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Abstract

Pituitary adenylate cyclase activating polypeptide acting through its cognate receptors, PAC1, 

VPAC1, and VPAC2, is a pleiotropic signaling neuropeptide of the vasoactive intestinal peptide/

secretin/glucagon family. PACAP has known functions in neuronal growth, development, repair, 

and central PACAP signaling has acute behavioral consequences. One of the ways in which 

PACAP may affect neuronal function is through the modulation of intrinsic membrane currents to 

control neuronal excitability. Here we review evidence of PACAP-dependent modulation of 

voltage-gated potassium currents, hyperpolarization activated cation currents, calcium currents, 

and voltage-gated sodium currents. Interestingly, PACAP signaling pathways diverge into parallel 

pathways to target different ionic currents for modulation, though single pathways are not limited 

to modulating just one target ionic current. Despite the various targets of modulation, the weight of 

the evidence suggests that PACAP signaling most commonly leads to a net-increase in neuronal 

excitability. We discuss possible mechanisms by which PACAP signaling leads to the modulation 

of intrinsic membrane currents to change behavior.

Keywords

Currents; PAC1; ERK; HCN; Kv; Endosome

Introduction

Pituitary adenylate cyclase activating polypeptide (PACAP, ADCYAP1), a member of the 

vasoactive intestinal peptide (VIP)/secretin/glucagon family of related peptides, has diverse 

functions in development, homeostatic signaling in many physiological systems, and repair/

regeneration responses to neural injury or related challenges.1 The expression and function 

of PACAP are tightly regulated, but notably maladaptive PACAP signaling has been 

implicated in many psychiatric disorders including post-traumatic stress disorder,2 
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schizophrenia,3 and major depressive disorder.4 The behavioral effects of PACAP have both 

acute neurotransmitter and long-term neuroplasticity components to mediate the rapid and 

sustaining consequences of stress, respectively. The targeted infusion of PACAP into specific 

regions in the CNS, for example, can produce rapid behavioral changes, suggesting an 

important role for direct effects of PACAP on neuronal excitability.5 Moreover, a single 

infusion can also produce behavioral changes that can persist for hours and days to suggest 

more long-term plasticity changes resulting in altered neuronal function,6 and PACAP 

signaling can be sensitized by prior chronic stress.7 The long-term effects of PACAP have 

been well-examined, especially in a neurotrophic context for cell proliferation, survival and 

repair after injury.1 By contrast, the PACAP mechanisms underlying the regulation of ionic 

conductances mediating acute responses have not been fully elucidated. PACAP binds to 

three different heptahelical G protein-coupled receptors with relatively equal high affinity, 

including the PAC1 (ADCYAP1R1), VPAC1 (VIPR1), and VPAC2 (VIPR2) receptors. The 

VPAC1 and VPAC2 receptors also bind VIP with similar affinities as PACAP. Whereas the 

many PAC1 receptor isoforms can be coupled to Gαs and Gαq to engage multiple 

intracellular signaling pathways, VPAC receptors principally couple Gαs to activate 

adenylyl cyclase (AC) to increase intracellular cAMP levels.1 More recently, PAC1 receptor 

activation has also been shown to lead to β-arrestin-mediated receptor internalization and 

endosomal signaling leading to sustained MEK/ERK signaling.8, 9

From the activation of diverse signaling pathways, PACAP/PAC1 receptor signaling has the 

potential of coordinating the function of several ionic channels to regulate neuronal 

excitability. Changes in neuronal excitability can be differentiated broadly into synaptic and 

intrinsic plasticity. Synaptic plasticity is the modification of synaptic strength or sensitivity 

and can be modified either presynaptically, via changes in the probability of transmitter 

release or readily releasable pool of synaptic vesicles, or post-synaptically, such as in AMPA 

receptor trafficking in long term potentiation (LTP). There is evidence of PACAPergic 

regulation of synaptic strength in addition to the PACAP modulation of intrinsic currents 

discussed below 10, 11 though a discussion of synaptic actions is beyond the scope of this 

review. Beyond synaptic strength, neuronal excitability may also be altered through changes 

in intrinsic neuronal excitability, due to changes in ionic currents through voltage-gated 

channels, caused by changes in cell-surface channel expression or alteration in the voltage-

dependence of channel activation and/or inactivation. These modifications can alter the basic 

properties of neuronal electrical activity, such as resting membrane potential, spike 

threshold, or local excitability in neuronal processes which can produce extensive changes in 

brain regions that impact behavior (see ref. 5 for review). The functional changes in the 

intrinsic excitability of neurons can be regulated by canonical signaling pathways that 

include AC/cAMP/PKA, PLC/DAG/IP3/PKC and MEK/ERK, which is activated by either 

β-arrestin and endocytosis, or neuritogenic cAMP sensor (NCS) rapgef2; we review how 

some of the intrinsic membrane currents can be regulated by PACAP/PAC1 receptor 

activation (figure 1).

Rapidly inactivating potassium currents or A-Currents (IA)

Canonical voltage-gated potassium channels (Kv) have principal roles in action potential 

(AP) repolarization but can also regulate neuronal excitability by other means such as the 
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modulation of an A-current (IA). IA is a rapidly inactivating, voltage-dependent, and 4-

aminopyridine-sensitive outward potassium current that upon activation, causes rapid 

repolarization following depolarization. A-type channels are often found on dendritic 

processes to regulate local excitability; IA suppresses incoming dendritic postsynaptic 

potentials, thereby diminishing the temporal and spatial summation of signals at the soma to 

decrease AP generation probability. The assembly of Kv tetramer subunits mediating IA 

conduction can include either Kv1.4, Kv3.4, or Kv4.1 - 4.3 subunits.13 Kv1.4 and Kv3.4 are 

found on axons while Kv4.1 - Kv4.3 are localized to dendrites and soma.13, 14 The cellular 

distribution of these channels implicates their function; the dendritic localization of these 

channels suggests roles in regulating the summation of incoming postsynaptic potentials and 

the back-propagation of APs, somatic channels might regulate overall excitability, and 

axonal channels may regulate AP transmission. Hence, the differential distribution of Kv 

channels suggests that their modulation by peptides could impact several different factors 

controlling neuronal excitability.

Direct assessment via voltage clamp by Gupte et al.15 found that PACAP/PAC1 receptor 

signaling phosphorylated and diminished the surface expression of Kv4.2 in cultured 

hippocampal neurons, resulting in a reduction of an outwardly rectifying current consistent 

with IA.15 These effects could be partially recapitulated with forskolin to increase 

endogenous cAMP production, suggesting a role for PACAP/PAC1 receptor Gαs/adenylyl 

cyclase/cAMP signaling on IA. However, the PACAP-mediated decrease in IA was 

completely blocked by co-treatments with the MEK1/2 inhibitor U0126, which also 

implicated MEK/ERK activation as a critical component of PACAP regulation of IA in these 

cells.15 As PKA and pERK phosphorylation sites have been identified on the regulatory 

domains of Kv4.2,14 these mechanisms in aggregate could directly regulate Kv4.2 cell 

surface expression to reduce IA. Similar effects have been observed in olfactory epithelial 

tissue where PACAP was shown to down regulate the surface expression of Kv4.2 and 

Kv1.4; however, unlike the PKA- and MEK/ERK-dependent mechanisms in hippocampal 

neurons, the downregulatory events in the olfactory epithelium were dependent on PLC 

activation and intracellular calcium to suggest PKC-dependent processes.16 The reduction/

inhibition of IA channels by PACAP would functionally facilitate neural excitation. With the 

localization of these channels in dendritic arbors, the results in aggregate suggest PACAP 

roles in modulating the strength of postsynaptic potentials and AP back-propagation, both of 

which are known to participate in synaptic potentiation, especially important in learning and 

memory processes.

Hyperpolarization-activated cyclic nucleotide gated cation currents or H-Currents (IH)

Hyperpolarization-activated cyclic nucleotide gated channels (HCN) are voltage-gated 

cationic channels that upon activation allow inward currents (IH) to counter membrane 

hyperpolarization, such as the after-hyperpolarization that can follow an AP, and can 

produce a rebound depolarization following the termination of that hyperpolarization.17 

Accordingly, IH can play a critical role in regulating spike frequency and pacemaking in 

rhythmic firing neurons. A number of regulatory sites have been identified within HCN 

channels capable of modulating its activity, most notably a cyclic nucleotide binding site that 

when bound affects the voltage-sensing domain of the channel, to allow the channel to open 
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at a less polarized voltage. Enhancement of IH can effectively decrease the amplitude and 

duration of the neuronal spike afterhyperpolarization and thereby promote increase spike 

frequency.18

An example of PACAP modulation of IH contributions to enhanced neuronal excitability 

occurs in guinea pig cardiac neurons. PACAP/PAC1 receptor signaling enhances IH in these 

postganglionic parasympathetic neurons due to a positive shift in voltage-dependence of 

channel activation.19 In current clamp recordings, PACAP enhanced both the rectification in 

the hyperpolarization elicited by current injection and the rebound depolarization following 

the termination of the hyperpolarization. A PACAP-induced enhancement of IH also 

contributed to the peptide-induced increase in AP generation by depolarizing steps. The 

effects of PACAP on cardiac neuron IH were recapitulated by forskolin, indicating that a 

PACAP-stimulated increase in cAMP signaling is responsible for the enhancement of IH.19

HCN channels can be found in many cellular compartments including soma, axons, and 

dendrites, but within a given neuron HCN channel expression is often restricted to specific 

sites.20 As PACAP enhances IH function, PACAP may regulate rhythmic firing and 

oscillatory activities in diverse regions of the nervous system, such as in the thalamus.21 For 

example, the medial septum is a central generator of theta rhythms and heavily expresses 

both the PAC1 receptor22 and HCN channels.23, 24 Accordingly, a positive shift in HCN 

channel activation voltage downstream of PACAP signaling could facilitate spike bursts in 

rhythmically firing neurons to impact many limbic circuit functions.

Transient low voltage-activated calcium currents (IT)

Transient, low voltage-activated calcium currents (IT) are inward currents that flow through 

T-type calcium channels.25, 26 Their voltage-dependence of activation, transient nature and 

sensitivity to low concentrations of nickel distinguishes T-type calcium currents from longer-

lasting calcium currents carried by other voltage-dependent calcium channels (Cav), such as 

L-type, N-type and P-type channels.27, 28 The principal pore-forming α-subunit of voltage-

gated calcium channels Cav3.1, Cav3.2 and Cav3.3, composed of a tandem of four 

homologous domains containing 6 transmembrane α-helices each, carry IT. Among these, 

Cav3.2 is the best studied with the intracellular loop between the second and third domain 

having known regulation sites by PKC, PKA, and Gβγ.29 IT has an activation voltage more 

negative than spike-threshold and functionally supports both burst firing and pacemaker 

activity. Often, T-type calcium currents work in concert with IH to maintain net depolarizing 

inward current following deactivation of IH.27 Given these complementary roles, T-type 

channels are often found to be expressed in some of the same regions as HCN channels, 

including the sinoatrial node, and thalamic regions.27

Guinea pig cardiac neurons express T-type calcium channel transcripts and low 

concentrations of nickel can suppress the PACAP-induced increase in excitability of guinea 

pig cardiac neurons suggesting that the PACAP-induced changes in these neurons are due in 

part to an enhancement of IT.30 PACAP also increases IT in adrenal chromaffin cells, an 

effect reversed by treatment with PKC inhibitors.31 PACAP modulation of IT is likely a 

mechanism contributing to the regulation of neuronal excitability by PACAP in CNS 
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neurons and as PACAP can engage multiple signaling pathways, the mechanisms underlying 

its regulation of IT may be neuronal specific.

Calcium-activated potassium currents

PACAP, like many other neurotransmitters/neuropeptides, depresses a calcium-dependent 

late slow outward potassium current in CA1 pyramidal cells.32 This slow outward current 

underlies the late slow component of the three component afterhyperpolarization (AHP) that 

follows an AP in these neurons. The AHP is markedly enhanced by repetitive AP generation.
33 Inhibition of this late slow outward current decreases AP frequency adaptation so that the 

number of APs generated by depolarizing current injection increases. Part of this PACAP 

effect is mediated through PAC1 receptor activation, the remainder through activation of 

VPAC1 receptors. Activation of AC/cAMP/PKA and p38 MAPK signaling cascades mediate 

the PACAP modulation of the slow calcium-dependent potassium current.32

In cerebellar neurons PACAP enhances calcium-sensitive, voltage-dependent big 

conductance (BK) channel activity, an action mediated by activation of a cAMP/Epac/p38 

MAPK signaling.34 Similarly, PACAP activation of BK channels in smooth muscle 

myocytes can contribute to the regulation of cerebral artery tone.35 Thus, it is quite likely 

that PACAP modulation of BK channels in multiple neuronal types regulates resting 

membrane potentials. PACAP may also alter neuronal calcium-dependent small-conductance 

(SK) channels, although direct evidence for this has not been demonstrated. SK channels 

typically regulate a slow-afterhyperpolarization event in some neurons following significant 

firing events such as bursts, where intracellular calcium rises to activate the channel.17 Tonic 

levels of PKA-activation regulate SK channel clustering and activity,36 so PACAP activation 

of AC/cAMP/PKA signaling could potentially modulate SK channel activity.

Overall, these observations demonstrate that PACAP can potentially modulate different 

types of calcium-dependent potassium-channels; whether enhancing or depressing their 

activity being dependent on the specific channel and neuronal expression.

Voltage-gated sodium channels

Given the diversity of PACAP-stimulated intracellular signaling cascades, PACAP likely 

activates and/or inhibits other ionic conductances that regulate excitability in addition to 

those above. For instance, modulation of different voltage-gated sodium channels (Nav) 

potentially could mediate some effects of PACAP on neuronal excitability. In early studies 

examining the effect of PACAP on neuronal activity, Shibuya and colleagues (Ref 37) 

demonstrated that PACAP induced a sodium-dependent depolarization that increased spiking 

behavior. More recent studies in guinea pig cardiac ganglion cells showed that the PACAP-

induced increase in excitability is sensitive to treatment with putative Nav1.7 channel 

inhibitors.38 The enhancement of Nav1.7 was mediated through a PACAP/PAC1 activation 

of MEK/ERK signaling. Consistent with this conclusion, earlier studies reported that Nav1.7 

channel α subunits were phosphorylated by pERK; the phosphorylation initiating a 

hyperpolarizing shift in the voltage dependence of channel activation.39

The results above suggest a role of sodium channel modulation by PACAP as a potential 

mechanism contributing to neuronal excitability in CNS neurons. However, direct 
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assessment of PACAP modulation of neuronal sodium currents in intact CNS neurons is 

difficult because of their complicated geometry and because the gating kinetics of neuronal 

voltage-gated sodium channels are commonly too fast to accurately measure under voltage 

clamp conditions. While this shortcoming potentially might be addressed with experiments 

conducted at lower temperatures, PACAP likely does not initiate some of its signaling 

cascades below physiological temperatures.8 Using pharmacological treatments with sodium 

channel inhibitors, combined with AP measurements under current clamp recording 

conditions, also is likely not to be as useful an approach with CNS neurons as with 

peripheral neurons, in part because of limited selectivity of most inhibitors between Nav 

channel types in CNS neurons. Thus, although modulation of Nav channels is potentially a 

component of the PACAP-mediated change in excitability, the role and mechanisms remain 

to be elucidated.

Channel regulation may lead to behavioral outcomes

The observations that PACAP can cause acute behavioral changes suggest that PACAP may 

rapidly alter neuronal activity in limbic circuits by regulating in part ion channel 

conductances. This has yet to be demonstrated, but there are behavioral phenotypes that are 

clearly regulated by PACAP where the PACAP-modulated downstream ionic conductances 

could be identified through rigorous study. For example, our laboratory and others have 

demonstrated that PACAP actions in the central nucleus of the amygdala (CeA) and bed 

nucleus of the stria terminalis (BNST) participate in chronic stress and pain mechanisms. 

Chronic stress and pain paradigms can upregulate PACAP/PAC1 receptor expression.5 

PACAP infusions into these regions can alter pain- and stress-coping behaviors. For 

example, PACAP infusions into the CeA caused pain hypersensitivity and increased 

avoidance in an elevated plus maze 40; BNST PACAP infusions heightened acoustic startle,6 

increased peripheral corticosterone release,41 caused an anorexic phenotype,42 and caused 

reinstatement of drug seeking.43 The ion channels that participate in the CeA- and BNST-

mediated behavioral changes can be variable and notably, the CeA and BNST express 

channels that can carry IA, IH, and IT described above.44, 45 As PACAP/PAC1 receptor 

signaling can engage diverse intracellular signaling pathways, PACAP can affect cAMP-

dependent enhancement of IH, PKA-dependent enhancement of IT, and MEK/ERK-

dependent regulation of IA or gating of a NaV channel. The changes in channel activity 

would likely lead to changes in CeA or BNST activities to impact hypothalamic functions 

and other limbic regions that mediate fear and anxiety-like behaviors. There are multiple 

neurotransmitter and neuropeptidergic systems regulating behavior and an understanding of 

the mechanisms by which PACAP/PAC1 receptors contribute to the integration of these 

neurocircuit signaling events has the potential of generating new insights to maladaptive 

behavioral states.

Conclusions

PACAP binding to PAC1 receptors can potently and efficaciously generate multiple 

intracellular second messengers. PACAP/PAC1 receptor through its abilities to engage Gαs, 

Gαq and β-arrestin can activate downstream AC/cAMP/PKA, PLC/DAG/IP3/PKC, cAMP/

NCS-RapGef2/Rap1/MEK, and endosomal MEK/ERK pathways to regulate diverse cellular 
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functions that may be acute for rapid neuronal signaling or long term for adaptive 

neuroplasticity that may accompany development or responses to physiological challenges. 

Among these functions, PACAP/PAC1 receptor-mediated increase in neuronal excitability 

can involve the integrated contributions from multiple channel types modulated through the 

activation of different intracellular signaling pathways. PACAP/PAC1 receptors are 

interesting representatives of how a single ligand and receptor system can generate multiple 

signals to modulate diverse function including ionic conductances in the regulation of 

neuronal excitability (see figure 1) further studies of these mechanisms can lead to important 

insights into neurocircuits and the cell signaling events in health and disease.
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Figure 1: 
PACAP activates multiple signaling pathways to regulate several ionic currents controlling 

intrinsic neuronal excitability. The PAC1 receptor is dually-coupled to Gαs and Gαq 

subunits, which activate adenylyl cyclase and phospholipase c respectively. cAMP and PKA 

are both capable of modulating ionic currents, as well as stimulating further signaling 

factors, such as RapGef. Downstream of PLC, PKC has been shown to modulate multiple 

ionic currents. PAC1 is also capable of stimulating phosphorylation of ERK via β-arrestin 

and receptor endocytosis, and downstream of cAMP via RapGef and Rap1. Phosphorylated 

ERK is then capable of modulating both potassium and sodium conductances. Numbers 

indicate references demonstrating PACAP effect on specified current.
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