (NAc) is part of the ventral striatal divi-
sion where circuit afferents and efferents both unite and seg-
regate [61, 136] in distinctive neuronal ensembles [154].
Discernible NAc sub-territories of rodents, the “chameleon-
like” shell and the core [67, 83, 186, 237, 241], are associated
with the limbic and the motor systems, respectively [215]. In
addition, core and shell sub-regions have many more func-
tions, including incentive-cue responding and behavioral in-
hibition (see for example [6]). While rodent shell and core
sub-regions and related neuronal circuit connections are clear-
ly distinguishable [237], sub-region borders of human NAc
are less apparent, displaying more diffuse, gradual changes in
the topology of afferents and efferents [52, 107, 137]. We
suggest that the characteristic differences between rodent
and human NAc sub-territories are related to the diverse
incentive-cue responding and behavioral inhibition of
humans.

The major neuronal type in the nucleus accumbens is the
medium spiny neuron (MSN), which comprise about 95% of
the cells in the area. Neurochemical phenotypes of MSNs
range from “quasi” inhibitory using the major inhibitory neu-
rotransmitter 'y-aminobutyric acid (GABA) to mixed inhibito-
ry and excitatory (GABAergic and glutamatergic). Besides,
ubiquitous distribution of terminals co-expressing vesicular
glutamate (Glu) and GABA transporters in the striatum, hip-
pocampus, thalamus, and cerebellar and cerebral cortices [45]
suggests that the appearance of mixed Glu-GABA phenotypes
may possibly be the rule rather than the exception (for a more
thorough discussion on the possible significance of the mixed
Glu-GABA MSN phenotype in the NAc, see the last para-
graph of section “Basic Neurochemistry of Reward Quality

and Prediction”). Accumbal MSNs exhibiting both GABA
and Glu decarboxylase (GAD) immunoreactivity [5, 7, 227,
238] often co-express modulatory neuropeptides (substance P,
dynorphin, enkephalin, and neurotensin) together with various
dopamine (DA) receptor subtypes (DR 1, DR2, and DR3). The
DR1-DR2 receptor heteromer-expressing phenotype also
takes up [*H]aspartate ([*H]Asp) [156, 227]. The major
DAergic input driving the different DA receptor types origi-
nates in the ventral tegmental area (VTA), while Gluergic
inputs to the NAc arrive mostly from cortical areas. The latter
innervations, however, also terminate on MSNs, raising the
idea of “striatal synaptic triad.” This represents a configura-
tion of a Gluergic asymmetric spine head with a DAergic
symmetric spine neck [50, 62, 188], although asymmetrical
morphology has also been considered [16, 100, 228, 239].
Interneurons (< 5%) in the NAc are mainly GABAergic,
and to a lesser extent cholinergic, receiving serotonergic in-
puts [192, 218, 238] in both the shell and core regions. The
GABAergic interneurons exhibit nitric oxide synthase activity
and somatostatin (SOM) and neuropeptide Y or parvalbumin
(PV) expression. Gluergic input to the accumbal SOM ex-
pressing interneurons [169] may possibly evoke release of
SOM specifically signaling to astrocytes [122]. The PV-
expressing sub-population of interneurons has recently been
noted as a major player in amphetamine sensitization and
reward [226]. Also, we conjecture that the GABAergic PV-
expressing NAc interneurons control the fast-firing MSNs,
thereby shaping accumbal sensitization (for explanation and
references cf. the last paragraph of the “Unique Glu-GABA
Drives of the NAc” section). The GABAergic interneurons
also receive both DAergic input from the VTA and gluta-
matergic innervation from cortical areas and in turn terminate
on MSNs. Recently, Gluergic input from the VTA terminating
on both interneurons and MSNs has also been established.
This is the only Gluergic input to the NAc, which mediates
aversion instead of reward [163]. Another small proportion of
NAc neurons are tonically active cholinergic interneurons,
which are the only source of acetylcholine (Ach) in the NAc
[112]. These cells receive mostly Gluergic but also ascending
serotonergic inputs and synapse onto MSNs through nicotinic
(nAChR) and muscarinic acetylcholine (mAChR) receptors,
which exert opposing effects on DA signaling. Whereas
nAChR activation diminishes, mAChR activation increases
motivation toward reward-predicting cues ([38, 39] These
cells were also identified as central players in the development
of depression-like symptoms, because the disruption of cell
surface expression of serotonin (SHT) receptors and/or other
ion channels on cholinergic interneurons had antidepressant
actions with therapeutic potential [225]. As to the molecular
mechanisms, the expression and function of the
hyperpolarization-activated cyclic nucleotide-gated channel
2 was suggested to be important as its overexpression in cho-
linergic interneurons was sufficient to rescue depressive
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phenotypes [31]. Recently, activation of serotonergic innerva-
tion from dorsal raphe nucleus to NAc was also found to be a
prerequisite for normal social interaction in mice [222]. These
findings qualify petite assemblies of accumbal interneurons as
governing big networks associated with behavioral regimes.
The operational blowup of interneuron activities shall require
local and long-range neuro-glia coupling, to keep pace with
the extreme energy demand of real-time dynamics of various
molecular players and with the remodeling of synaptic mor-
phology and neuronal circuitries.

Basic Neurochemistry of Reward Quality
and Prediction

Reward sensitivity critically depends on the DA neurotrans-
mitter system [19, 47, 203]. Incoming DAergic activity from
the VTA in the NAc not only affects activity of the neuronal
network but also affects astrocytic calcium signals, since they
are dynamically modulated by D2R receptor activation [234].
In addition, DAergic stimuli induce the synthesis of modula-
tory neuropeptides, like dynorphin, enkephalin, neurokinin
A/B, neurotensin, and substance P in astrocytes. The action
mechanisms of neuropeptides in the NAc are particularly in-
teresting within the framework of the future development of
psychiatric drugs [59]. The DAergic VTA input in the NAc
can regulate DA level by feedback mechanisms using collat-
erals to midbrain DA neuron areas. The incoming VTA signal
affects neurons in the rostrodorsal and caudal parts of NAc
differently (cf. “hotspots” and “coldspots” referenced below)
based on separate co-expression patterns of various DA and
opiate receptor subtypes. Endogenous ligands of opioid recep-
tors, enkephalins, modulate locomotor activity by the facilita-
tion of presynaptic DA release. D1R-positive MSNs express
mu-opioid receptors predominantly, whereas D2R-positive
neurons respond to delta and kappa ligands [7, 29]. Mu-
opioid receptor agonists induce not only food intake but also
food-reinforced operant behavior [185]. In contrast, accumbal
DA receptor activation with amphetamine does not bear any
feeding motivation component ([198], but see [194, 217]);
nevertheless, it still produces self-stimulation behavior [23].
Opioids/cannabinoids or anandamide evoke their gustatory
hedonic reaction by activating receptors distributed in a
well-defined anatomical pattern, in the so-called “hotspots”
in the NAc shell [29, 78, 102, 119, 148]. Together with mu-
opioid receptors, delta- and kappa-opioid receptors are also
clustered in the rostrodorsal region of NAc, enhancing gusta-
tory hedonic reaction (“liking”). In contrast, the very same
receptors mediating hedonic suppression map to the caudal
part of NAc (“negative hedonic coldspot” [29, 30]).
Accumbal instrumental learning [13, 27, 40, 64, 72, 91,
145, 178, 195, 235] is a fundamental capability of an animal
to weigh the utility of selected actions against the expected
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outcomes. This concept involves occurrence-dependent
strengthening of response open to different interpretations—
that is, putting either “interaction” [171] or “reward” [18, 19,
180] aspects in the limelight. In this respect, NAc is consid-
ered to be the main hub of the brain that—depending on the
actual status of the ascending inputs from limbic structures—
exercises sharp bivalent control over the operant behavioral
output. Various types of in vivo NAc stimulation paradigms
consistently yield opposite animal behavior: either reward/
appetitive or stress/aversive. The receptive fields of afferent
fibers from prefrontal, entorhinal cortex, amygdala, or hippo-
campus show little spatial overlap, but individual NAc
projecting neurons (GABAergic MSNs) demonstrate a high
degree of synaptic convergence from the same input regions
[142, 143]. MSNs with mixed GABA-Glu phenotypes [156,
227] could well serve this principle. It is conceivable that at
mixed GABA-Glu synapses, the ratio of Glu over GABA co-
released from these cells depends on the strengths and fre-
quency of varied input stimulations [44, 141, 189]. Activity-
dependent shifting of the balance between GABA and gluta-
mate release allows fine-tuning of transmission probability via
changing prevalence of the inhibitory component (GABA).
This way, accumbal MSNs with mixed GABA-Glu pheno-
types predispose NAc to signal and drive positive or negative
conducts.

Unique Glu-GABA Drives of the NAc

The medial prefrontal cortex relays taste information from the
primary insular cortex, which constitutes the neuronal basis of
food intake and energy homeostasis [20]. Local inhibition of
ionotropic Glu receptors (or activation of GABA, receptors)
in the shell region of NAc evokes strong feeding response (or
positive place preference in other experimental paradigms) by
inhibiting MSNs that disinhibit upstream targets like the lat-
eral hypothalamus, ventral pallidum (VP), or VTA [198].
Early studies indicated that the major excitatory input from
the medial prefrontal cortex to the anterior pole of NAc
(cortico-accumbal pathway) uses Glu or Asp as neurotrans-
mitter [36, 37]. Subsequently, it was demonstrated that feed-
ing induces ambient (Glu) increase in the lateral hypothalamus
and decrease in the accumbal (Glu) that was detected by mi-
crodialysis probes inserted into the NAc [164]. NAc receives
Gluergic inputs from the ventral hippocampus [12, 21, 95]
suggesting that depression and drug/ethanol reward be-
haviors are furthered via the strengthening of these syn-
apses. Recently, a chemogenetic approach has been ap-
plied to distinguish the contribution of the activation of
VTA-GABA neurons from other mesoaccumbal nerve ter-
minals to incentive salience. The results indicate that
VTA-GABA neurons, but not GABA projections, disrupt
incentive salience processes [221].
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Several lines of evidence support the crucial aspects of NAc
in drug reward modulation [10, 60, 103, 157, 243]. Upon
chronic exposure to cocaine, the accumbal alpha-amino-3-hy-
droxy-5-methyl-4-isoxazole propionate receptor (GluA2/
AMPA receptor) is upregulated [92], and NMDA receptor—
dependent long-term depression in MSNs in the core region
of NAc is suppressed [88]. It is to note that extinction and
reconsolidation of cocaine seeking behavior monitored by
mass spectrometry—based phosphoproteomics disclosed
Gluergic basolateral amygdala inputs to NAc as being crucial
for cocaine cue exposure [209]. The drug-seeking behavior
could be associated with synaptic changes, such as dendritic
spine head diameter and AMPA/NMDA receptor ratio [197].
Extracellular Glu in the NAc is modulated by group 2 metab-
otropic Glu receptors [233]. Group 2 and 3 metabotropic Glu
receptors operate at prefrontal cortical axon terminals and
modulate DAergic transmission at the same synapse [121].
Although Glu or GABA activation can evoke similar
positive/negative motivational patterns, the effect of GABA
holds a hedonic component as well. The major source of
GABAergic innervation in the NAc arises from local aspiny
interneurons [7, 15]. Apparently, these neurons provide the
feed-forward inhibition of neighboring MSNs during excitato-
ry stimulation from descending cortical and hippocampal
structures. Presynaptic GluK1/2 heterodimer kainate receptors
at cortical afferents play a major role in this inhibition of MSN
activity, because GluK1/2 receptor activation decreases gluta-
matergic but increases GABAergic synaptic transmission in
the NAc [28, 39].

The “all or none” type of control of fast-spiking MSNs by
the GABAergic PV-containing accumbal interneuron ensem-
ble implies unique functional significance [101, 104, 238]
such as sensitization [208]. The bivalent nature of NAc output
[167, 168, 170] to different basal ganglia and mesencephalic
structures is discernible already at the electrophysiological
characteristics of the MSNs that also show bistability [105].
MSNs display spontaneous transition of membrane potential
between a more hyperpolarized, resting “down state” and a
more depolarized, active “up state”—only when barrages of
action potentials can be discharged [142]. Similarly, the influ-
ence of hippocampal interneurons on the output of
cooperating principal cells would serve to induce synaptic
enhancement in target structures during behavioral inactivity,
consumer behaviors, and slow-wave sleep [25]. Based on
findings showing that cortical astrocytes play an indispensable
role in cortical state switching [162] and even in the genera-
tion of genuine, physiological slow-wave activity in vivo
[200], it is suggested that astrocytes may trigger the same
coordination of neuronal “up” and “down” state oscillations
of accumbal MSNs. Consequently, the heavily gap junction—
coupled, easily synchronizable astrocyte network may signif-
icantly contribute to the coordinated activation of the NAc
circuitry, eventually establishing synaptic reinforcement (see

also “Rising Astrocyte Waves: New Layers of Accumbal
Neuro-Glia Coupling” section).

Modulation of Inhibitory Signaling
by Converging Metabolic and Reward
Pathways

Emerging themes, like cellular stress, hypoxia, and inflamma-
tion, are examples of functional association between signaling
molecules and citrate energy cycle (CEC) metabolites [211],
primarily succinate (Sucn) [34, 124, 158, 202]. Fumarate ac-
cumulation associated with glutaminolysis also presents a
hallmark of cellular defense mechanism [9]. Mutations of
the mitochondrial succinic semialdehyde gene (aldo-keto
reductase Aldh5A1) cause succinic semialdehyde dehydroge-
nase (SSADH) deficiency [120, 219]. In this case, the conver-
sion of SSA to Sucn by SSADH is diminished, while the
accumulation of y-hydroxybutyric acid (GHB) from GABA
is maintained. Different responses to methadone maintenance
treatment have been explained by a deviation of GABA ca-
tabolism from the CEC due to altered Aldh5A1 expression in
opioid-dependent patients [48].

Genes repressed in the NAc and the frontal cortex (FC) of
cocaine-, morphine-, and ethanol-vulnerable Lewis rats [73]
help to uncover associated signaling and metabolism, under-
lying the manifestation of addiction, an important behavioral
extremity. Higuera-Matas and co-workers [73] highlighted
some genes as being associated with (i) changes in the stria-
tum of cocaine-sensitized rats (parvalbumin/Pvalb) [208]; (ii)
drug addiction (sphingomyelin synthase, Sgms2) [177]; and
(iii) methamphetamine (Meth)-induced psychosis (NAD(P)H
dehydrogenase, Nqo2) [79, 146]. Importantly, genes for Sucn
receptor 1 (Sucnrl) and aldo-keto reductase AKRIBI10
(Akr1bl10) involved in Sucn biosynthesis were also repressed
in both the FC and the NAc of Lewis rats [73]. Indeed, the
significant role for PV-positive accumbal interneurons in
drug-related learning is substantiated by recent data demon-
strating PV-positive GABAergic interneurons as a prerequisite
for psychostimulant (amphetamine)-induced behavioral ad-
aptation [[223]; discussed by [226]].

Expression data alone may not be sufficient to explain
changes in network stability or infer causality in reward/
addiction process. Yet, these considerations and findings
may allow speculations on a possible functional link be-
tween the danger signal Sucn [202] and reward/addiction
processes. Both the coincidence and synergy of ATP- and
Sucn/GHB-responsive astrocytic calcium transients to-
gether with the presence of high-affinity Sucn/GHB rec-
ognizing sites in the NAc [128—133] strongly imply the
involvement of a Sucn-responsive astrocytic target. This
positive feedback mechanism supports the nucleation-type
model [118] of the astrocyte network activation dynamics
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in the NAc. The “Sucn signal” could directly target some
GPR91-type G protein—coupled Sucn receptors [8, 65,
131, 166, 175, 179, 210]. The expression of P2Y1 recep-
tors in accumbal astrocytes [49] and P2Y1 receptor antag-
onist sensitivity of the Sucn- and ATP-responsive calcium
transients sensibly predicts interference of Sucn and P2Y1
receptor—-mediated calcium mobilization [131].
Nevertheless, the potential validation of brain-type Sucn
receptors may reveal distinguishable binding crevices
(Table 1) [242]. Sucn binding could also be linked to
the mitochondrial Sucn dehydrogenase for which Sucn is
the substrate [84, 199, 201]. Also, Sucn may function
through some mitochondrial dicarboxylate carriers
(Table 1) [80, 139, 150]. It is worth mentioning that neu-
ronal activity—independent calcium bursts have been de-
scribed in the Bergmann glia of behaving animals and
were found to be purinergic [140]. It is conceivable that
coincidence of both Sucn- and ATP-responsive calcium
bursts at the blood-brain barrier (BBB) [131] may in turn
reflect neuron-independent activation of Sucn-deficient
astrocytes by the micromolar Sucn supply from blood
[65].

Rising Astrocyte Waves: New Layers
of Accumbal Neuro-Glia Coupling

Maintenance of the significant energy demand of bal-
anced Glu-GABA signaling depends on proper neuro-
glia metabolic coupling in various physiological and dis-
ease conditions [14, 68, 69, 89, 129, 131, 149, 174, 200,
213, 231]; for reviews see [4, 70, 86, 87, 96, 97, 110, 184,
216]. This dependency is highlighted by the observation
that complexes between the astrocytic Glu transporter
EAAT2 and the «2 isoform of Na*/K*-ATPase are con-
centrated in the perisynaptic astrocytic processes (PAPs),
which also indicates a unique role for Glu homeostasis
[123]. Thus, we coin the term tripartite metaplasticity that
signifies not only the prior record of the synaptic activity
of the neuronal (see for example [207] and reference here-
in) but also that of the astrocytic moduls within the syn-
apse, whereby a new level of “plasticity of synaptic
plasticity” (metaplasticity [1, 2]) is attained.
Accordingly, we suggest astrocytic activation [3] and tri-
partite metaplasticity [2, 33, 56, 110], 2011, 2013; [125,
193] as new substrates of behavioral motivation to action
driven by the NAc.

Reactive astrogliosis associated with elevated SSA reduc-
tase AKR7A2 [159] may serve as a mechanistic clue for the
early appearance of both astroglyopathy in cortico-basal de-
generation [ 114] and modulation of reward/addiction behavior
[24]. For example, chronic drug abuse is characterized by
astrocytic hypertrophy, astrocytopathy, and astrogliosis [53,
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94]. These morphological and pathological changes trigger
Glu uptake via EAAT2. The ensuing alteration of Glu and
GABA homeostasis and pertinent metabolism [11, 181] cause
altered glial fibrillary acidic protein (GFAP) [54, 183] and
EAAT?2 expressions [187].

Regarding the astrocytic control over GABAergic ac-
tions, tonic inhibition of the extrasynaptic d-containing
GABA, receptors can be induced by GABA release
through the astrocytic GABA transporter (GAT3) due to
EAAT?2 activation. Moreover, the neuronal activity-
dependent exchange of GABA for Glu also influences
the power of in vivo gamma oscillations as monitored in
the rat hippocampus [69]. This mechanism is adjusted by
astrocytic GABA production from polyamines by mono-
amine oxidize B [69, 236]. Several lines of pharmacolog-
ical evidence suggest that turning excitation into inhibi-
tion by astrocytes may also be relevant to NAc.
Reportedly, chronic monoamine oxidase B inhibitor treat-
ment diminished cocaine reward in mice [74]. Also,
extrasynaptic d-containing GABA, receptors in the NAc
dorsomedial shell played a role in alcohol intake [138]. It
is proposed therefore that the astrocytic Glu-GABA ex-
change mechanism revealed in the hippocampal formation
and the striatum [68, 69, 231]; for reviews see [86, 87, 93,
96, 97, 216] may also modulate NAc functions by
adapting tonic inhibition. It is tempting to speculate about
the likely correlation of connexin 43 (Cx43)—positive as-
trocytes in the NAc [129] with the expression of astrocyt-
ic GAT3 and EAAT2 in light of the Glu-GABA exchange
mechanisms. Also, the induction of EAAT2 expression
and trafficking or the motility of the PAPs ([87] and ref-
erences cited therein) raises the possibility of excitation-
induced co-localization of EAAT2 with GAT3 [71, 110,
135, 144, 152]. It is noteworthy that the “gliocentric”
(references cited above, and [172]) and “neurocentric”
[147] views of inhibitory plasticity corroborate in terms
of the chloride gradient shift across the neuronal
membrane.

One of the most remarkable manifestations of chloride
signaling in the bidirectional communication between
neurons and astrocytes in the brain [229] is the spatiotem-
poral intrinsic optical signal (IOS). The IOS, generated by
action potentials and robustly enhanced by disinhibition
via GABA, receptor blockade, progresses by activation
of Glu receptors and astrocytic Glu transporters [149].
Alteration of tonic inhibition due to EAAT2-mediated
Glu-GABA exchange occurs at the astrocytic leaflets pref-
erentially contacting synapses [51] of synaptic islands
[63]. These findings also point to the significance of
EAAT?2 activation—induced astrocytic GAT3 reversal not
only in terms of extrasynaptic GABA, receptor activa-
tion but also as a mechanism to sensitively modulate
chloride gradient and neuronal excitability in this way
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Table 1

in complex with (R)-MRS2500 antagonist™*

Comparison of putative binding sites of potential Sucn targets in the brain
Potential Sucn targets Putative binding site* References
P2Y1 Arg287, Leudd, Zhang et al.,
PDB code: 4XNW 2015

based on the structure of bovine rhodopsin

Met251, Arg252

Sucn receptor model Arg99, Arg252, | He et.al., 2004
based on the structure of bovine rhodopsin | Arg281
Sucn receptor model*** Arg99, Molnar et al.,

2011b

Sucn receptor model

Arg255, Arg281,

Trauelsen et al,,

based on the structure of P2Y1 Aspl74 2017

Sucn dehydrogenase Gly63, Sun et al., 2005;

PDB code: 1ZPO0, porcine numbering Glu267, Arg298, reviewed in
Arg409, Alad12 | Iverson, 2013

Mitochondrial dicarboxylate carrier Palmieri et al.,

(DIC; SLC25A10) Arg69, Arg77, 1996

The model of DmDIC1p based on a Argl64, Glyl65, Arg257 | lacopetta et al.,

mitochondrial ADP/ATP carrier. 2011

VcINDY

PDB code: 5UL7

Divalent anion/Na* symporter from vibrio
cholarae, homologous to mammalian
sodium-dicarboxylate cotransporter 3
(NADC3)

Nie et al., 2017.

*Basic, acidic, polar, or neutral characters of amino acid residues are indicated with blue, red, yellow, or black colors, respectively

**P2Y1 receptor couples via Gq proteins and stimulates phospholipase C followed by increases in IP3 and mobilization of calcium from intracellular

stores [220]
*##% Amino acids surrounding Sucn within 4 A

[165]. From a teleological point of view, MSNs with
mixed glutamatergic-GABAergic phenotypes fit the
mechanistic clue.

Glu receptor pharmacology may also give an insight into
the role of astrocyte activation mechanisms. For example, ac-
tivation of the group 1 metabotropic Glu receptor (mGluR5)
expressed by NAc-resident astrocytes results in a prolonged
astrocyte-dependent gliotransmission and stimulation of
NMDA receptor—dependent slow inward current in MSNs
[41, 46]. In addition to its vital role for promoting resil-
ience to chronic stress [191], accumbal mGluR5s do im-
pact drug-related behaviors. Furthermore, the inhibitory
control of astrocyte activation pathways by antagonists
of mGIuRS5 can interfere with cocaine-seeking behavior
[111, 204]. Cocaine withdrawal impairs mGluR5-
dependent long-term depression in the shell neurons of
NAc [77]. Tt is to note that mGluR1 and mGIluR5

modulate distinct excitatory inputs to the NAc shell
[212]. The involvement of astrocytic metabotropic Glu
receptor is therefore consistent with the positive feedback
cell signaling nucleation model of astrocyte dynamics
[118].

Further, we can speculate about the significance of the
involvement of other G protein—coupled receptors, such
as accumbal P2Y1 or Sucnl. Indeed, we can observe
slow, recurrent calcium dynamics at a rate of about 3—4
every 10 min evoked by ATP or energy metabolites [129,
131]. Such a recurrent and pacemaker activity of astro-
cytes has already been described [153, 160, 161] and
been related to gliotransmitter (Glu/Asp) release—
dependent sustained neuronal activity. By itself, astrocyte
activation—related intermittent calcium and sodium tran-
sients [[86]; Kirischuk et al., 2017] are consistent with
the ideas of (i) flexible tuning of the tripartite synapses,
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(ii) linked domains of astrocytic syncytium via neuro-glia
coupling, and (iii) negative feedback through the astro-
cytic Glu-GABA exchange signaling. According to this
hypothesis (Fig. 1), astrocytes are ideally positioned to
control the plasticity of mixed Gluergic/GABAergic syn-
apses. Depending on local activation and propagating
Ca®* waves through the astrocytic syncytium due to
high-frequency stimulation, cocaine exposure, lactation,
or other stimuli, NAc astrocytes can adjust their mor-
phology [155, 205, 206] resulting in different coverages
of the synapse. Since Glu uptake and spillover is

crucially dependent on astrocytic coverage, the tightness
of astrocyte wrapping of the synapse can finely tune the
balance between inhibitory and excitatory outcomes
(Fig. 1). Indeed, in a rodent model of ethanol self-
administration using astrocyte-specific designer receptors
to reduce ethanol self-administration, Glu-based bidirec-
tional neuron-astrocyte communication was found in the
NAc core, claimed to be important for circuitry guiding
motivated behavior [24]. Evidence on interglial gap junc-
tion (GJ) channel coupling as a causative agent was also
provided [24]. Similarly, activation of an astrocyte-

Vessel
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negative
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Local inhibition
Volume excitation

Fig. 1 Astrocytes may dynamically control plasticity of mixed inhibitory
and excitatory synapses. In the tightly wrapped synapse (left), Glu
transporters facing the synapse can quickly take up released Glu,
thereby preventing the activation of extrasynaptic Glu receptors. The
simultaneous activation of synaptic GABA and Glu receptors results in
balanced excitation and inhibition. During intense excitation, EAAT2
activity may also induce GABA release by reverse transport, thereby

@ Springer

generating tonic inhibition [68, 69]. When astrocytic leaflets are
withdrawn from the synapse (bottom), reduced Glu uptake leads to
activation of presynaptic mGluRs inhibiting further Glu release and of
extrasynaptic Glu receptors increasing tonic excitation. Asymmetric
astrocytic coverage of axonal boutons and dendritic spines (right) [S1]
favors reduced Glu release by activating presynaptic mGluRs, resulting in
a dominantly inhibitory response following GABA/Glu co-release
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specific designer Gq receptor selectively initiates Glu
release and inhibits cue-induced cocaine seeking [182].
Increased neuronal activity and long-term potentiation
induce a broader coverage of synapses by PAPs.
Strong, prolonged activation, like lactation, results in a
decrease in PAP coverage (Fig. 1) [17].

The Macrosystem NAc—from Motivation
to Action

Macrosystem (Fig. 2) metaplasticity may possibly be better
characterized as an arousal-driven specific acquisition/

approach and reinforcement of accumbal circuitries, rather
than as a general adaptive NAc response [22, 23, 57, 61, 82,
127, 136, 154, 176, 230, 238, 240]. The NAc is embedded
into the larger cortico-basal ganglia-thalamo-cortical loop and
is considered to be a main integration center of the basal gan-
glia. Being part of the ventral striatum, the major connection
to the NAc is from afferents of pyramidal cells populating the
layers II-VI of parts of the prefrontal cortex, with an indirect
massive contribution from the anterior cingulate cortex. These
afferents supply the higher order perceptive, homeostatic,
anticipative, and emotional state information to the NAc and
represent a major route of sensory information toward the
NAc together with some direct thalamic inputs. In addition,

olfactory, taste, somato-, viscero-, auditory, visual
sensory information

hippocampus; anterior thalamic
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Fig. 2 Afferent and efferent connections of the accumbens/ventral
striatum. The scheme represents the neuronal pathway interconnectivity
converging onto and originating from the nucleus accumbens (NAc)/
ventral striatum/pallidum. Different modalities of sensory information
reach the NAc through the sensory thalamic nuclei directly and
indirectly, too. These glutamatergic inputs (black arrows) are combined
in the NAc with monoaminergic (dopaminergic and serotonergic) inputs
(green) from the ventral tegmental area (VTA) and the raphe nuclei,
respectively. The projections from the NAc are inhibitory (red arrows).
Efferent projections to cerebral brain regions initiate motivational and
motor responses, while indirect output to the lateral hypothalamus and
the amygdala initiates autonomic and emotional responses. Thick arrows
represent particularly massive projections. The white matter tracts where
the different pathways are located are indicated by numbers as follows:
(1) ascending somato- and viscerosensory pathways to the thalamus; (2)
thalamocortical radiation; (2b) sensory inputs to the posterior insular
cortex; (2c) sensory inputs to the anterior cingulate cortex; (3) thalamo-
striatal and pallidal projections; (4) hippocampal-anterior thalamic-
anterior cingulate cortex connections through the “Papez circle”; (5)
anterior insular projections to the anterior cingulate cortex (the two
hubs of the salience network); (6) direct anterior insular projections to
the prefrontal cortex (to the ventrolateral and dorsolateral prefrontal

cortex); (7) bilateral anterior cingular-prefrontal cortical fiber
connections; (8) prefrontal neuronal feedback to the nucleus
accumbens; (9) bilateral anterior cingular-orbitofrontal cortical fiber
connections; (10) bilateral connections between the orbitofrontal cortex
and the amygdala (uncinate fascicle); (11) anterior cingulate projections
to the hippocampus through the parahippocampal cortex; (12) amygdala
connections with the hippocampus (via peri- and entorhinal cortex); (13)
descending amygdala projections to the lower brainstem (partly through
the stria terminalis); (14) stria medullaris thalami; (15) fasciculus
retroflexus; (16) nucleus accumbens, ventral striatal/pallidal projections
to the orbitofrontal cortex, basal forebrain, and septum; (17) fibers from
the nucleus accumbens/ventral striatal and pallidal neurons in the fronto-
parietal neuronal connections (“dorsal default mode network™); (18)
nucleus accumbens, ventral striatal/pallidal projections to the premotor
and motor cortical areas; (19) ascending brainstem dopaminergic (from
the ventral tegmental area) and serotinergic fibers (from the midline
midbrain raphe nuclei) to the thalamus (one portion of the ascending
reticular activating system); (19b) ascending brainstem dopaminergic
and serotinergic fibers to the insula; (20) medial forebrain bundle; (21)
descending fibers from the lateral hypothalamus to the lower brainstem;
(22) ventral amygdalofugal pathway
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a powerful glutamatergic pathway from the basolateral amyg-
dala innervates both the shell and core of the NAc that are
implicated in motivational salience, affective behavior, and
emotion. The ventral pallidum is the primary output area of
NAc. Efferent projections from the NAc are ultimately cortical
areas, such as the precuneus via the posterior cingulate cortex
and the motor cortex to provide incentives for the execution of
motor responses. The NAc can also affect autonomic and
emotional responses via the amygdala and the lateral hypo-
thalamus. Importantly, the mesolimbic dopamine (DA) path-
way partially via the lateral hypothalamus is responsible for
positive reinforcement by reward that can be traced to NAc
and ventral pallidum. The more medial areas of the hypothal-
amus send aversive signals to the same receivers; thus, high
spatial and functional selectivity must exist among the adja-
cent mesolimbic DA fibers. The NAc also receives potent
serotonergic inputs that bind to several types of SHT receptors
(5HT1-4). Serotonin potently interferes with the mesolimbic
DA pathway and overrides the inhibitory action of DA in
selected neurons in the shell region. The NAc can also affect
these brainstem centers directly and also indirectly via the
orbitofrontal cortex, the basal ganglia, the septum, and the
lateral habenula. Several lines of evidence can be found in
the realm of expert’s practice and relevant scientific literature.
For example, the NAc/ventral striatum of the accumbal
macrosystem drives and reinforces reward-associated feeding
and sexual or somatic and visceral (loco)motor actions, in-
cluding repetitive behavior [20, 32, 35, 42, 43, 55, 66, 73,
90, 98, 99, 106, 117, 173, 214, 232, 244]. Motivations, shap-
ing the emotional [76] or cognitive addiction behavior [81, 83,
190, 196] via activating the NAc-hippocampus and
hypothalamus-NAc circuits, respectively, have the potential
of alternative execution as well. Evidently, the various higher
order brain functions, like the motivational, adaptive, and
goal-directed behaviors impinging upon and originating from
the NAc, underlie why this basal ganglia nucleus function is
prone to be hijacked by illicit substances and neurotransmitter
mimetics in an abusive manner.

Conclusions

Future research is needed to unravel the context in which
astrocyte activation may specifically stimulate neuronal en-
sembles of the accumbal macrosystem to function in different
directions [26, 58, 115, 116]. Although accumbal circuit con-
nections and silent synapses grant a high degree of both spec-
ificity and neuronal metaplasticity potential [108, 109, 151],
there seems to remain room for including additional concepts,
such as astrocytic “randomness” arising from activity-
dependent rearrangements of energy metabolism, morpholo-
gy, GJ-coupled domains, distal astrocytic processes, or synap-
tic leaflets during later stages of reinforcement. These studies
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may also imply that astrocytes do not only act in response to
accumbal neuronal ensembles but also combine metabolic
energy, they modulate signaling by supporting different (pos-
itive and negative) outcomes. Beyond the potential signifi-
cance of astrocytic interleukin-6 [113] and leptin [134, 224]
signaling, or ionotropic/metabotropic Glu receptor subunit-
specific synaptic potentiation [3, 75, 108-110, 126], the en-
hanced allocation of reward-associated gamma oscillations
[85] may open up novel therapeutic opportunities.

Below the thunders of the upper deep,

Far far beneath in the abysmal sea,

His ancient, dreamless, uninvaded slee

The Kraken sleepeth:

Tennyson, Alfred Lord: The Kraken
http://www.poemhunter.com/poem/the-kraken-2/
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