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The link of diabetes with co-occurring disorders in the brain involves complex and multifactorial pathways. Genetically engineered 
rodents that express familial Alzheimer’s disease-associated mutant forms of amyloid precursor protein and presenilin 1 (PSEN1) 
genes provided invaluable insights into the mechanisms and consequences of amyloid deposition in the brain. Adding diabetes fac-
tors (obesity, insulin impairment) to these animal models to predict success in translation to clinic have proven useful at some ex-
tent only. Here, we focus on contributing factors to diabetic brain injury with the aim of identifying appropriate animal models that 
can be used to mechanistically dissect the pathophysiology of diabetes-associated cognitive dysfunction and how diabetes medica-
tions may influence the development and progression of cognitive decline in humans with diabetes.

Keywords: Dementia; Diabetes mellitus; Obesity

Corresponding author: Florin Despa  https://orcid.org/0000-0002-5879-6449 
Department of Pharmacology and Nutritional Sciences, College of Medicine, University of 
Kentucky, Wethington Building, Room 459, 900 S. Limestone, Lexington, KY 40536, USA 
E-mail: f.despa@uky.edu

Received: Aug. 2, 2019; Accepted: Oct. 2, 2019

INTRODUCTION

Type 2 diabetes mellitus accelerates age-related cognitive de-
cline [1,2] and increases the risk for dementia [3-7]. Patho-
physiological processes causing diabetic brain injury and cog-
nitive decline begin years before actual manifestation of symp-
toms occurs [8,9]. Compared to cognitive impairment in indi-
viduals without diabetes, cognitive decline in humans with di-
abetes can be influenced by the type of diabetes (type 1 diabe-
tes mellitus or type 2 diabetes mellitus), duration of diabetes, 
antidiabetic medications and presence of other diabetic-relat-
ed complications [10,11]. Here, we focus on contributing fac-
tors to diabetic brain injury with the aim of identifying appro-
priate animal models that can be used to mechanistically dis-
sect the pathophysiology of diabetes-associated cognitive dys-
function and how diabetes medications may influence the de-
velopment and progression of cognitive decline in humans 
with diabetes.

CONTRIBUTING FACTORS TO DIABETIC 
BRAIN INJURY IN HUMANS 

Common diabetes-associated pathological processes and com-
plications that can have deleterious impact on brain function 
are summarized in Fig. 1. 

Hyperglycemia
Efficient delivery of glucose to brain cells is critical for brain 
function [12]. Glucose uptake by the brain cells appears to be 
independent of insulin; however neurons are known to express 
receptors for insulin and insulin related peptide (insulin-like 
growth factor 1 [IGF-1]) [12]. Both insulin and IGF-1 play im-
portant roles in neuronal development and affect cognition 
[12]. Insulin resistance and consequent abnormal blood glu-
cose levels as observed in type 2 diabetes mellitus can have 
detrimental effects on brain and cognitive function [13,14]. 
Fluctuation in glucose levels or peaks, which is common in di-
abetes, increases the risk for cognitive decline. Targeting glu-
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cose peaks has been proposed as therapeutic strategy for pre-
vention of diabetes-associated cognitive dysfunction [14]. In 
laboratory animals, glucose lowering compounds such as met-
formin, thiazolidinediones and compounds targeting the glu-
cagon like peptide-1 receptor have beneficial effects on cogni-
tion [10]. It was reported that agonists of peroxisome prolifera-
tor-activated receptor gamma (PPARγ), a ligand-activated 
transcriptional factor, improved brain function in a rat model 
of streptozotocin-induced diabetes [15]. Decreased activity of 
PPARγ and its cofactor peroxisome proliferator-activated re-
ceptor gamma coactivator-1α (PGC-1α) causes mitochondrial 
dysfunction and oxidative stress in the settings of type 2 diabe-
tes mellitus and in brain disorders. Glucose lowering thiazoli-
dinediones, such as rosiglitazone and pioglitazone, act as ago-
nist for PPARγ and improve cognitive function. Glucagon-like 
peptide 1 (GLP-1) receptor agonists are known elicit neuro-
protective effects in animal models of stroke, Alzheimer’s dis-
ease (AD) and Parkinson’s disease [16]. GLP-1 receptor ago-
nists reduced neuro-inflammation and increased neuro-sur-
vival [16]. Metformin reduces tau hyper-phosphorylation by 
inducing protein phosphatase 2A (PP2A) activity, a major tau 
phosphatase [17]. 

Dyslipidemia
Elevated levels of plasma triglycerides and cholesterol may play 
a role in diabetes-associated risk for poor cognition function 
[18,19]. Pharmacological interventions to ameliorate dyslipid-
emia may influence the progression of cognitive decline in in-
dividuals with diabetes and cerebrovascular disease [18,19]. 
Cholesterol modulates the activity of enzymes involved (β and 
γ-secretases) in amyloid precursor protein (APP) processing 
and thus it can affect production of amyloid β (Aβ) protein. 
Because β and γ-secretases enzymes are membrane bound en-
zymes, the high cholesterol content in membrane lipid rafts 
could facilitate clustering of these enzymes with their substrate, 
thereby promoting cleavage of precursors of Aβ protein into 
amyloidogenic forms [20].

Hypertension
Cerebrovascular complications in individuals with diabetes are 
frequently linked to the presence of hypertension [21,22]. The 
use of anti-hypertensive medications may diminish the risk of 
dementia in diabetic patients by 4% to 24% [23]; however, the 
underlying molecular mechanisms remain unknown [24].

Fig. 1. Risk factors for cognitive dysfunctions in diabetes. Figure showing main risk factors involved in cognitive dysfunction in di-
abetes. These risk factors may be associated with different types of cognitive dysfunction in diabetes.
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Inflammation and blood-brain barrier injury
Cerebrovascular accumulation of toxic lipids, advanced glyca-
tion end products (AGEs) and aggregated proteins trigger in-
flammatory responses and secretion of inflammatory media-
tors in the circulation [25-28]. Inflammatory responses are as-
sociated with blood-brain barrier (BBB) breakdown [29]. BBB 
injury further exposes brain parenchyma to neurotoxic blood 
proteins, thrombin, fibrin, plasmin, hemoglobin, and iron 
from lysed red blood cells. A leaky BBB causes abnormal neu-
ronal activity [29] that plays a role in diabetes-associated neu-
rological deficits [30].

Chronically elevated levels of C-reactive proteins, interleukin 
6 (IL-6), fibrinogen, and tumor necrosis factor α are strongly 
correlated with cognitive decrement in diabetic patients [31-
34]. Reducing systemic inflammation promotes brain health 
[31-34].

Vascular contributions to cognitive impairment and 
dementia 
Macrovascular disease such as myocardial infarction or stroke 
negatively affects cognitive performance [8,35]. Microvascular 
abnormalities are also frequent in patients with type 2 diabetes 
mellitus [8,35]. Patients with diabetes and individuals with 
normal metabolic function showing retinal microvascular ab-
normalities are at high risk of cognitive decline [36]. Due to 
similarities between retina cells and cerebrovascular cells, reti-
nopathy can be used as a marker and therapeutic target for mi-
croangiopathy and cerebral small vessel disease [37]. It is spec-
ulated that cerebral small vessel disease might be due to long 
term endothelium dysfunction, capillary loss and subsequent 
ischemia leading to white matter disease and neurological defi-
cits [25,28,29]. White matter disease of vascular origin is com-
monly associated with vascular contributions to cognitive im-
pairment and dementia (VCID) [25,28,29].

Vascular endothelial cell dysfunction is linked to vascular 
accumulation of toxic lipids [26], AGEs [27] and aggregated 
proteins [25]. Interaction of AGEs with endothelial cells in-
creases generation of reactive oxygen species (ROS) [27] and 
impairs the production of vasodilatory substances resulting in 
a reduced cerebral blood flow [38]. Elevated ROS damage cel-
lular structures and activate matrix metalloproteinases en-
zyme, which further induce cytoskeletal reorganization and 
vascular remodeling [29]. Cytoskeletal reorganization increas-
es the vascular permeability by disrupting tight junction pro-
teins in endothelium, which increases energy depletion and al-

ters neural viability [29,38].

Systemic amylin dyshomeostasis
Amylin, or islet APP, is a pancreatic hormone that is synthe-
sized and co-secreted with insulin by pancreatic β-cells and 
participates in the central regulation of satiety [39]. Individuals 
with pre-diabetic insulin resistance have hypersecretion of am-
ylin (and insulin) leading to amylin oligomerization and pan-
creatic amylin amyloid. Amylin dyshomeostasis plays an im-
portant role in the development and progression of type 2 dia-
betes mellitus [39-41]. Deposits of amylin amyloid were de-
tected in extra-pancreatic tissues, including the heart [42], kid-
neys [43] and the brain [44-48]. Because amylin amyloid is 
toxic [39-41], the presence of amylin deposition in brains of 
individuals with AD suggests that the development of drugs 
that could limit amylin deposition in the brain may provide 
benefit to patients with AD or mild cognitive impairment.

Calcium dysregulation in diabetes and dementia
Altered Ca2+ signaling contributes in brain dysfunction through 
multiple mechanisms [49]. Erickson et al. [50], showed that di-
abetes causes Ca2+/calmodulin-dependent protein kinase II 
(CaMKII) modification at Ser279 through o-linked N-acetyl-
glucosamine (O-GlcNAc). This modification of CaMKII has 
been detected both in hearts and brains of humans with type 2 
diabetes mellitus [50].

DIABETIC INJURY IN LABORATORY 
ANIMALS 

Mouse and rat models for diabetes and AD are generated by 
gene manipulation or/and pharmacological intervention (Ta-
ble 1). In mice genetically modified to develop parenchymal 
deposition of Aβ and intraneuronal accumulation of hyper-
phosphorylated tau, brain pathology and behavior changes are 
accelerated by diabetic states induced by streptozotocin injec-
tion or by diet interventions [51-57]. Mice generated by cross-
ing obese db/db mice with AD mice develop microhemor-
rhages and accelerated behavior changes compared to AD 
mice [55].

Brain insulin resistance
Brain insulin resistance increases the activity of β-secretase 
and γ-secretase [54,55] promoting cerebral Aβ deposition and 
tau hyperphosphorylation [51-57]. Intracerebroventricular 
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administration of insulin increased learning ability in normal 
mice [58,59]; however, a similar treatment showed no signifi-
cant effect on brain function in diabetic mice [59]. Cerebral 
accumulation of Aβ and phosphorylation of tau in mice were 
reduced by pharmacological interventions that ameliorate in-
sulin resistance [60]. 

White matter disease 
In a rat model for type 2 diabetes mellitus transgenic for hu-
man islet amyloid polypeptide (the HIP rat) [25], the develop-
ment of diabetes is associated with amylin-mediated vascular 
endothelial dysfunction leading to axonal demyelination, 
white matter rarefaction and neurological deficits [25]. Phe-
nylalanine and tyrosine, two main precursors of neurotrans-
mitters, were greatly decreased in brains of diabetic HIP rats 
compared to non-diabetic littermates [61]. These results [25, 
61] indicate amylin dyshomeostasis as a direct molecular link 
between pancreatic pathology in diabetes and VCID. 

Peroxidative neuronal injury and neuroinflammation
In addition to amylin plaques and mixed amylin-Aβ deposits, 
brains of diabetic patients with AD show amylin immunoreac-

tive deposits inside the neurons [62]. Neuronal amylin formed 
adducts with 4-hydroxynonenal (4HNE), a marker of peroxi-
dative membrane injury, and increased synthesis of the proin-
flammatory cytokine IL-1β [62]. These pathological changes 
were mirrored in rats expressing human amylin in pancreatic 
islets (HIP rats) and mice intravenously injected with aggre-
gated human amylin, but not in hyperglycemic rats secreting 
wild-type non-amyloidogenic rat amylin [62]. In cultured pri-
mary hippocampal rat neurons, aggregated amylin increased 
IL-1β synthesis via membrane destabilization and subsequent 
generation of 4HNE [62]. These effects were blocked by mem-
brane stabilizers and lipid peroxidation inhibitors [62]. Thus, 
elevated circulating levels of aggregated amylin negatively af-
fect the neurons causing peroxidative membrane injury and 
aberrant inflammatory responses independent of other con-
founding factors of diabetes. Schematic view of effect of amylin 
dyshomeostasis on brain is shown in Fig. 2.

CONCLUSIONS

In conclusion, preclinical data and epidemiological studies 
show a consistent association of diabetes with cognitive de-

Table 1. Diabetes and Alzheimer’s disease rodent models

Intervention Pathophysiology

Non-AD mouse and rat models [50-53]
   Sterptozotocin Increase pTau pathology and altered hippocampal synaptic plasticity
   Diet Mild effect on central nervous system
   Amylin dyshomeostasis Vascular amylin oligomer deposition

Microhaemorrhages
Brain inflammation
Brain atrophy
Microglia activation
Parenchymal amylin plaques
Impaired synthesis of neurotransmitters

Leptin deficiency Increased amyloid-β generation
Mouse and rat models of AD [50-53]
   Sterptozotocin Exacerbated brain amyloidosis

Neuro-inflammation and injury
   Diet Increased amyloid-β pathology
   Leptin deficiency Amyloid-β

Aneurisms
Small strokes

AD, Alzheimer’s disease; pTau, phosphorylated tau.
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cline. Since some diabetes-associated factors (hyperglycemia, 
insulin resistance) are also extending in non-diabetic popula-
tions, the association of diabetes with cognitive impairment 
should also be studies in non-diabetic populations. 

The link of diabetes with co-occurring disorders in the brain 
involves complex and multifactorial pathways. Laboratory ani-
mals can help to better understand the relationship between 
diabetes and cognitive impairments, which can further be used 
to develop new treatment strategies to slow the progression of 
pathological processes and cognitive decline. Since diabetes-
associated amylin dyshomeostasis appears central to white 
matter injury in AD [25], we propose that an appropriate com-
bination of human amylin-expressing non-AD rats and AD 
rats have the potential to uncover: (1) cellular and molecular 
mechanisms that underlie the effects of amylin dyshomeostasis 
on small blood vessels and white matter; (2) phenotypical 
characteristics of the interaction between amylin dyshomeo-
stasis and Aβ pathology; and (3) the interplay between mixed 
VCID-AD and known amylin-mediated vascular injury [63]. 
Such knowledge is critical for designing novel interventions 
based on our hypothesis of the central role of amylin dysho-
meostasis in the development of mixed VCID-AD. 
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