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Abstract
Rearing systems play an important role in animal welfare, health and the composition of the gut microbiome. Therefore, 
the purpose of this study was to investigate the effects of different rearing systems on the composition and function of cecal 
microbiota in chickens. The 120-day-old Lohmann hens of cage rearing systems (CRS) and free-range systems (FRS) were 
studied. The cecal bacterial populations of hens were surveyed by high-throughput sequencing (HTS) of the bacterial 16S 
rRNA hypervariable region V3–V4 combined with metagenomic sequencing analysis. The 16S rRNA sequencing analysis 
showed that the cecal microbiota differed between the FRS and CRS. The three most abundant bacteria phyla in the two sys-
tems were the Bacteroidetes (> 48%), Firmicutes (> 37%), and Proteobacteria (> 6%), the Deferribacteres (> 2.4%) were found 
in FRS and almost absent in CRS (< 0.01%). The three most abundant genera were the Bacteroides, Rikenellaceae_RC9, and 
Faecalibacterium, and we found relative abundance of the Parabacteroides (P < 0.05), Prevotellaceae_Ga6A1 (P < 0.01), 
unclassified Proteobacteria (P < 0.05), and unclassified Spirochaetaceae (P < 0.01) was greater in FRS, whereas abundance 
of Faecalibacterium, Ruminococcaceae, and Helicobacter was greater in CRS (P < 0.05). Functional gene classification of 
metagenomic sequencing suggested that energy production and conversion, carbohydrate transport and metabolism, as well 
as amino acid transport and metabolism were significantly more abundant in FRS, and we identified a range of antibiotic 
resistance categories in gut microbes of hens reared under both systems. We confirmed differences in microbe gut composi-
tion and function in hens reared using two contrasting systems, and ARGs were also identified in the microbiota of these 
hens. This work has produced new data for laying hens in different production systems and increased the understanding of 
intestinal microorganisms in laying hens.

Keywords 16Sr RNA sequencing · Metagenomic sequencing · Cecal microbiota · Hen rearing systems · Microbe 
composition and function

Introduction

It is well known that the trend of future development is 
healthy and rational rearing that has become a hot spot for 
livestock husbandry. The rearing systems of hens is closely 
related to the health (Siegerstetter et al. 2017), physiological 

state (Best et al. 2017), and animal welfare (Wang et al. 
2016a). Rearing systems affect the microbe composition of 
the host gut (Stanley et al. 2013a; Waite and Taylor 2015) 
that plays an important role in the host’s health (Clavijo 
and Vives Florez 2018) There are more than 100 bacterial 
species in the intestinal tract, which are termed intestinal 
microbiota (Ubeda et al. 2017), where their community 
composition tends to be stable in a healthy host. The intes-
tinal tract is a metabolic organ of the host that is involved 
in feed conversion (Cui et al. 2017), absorption of nutrients 
(Pan and Yu 2014), and development of the immune system 
(Yeoman et al. 2012) including prevention of colonization 
by pathogens (Clavijo and Vives Florez 2018). Disruption 
of the dynamic balance of intestinal microbiota in livestock 
and poultry leads to impaired digestion and immunity, and 
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an increase in susceptibility to pathogens that result in diar-
rhea and reduced growth performance (Cao et al. 2013).

Chyme residues, comprising gastric juice and partly 
digested food, reach the cecum and are converted to other 
substances (Adil and Magray 2012). Avian intestinal flora in 
the cecum comprise high proportions of anaerobic bacteria 
(Barnes 1972), and the cecum is important for the survival 
and activity of the intestinal microbiota in chickens. Previous 
studies have shown that the intestinal microbes of chickens 
are closely related to the health status of the host and level 
of production intensity. For example, composition and func-
tion of intestinal microbiota of chickens differed between 
commercial large-scale and semi-wild production systems, 
and compared with microbiomes in broiler chickens, that of 
free-range chickens contained more genes involved in the 
acetate production pathway (Mancabelli et al. 2016), and 
a previous study found variations in microbe composition 
and diversity among populations of chicken cecal bacteria 
from five locations in Tibet (Lhasa, Ganzi, Aba, Qinghai, 
and Diqing) (Zhou et al. 2016).The intestinal microbiota of 
broiler chickens are affected by litter management (Wang 
et al. 2016a).

While there is a wealth of research about intestinal micro-
biota in broiler chickens that are bred purely for meat pro-
duction, little is known about intestinal microorganisms 
(Han et al. 2016) or effects of rearing systems on their com-
position and function in hens that are used for egg produc-
tion. Therefore, the aim of this study was to investigate the 
effects of different rearing systems on gut microbes in hens 
to improve rearing information for hen breeders and farmers.

Materials and methods

Animals and sample collection

We compared the intestinal microbiome in Lohmann hens 
reared within the same geographical location (in Hefei, 
Anhui Province, China) using two rearing systems: CRS 
rearing is characterized by high bird density that limits 
movement, the feeding density is 2 chickens per cage, 1 
layer has 100 cages, 1 row has 6 layers. While FRS rearing 
comprises free-ranging birds in a natural environment, the 
breeding density is 120 chickens per 660 square meters. All 
chickens have no history of intestinal infectious disease. We 
randomly selected ten individuals with similar body weight 
(1500–1550 g) at 120-day old Lohmann hens from the farms 
that were immediately dissected using sterile scissors to 
aseptically remove the intestines from the abdominal cav-
ity; contents of cecal were gently squeezed out, and the cecal 
contents were collected aseptically, rapidly injected into liq-
uid nitrogen, and then stored at − 80 °C prior to analysis.

DNA extraction and sequencing

Microbe DNA was extracted using a Qiagen QIAamp Fast 
DNA Stool Mini Kit, according to the manufacturer’s pro-
tocols. Final DNA concentration and purification were 
determined using a NanoDrop 2000 UV–Vis spectropho-
tometer (Thermo Scientific, Wilmington, USA). The DNA 
quality was tested by 1.0% agarose gel electrophoresis. 
The V3–V4 hypervariable regions of the bacteria 16S 
rRNA gene were amplified with primers 338F (5′-ACT 
CCT ACG GGA GGC AGC AG-3′) and 806R (5′-GGA CTA 
CHVGGG TWT CTAAT-3′) on a thermocycler PCR system 
(GeneAmp 9700, ABI, USA), and then PCR products were 
extracted from a 2.0% agarose gel, further purified using a 
AxyPrep DNA Gel Extraction Kit (Axygen Biosciences, 
Union City, CA, USA), and quantified using QuantiFluor-
ST (Promega, USA), according to the manufacturer’s 
protocol.

Equimolar amounts of the purified amplicons were 
pooled and paired-end sequenced (2 × 300) on the Illu-
mina MiSeq platform (Illumina, San Diego, CA, USA), 
with standard protocols (Majorbio Bio-Pharm Technology 
Co., Ltd, Shanghai, China). The raw FASTQ files were 
demultiplexed and quality-filtered with Trimmomatic, and 
then merged using FLASH, with the following criteria: 
(1) reads that were truncated at any site, with an aver-
age quality score of < 20 over a 50-bp sliding window; 
(2) primers were exactly matched, two nucleotide mis-
matches were allowed, and reads containing ambiguous 
bases were removed; and (3) sequences overlaps > 10 bp 
were merged according to the overlap sequence. Sequences 
with ≥ 97% similarity were clustered into operational taxo-
nomic units (OTUs) with UPARSE (version 7.1; http://
drive 5.com/upars e/), and chimeric sequences were identi-
fied and removed with UCHIME. The taxonomy of each 
16S rRNA gene sequence was analyzed with the RDP 
Classifier algorithm (http://rdp.cme.msu.edu/) against the 
Silva (SSU123) 16S rRNA database, using a confidence 
threshold of 70%.

We used DNA that was fragmented to 300 bp with a 
Covaris M220 focused ultrasonicator (Gene Company 
Limited, China) to construct the paired-end library, which 
was prepared with the TruSeq™ DNA Sample Prep Kit 
(Illumina). Adapters containing the full complement of 
sequencing primer hybridization sites were ligated to the 
blunt-ended fragments, and paired-end sequencing was 
performed on the Illumina HiSeq 4000 platform (Illu-
mina Inc.) at Majorbio Bio-Pharm Technology Co., Ltd 
(Shanghai, China) with the HiSeq 3000/4000 PE Clus-
ter Kit and HiSeq 3000/4000 SBS Kits, according to 
the manufacturer’s instructions (http://www.illum ina.
com). The 3′ and 5′ ends were then stripped with SeqPrep 
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(https ://githu b.com/jstjo hn/SeqPr ep), and the low-quality 
reads (length < 50  bp, quality value < 20, or N bases) 
were removed with Sickle (https ://githu b.com/najos hi/
sickl e). The reads were aligned to the chicken genome 
(https ://www.ncbi.nlm.nih.gov/genom e/?term=chick en) 
with BWA (http://bio-bwa.sourc eforg e.net), and any hit 
that associated with a read with a corresponding reads 
was removed. We used a de-Bruijn-graph-based assem-
bler (SOAPdenovo, http://soap.genom ics.org.cn, version 
1.06) for the short reads (Li et al. 2008), and the K-mers, 
varying from 1/3 to 2/3 of the read length, were tested 
for each sample. We evaluated the quality and quantity 
of the scaffolds generated by each assembly and selected 
the best K-mer, i.e. the K-mer that yielded the minimum 
scaffold number and maximum values for N50 and N90. 
The scaffolds > 500 bp in length were then extracted and 
broken into contigs, without gaps, for gene prediction and 
annotation.

Sequencing data analysis

The 16S rRNA data and their richness were investigated with 
the Quantitative Insights Into Microbial Ecology 1.9.0 soft-
ware (QIIME; http://qiime .org). The Illumina adapters and 
primers were removed from the raw sequences. The trimmed 
forward and reverse sequences were combined (Eren et al. 
2013). These sequences were clustered into OTUs (97% 
similarity) with UCLUST (Edgar 2010). The reference OTU 
sequences were taxonomically assigned with the UCLUST 
Consensus TaxonAssigner (DeSantis et al. 2006) against the 
Greengenes database (McDonald et al. 2012), with a 0.5 
confidence threshold, and identified to the species level. Rar-
efied OTUs were used to measure the bacterial richness from 
the total lengths of the phylogenetic branches (Faith and 
Baker 2006) and the relative proportions of rare sequences 
(Chao1) (Neufeld and Mohn 2005). The unweighted UniFrac 
distances (Chang et al. 2011) were used to compare the bac-
terial communities depending on the chicken breed. Based 
on the sample information, a redundancy analysis (RDA) 
with clustered OTUs was used to compare the chicken breed 
with the bacterial community structures using the R statisti-
cal software version 3.3.0 (Stanley et al. 2013b). To assess 
whether both chicken-breed-specific microbiomes were sig-
nificantly distinguished, we used a nonparametric statistical 
test, analysis of similarity (ANOSIM). The significance of 
differences between groups was determined with permuta-
tions (n = 999) using the vegan package in the R statistical 
software. Using mothur software, co-occurrence analysis 
among genera was investigated by calculating C-scores, 
and Spearman’s rank correlations of the 50 most abundant 
genera were calculated. Network analysis using the genera 
with rho > 0.6 and p < 0.01 was visualized using Cytoscape 
(version 3.4.0).

The open reading frames (ORFs) in each metagenomic 
sample were predicted with MetaGene (http://metag ene.
cb.k.u-tokyo .ac.jp/) (Noguchi et al. 2006), and the predicted 
ORFs with lengths > 100 bp were extracted and translated to 
amino acid sequences using the National Center for Biotech-
nology Information (NCBI) translation table (http://www.ncbi.
nlm.nih.gov/Taxon omy/taxon omyho me.html/index .cgi?chapt 
er=tgenc odes#SG). The sequences from gene sets with 95% 
sequence identity (90% coverage) (Fu et al. 2012) were clus-
tered as a nonredundant gene catalogue with CD-HIT (http://
www.bioin forma tics.org/cd-hit/). After quality control, the 
reads were mapped to the representative genes with 95% iden-
tity using SOAPaligner (http://soap.genom ics.org.cn/), and the 
gene abundance in each sample was evaluated.

We used BLASTP (version 2.2.28+; http://blast .ncbi.nlm.
nih.gov/Blast .cgi) (Altschul et al. 1997) for taxonomic anno-
tation, by aligning the nonredundant gene catalogues against 
the NCBI nonredundant (NR) database, with an e-value cut-
off of 1e−5. An analysis of the ORF annotations (Clusters of 
Orthologous Groups [COG]) was performed with BLASTP 
against the eggNOG database (v4.5) (Jensen et al. 2008), with 
an e-value cutoff of 1e−5. Kyoto Encyclopedia of Genes and 
Genomes (KEGG) pathway annotation was performed with 
a BLASTP search (version 2.2.28+) against the KEGG data-
base (http://www.genom e.jp/kegg/) (Xie et al. 2011), with an 
e-value cutoff of 1e−5. Carbohydrate-active enzyme annota-
tions were made with hmmscan (http://hmmer .janel ia.org/
searc h/hmmsc an) against the CAZy database v5.0 (http://
www.cazy.org/), with an e-value cutoff of 1e−5.

Statistical analyses

Differences between two groups were analyzed using Student’s 
t test in the SAS statistical software package version 9.3 (SAS 
Institute Inc., Cary, NC, United States). and we used the sta-
tistical analysis of metagenomic profiles (STAMP) probabil-
ity model to identify biologically relevant differences between 
metagenomic communities.

Data deposition

The raw 16S rRNA gene sequences are accessible through 
Sequence Read Archive (SRA) study accession number 
SRP139155, and the raw shotgun metagenomic data are acces-
sible through SRA study accession number SRP158884.

Results

16S rRNA profiling of FRS and CRS

We obtained a total of 528,592 sequenced reads after quality 
control that averaged 52,859 reads per sample, and average 
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sequence length was 438 bp (Table S1). We used Shannon 
curve and Chao index to evaluate the amount of sequence 
data for all samples: there was an increase in the number of 
bands obtained by sequencing, and the plateaus in the curves 
indicated that the sequenced data represented the majority 
of the diversity of microorganisms in the samples (Fig. 1a, 
b, Table S2). Average rarefaction curves showed a differ-
ent cecal microbes between two rearing systems (Fig. 1), 
where there was greater diversity of bacteria phyla in FRS 
(Fig. 1c).

16S rRNA profiling analysis of gut microbiota 
composition between FRS and CRS

We found the dominant microbe phyla in the two sys-
tems comprised the Bacteroidetes, Firmicutes, and 

Proteobacteria (Fig. 1c), where the Bacteroidetes was most 
dominant phylum, accounting for more than 47%, followed 
by the Firmicutes (36.49% in FRS and 43.84% in CRS; 
Table S3). Relative abundance of the Proteobacteria was 
low in each system (FRS: 6.08%; CRS: 6.63%), and the 
Deferribacteres represented 2.42% relative abundance in 
FRS, but were undetected in CRS (Table S3).

The most dominant genera were the Bacteroides (FRS: 
20.88%; CRS: 24.38%), Rikenellaceae_RC9_group (FRS: 
13.79%; CRS: 10.98%), and Faecalibacterium (FRS: 
1.56%; CRS: 11.79%; Fig. 1d). We identified 152 gen-
era, of which 123 were present in all samples, while 4 
and 25 genera were unique to FRS and CRS, respectively 
(Fig. 2a).

Fig. 1  16S rRNA profiling of gut microbes from hens rearing under 
CRS and FRS. a Average rarefaction curve of the Chao diversity 
index; b average rarefaction curve of the Shannon diversity index; 

and, c average taxonomic composition of phyla. The legend shows the 
average of relative abundance of each gene in all samples
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Analysis of the relationships among the bacterial 
communities in hen cecum

To measure the degree of similarity between microbial 
communities, we have analyzed the beta-diversity based 
on the ordination of the distance matrix generated using 
Bray–Curtis complementary algorithm, the clear demar-
cation between bacterial assemblages from FRS and CRS 
were apparent along principal coordinate axis 1 (PCoA1) 
of the PCoA plot (Fig.  2b), and ANOSIM analysis 
showed there were overall differences in the communi-
ties (P = 0.002, R = 0.225; Table S4). We compared the 
composition and average relative abundance of the 30 
most abundant genera and found that there was a greater 
abundance of Parabacteroides (P < 0.05), Prevotellaceae_
Ga6A1_group (P < 0.01), Unclassified_p__Proteobacteria 

(P < 0.05), and unclassified_f__Spirochaetaceae (P < 0.01) 
in hens reared under the FRS system, while there was a 
greater abundance of Faecalibacterium (P < 0.05), Rumi-
nococcaceae (P < 0.05), and Helicobacter (P < 0.05) in 
hens reared under the CRS system (Fig. 2c).

Based on the analysis of beta-diversity, there was a dif-
ference in the structure of the cecum intestinal microbiota 
between FRS and CRS. At the genus level, the results of 
the correlation network analysis showed that the cecum 
microbiota network of FRS and CRS hens were differ-
ent in different rearing systems, and we found that the 
relationships within the cecal microbe community of FRS 
was more closely than that of CRS, especially between the 
Firmicutes and Bacteroidetes (Fig. 3a), whereas there was 
a relatively simple relationship in CRS, mainly driven by 
the Firmicutes (Fig. 3b).

Fig. 2  Diversity of gut microbes 
in hens reared under FRS and 
CRS. a Venn diagram of total, 
unique, and shared number of 
predicted genera in FRS and 
CRS; b phylogenetic differ-
ences in cecum microbe OTUs 
between FRS and CRS using 
principal coordinate analysis; 
and c extended error bar plot 
showing differences between 
the 30 most abundant genera 
in FRS and CRS. Positive 
differences indicate genus 
overrepresented in FRS, while 
negative differences indicate 
greater abundance in CRS. The 
Wilcoxon rank-sum test within 
STAMP was used to test for 
differences in genera abundance 
between the two rearing systems 
groups (confidence interval 
method); the abscissa indicates 
abundance of a species and the 
ordinate indicates the spe-
cies name; and colors indicate 
different groups. *P < 0.05, 
**P < 0.01
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Summary of the metagenomic datasets

Metagenomic sequencing of representative samples from the 
two rearing systems produced a total of 97,602,410 raw and 
96,661,039 filtered reads, and comparison of the predicted 
taxonomic distribution from the 16S rRNA profiling analysis 
(Fig. 1c) with that from the metagenomic data (Table S5) 
showed that the sequencing results of the two methods are 
consistent.

Comparison of functionality of the FRS and CRS 
hens gut metagenomes

Functional classification of open reading frames based on 
the Cluster of Orthologous Genes (COG) obtained from 
assembled metagenomic datasets allowed detection of sig-
nificant differences in relative abundance of COG functional 
categories between the two datasets. The analysis results 
showed that the abundance of annotation in the FRS dataset 
is significantly higher than that of CRS, mainly including 
energy production and conversion, carbohydrate transport 
and metabolism, as well as amino acid transport and metabo-
lism were shown to be the most overrepresented in both 
datasets (P < 0.05; Fig. 4).

Based on the corresponding relationship between species 
and functions in the sample, the correlation analysis between 
species and functional contribution relative abundances is 
performed. At the Category function level, we found that the 
main functional contributions of Bacteroidetes (more than 
the contribution 41%), Firmicutes (more than the contribu-
tion 36%) and Proteobacteria (more than the contribution 

2%) in FRS were metabolism, cellular processes and signals, 
and information storage and processing functions, while in 
CRS, these functions enriched in the Bacteroidetes (more 
than the contribution 41%), Firmicutes (more than the con-
tribution 36%), Proteobacteria (more than the contribution 
2%), and Actinobacteria (more than the contribution 1%) 
(Fig. 5a). In addition, in the analysis of species and COG 
contribution, We annotated functions of the Bacteroides and 
Prevotella species in FRS as COG0841 (acriflavin resistance 
protein, inorganic ion transport and metabolism, METAB-
OLISM), COG0534 (Mate efflux family protein, defense 
FRShanisms, CELLULAR PROCESSES AND SIGNAL-
ING), COG0325 (alanine racemase domain protein, func-
tion unknown, POORLY CHARACTERIZED), COG1132 
((ABC) transporter, defense FRShanisms, CELLULAR 
PROCESSES AND SIGNALING), and ENOG410XNMH 
(Histidine kinase, signal transduction FRShanisms, CEL-
LULAR PROCESSES AND SIGNALING), and found they 
had a higher contribution than in CRS; however, contribu-
tion of the Alistipes and Clostridium spp. was lower in FRS 
(Fig. 5b).

Antibiotic resistance profiles of chicken intestinal 
microbiome

To investigate the antibiotic resistance genes (ARGs) pre-
sent in the gut microbiota of free-range system (FRS) and 
cage rearing systems (CRS), the metagenome data were 
screened for antibiotic resistance factors using the Antibiotic 
Resistance Genes Database (ARBD) and the Comprehen-
sive Antibiotic Resistance Database (CARD). At the class 

Fig. 3  Network analysis of cecal microbes in hens reared under FRS 
and CRS. Network correlation of the 50 most abundant species in a 
FRS and b CRS. Node size indicates relative abundance of a species; 
different colors indicate different species; red line indicates positive 

correlation and green indicates negative correlation; line thickness 
indicates magnitude of the Pearson correlation coefficient, where 
thickness increases with magnitude



3 Biotech (2019) 9:438 

1 3

Page 7 of 11 438

level, we chose the relative abundance of antibiotic resist-
ance genes as greater than 1% for annotation. The result 
of the annotation is that the Ribosomal protection protein 
encoding genes were the most abundant (CRS: 8.96%), 
represented by undecaprenyl pyrophosphate phosphatase, 
aminoglycoside O-phosphotransferase, and aminoglyco-
side N-acetyltransferase-encoding genes (6.84, 6.55, and 
1.65%, respectively). In FRS, we observed abundance of 
genes encoding for rRNA adenine N-6-methyltransferase 
resistance was 3.16% (Fig. 6a). The top five most abun-
dant antibiotic resistance ontology (ARO) genes based on 

CARD are shown in Fig. 6b, and the range of identified 
AROs (Table 1) included ARO:3000535, ARO:3000489, 
ARO:3003291, ARO:3003844, and ARO:3000784. Based 
on Species and functional contribution analysis in the sam-
ple, the correlation analysis between the microbial origin 
and the relative abundance of these AROs were further 
analyzed. In FRS, functional species contributions of ARO 
were highly enriched in the Bacteroidetes (41%), Firmicutes 
(30%), and Proteobacteria (3%) (Fig. 6b), while in CRS, 
functional species contributions were found enriched in the 
Bacteroidetes (39%), Firmicutes (34%), Proteobacteria (2%), 

Fig. 4  COG functional classification and difference in COG abundance

Fig. 5  Species and functional contribution analysis. Contributions of a species contribution relationship of category functions at the phylum 
level. Contributions of b species contribution relationship of NOG functions at the gene level
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and Actinobacteria (2%). Bacteroidetes (90%) and Proteo-
bacteria (6%) were detected almost to the exclusion of other 
phyla in ARO:3000784 (Fig. 6b).

Discussion

Gut microbiota are known to be influenced by many fac-
tors, such as diet, age, and feeding regimen (Li et al. 2012). 
The study (Mancabelli et al. 2016) suggested that large-
scale commercial production and semi-wild rearing systems 
influenced intestinal microbial composition and diversity in 
broiler chickens. However, intestinal microbiota in hens 
has previously been unclear. In this study, we observed that 
composition of gut microbes in hens differed between the 
two rearing systems by analysis of the 16S rRNA profil-
ing. At the phylum level, the intestinal flora of laying hens 
was mainly composed of Bacteroidetes and Firmicutes, and 
abundance of the Proteobacteria was relatively low. These 
results support other studies (Wei et al. 2013) that have 
shown chicken cecal microbes are dominated by the Firmi-
cutes and Bacteroidetes that are also commonly observed 

in the gut environments of many birds (Waite and Taylor 
2014; Wang et al. 2016b). The role of members of these 
two phyla in food digestion has been frequently studied. For 
example, members of Firmicutes are involved in the degra-
dation of insoluble fibers (Berry 2016), and Proteobacteria 
members are associated with cellulose activity (Reid et al. 
2011). Interestingly, we found high levels of abundance of 
Deferribacteres in FRS, but low levels in CRS (Fig. 1d). 
This difference may be due to the difference between the two 
rearing systems, and further research is needed.

In this study, there were 25 unique genera in hens reared 
under the FRS system, and 4 unique genera in CRS hens 
(Fig. 2a). Diversity of cecal microbiota was greater in FRS 
than in CRS (Fig. 1a, b, d), and we found that abundance 
of Faecalibacterium prausnitzii and Ruminococcaceae spp. 
differed between hens reared under the FRS and CRS sys-
tems (P < 0.05; Fig. 2c). The Firmicutes mainly comprised 
Faecalibacterium and Clostridium (Hold et al. 2002). Some 
intestinal clostridial microorganisms produce short-chain 
fatty acids, such as Clostridium IX, Faecalibacterium, and 
Clostridium, that play a role in resistance to colonization by 
pathogenic microorganisms (Van den Abbeele et al. 2010). 

Fig. 6  a Relative abundance of predictive enzymes involved in trans-
mitting antibiotic resistance present in the FRS and CRS metagen-
omic datasets. The names of the coding genes are listed on the right, 

and the names of the sample groups used are listed at the bottom, and 
b relationship between contribution of species and antibiotic resist-
ance genes contribution analysis

Table 1  Antibiotic resistance gene annotation

ARO_accession ARO_name ARO_description CRS FRS Total

ARO:3000535 macB Efflux pump conferring antibiotic resistance 56,658 31,964 88,622
ARO:3000489 sav1866 Efflux pump conferring antibiotic resistance 48,522 25,396 73,918
ARO:3003291 Staphylococcus aureus rpoC 

conferring resistance to dap-
tomycin

Antibiotic resistant gene variant or mutant, lipopeptide antibiotic 
resistance gene

41,090 31,636 72,726

ARO:3003844 mfd Antibiotic target protection protein, fluoroquinolone resistance 
gene

42,674 27,964 70,638

ARO:3000784 cmeB Efflux pump conferring antibiotic resistance 34,602 18,908 53,510
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Ruminococcaceae, which is related to growth performance 
in broilers (Torok et al. 2011), is highly abundant in efficient 
feed conversion in birds (Stanley et al. 2016) and it can be 
an indicator of feed efficiency in cecal digesta (Siegerstet-
ter et al. 2017). The differences in cecal microbes between 
the rearing systems are likely to be a result of differences in 
breeding environment, environmental pressure, and space.

The gut microecosystem performs numerous functions 
that alter microbe composition (Zhang et al. 2018). In this 
study, dominant microbes found in hens gut, such as the 
phyla Bacteroidetes, Firmicutes, and Deferribacteres, as well 
as the genus Deferribacter, may be involved in host nutrient 
metabolism, especially of carbohydrates, amino acids, and 
peptides. We found that abundance of functional genes (car-
bohydrate transport and metabolism, energy production and 
conversion, amino acid transport and metabolism, and genes 
related to replication, recombination, and repair; Fig. 4) in 
hens reared under the FRS system was higher than in CRS. 
Numerous functional genes are involved in metabolic path-
ways, such as metabolism of carbohydrates, amino acids, 
lipids, and energy, and it is possible that hens reared under 
the FRS system require more energy to provide enhanced 
muscle development and synthesis of body protein to sup-
port the greater amounts of physical movement associated 
with this system.

An analysis of the overall functional profiles in the pre-
sent study indicated that the gut microbes associated with 
both rearing systems exhibited high metabolic activities. 
These results were consistent with earlier studies on the 
gut metagenomes of chicken (Mancabelli et al. 2016). This 
high metabolic rate may be related to the energy consump-
tion required to fulfill the demands of outdoor sport, FRS 
hens exceed CRS in outdoor sport. Avian metabolism was 
reported to be approximately 60% higher than that of most 
mammals (Scanes and Braun 2013). The comparison of 
the functional profiles of the datasets from FRS and CRS 
revealed many differences, which suggested that not only 
the bacterial compositions but their functionalities were 
important. For example, functions related to carbohydrate 
metabolism, lipid metabolism, amino acid metabolism, and 
glycan biosynthesis and metabolism were significantly more 
abundant in FRS than that in CRS. Thus, it is reasonable 
to hypothesize that the microbiota of the FRS is probably 
specialized to degrade more diverse types of foods than that 
of the CRS, which eats a more homogenous type of food.

In this study, ARGs were identified in the microbiota of 
hens in both rearing systems, and the ARG spectrum was 
related to the composition of the microbe community, where 
most of the ARG species contributed to the dominant phyla 
Firmicutes (> 30%) and Bacteroidetes (> 39%). Previous work 
has shown that the phyla of these bacteria, commonly known 
as antibiotic producing bacteria, were also present in the gut 
microbes of four bird species (Wright 2007), therefore, we 

suggest potential environmental pollution risks associated with 
the widespread and persistent use of antibiotics and associated 
resistance should be reduced.

Conclusions

Bacteroidetes, Firmicutes, and Proteobacteria were the main 
cecal bacterial phyla in FRS and CRS and Deferribacteres 
were found in FRS and almost absent in CRS. Parabacte-
roides, Prevotellaceae_Ga6A1, Unclassified Proteobacteria, 
and unclassified Spirochaetaceae were more abundant in FRS, 
and Faecalibacterium, Ruminococcaceae, and Helicobacter 
were more abundant in CRS. The main functional annotations 
of species were replication, recombination and repair, energy 
production and transformation, cell wall/membrane/envelope 
biogenesis, and amino acid transport and metabolism-related 
functions. These results indicate that in hens of the different 
rearing systems can cause changes in the abundance and struc-
tural composition of the gut microbiota, although the underly-
ing mechanisms are unclear. And ARGs were also identified in 
the microbiota of these hens. This work has produced new data 
for laying hens in different production systems and increased 
the understanding of intestinal microorganisms in laying hens.
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