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Abstract

Introduction: Antimicrobial resistance in Gram-negative pathogens is a significant threat to 

global health. β-Lactams (BL) are one of the safest and most-prescribed classes of antibiotics on 

the market today. The acquisition of β-lactamases, especially those which hydrolyze carbapenems, 

is eroding the efficacy of BLs for the treatment of serious infections. During the past decade, 

significant advances were made in the development of novel BL-β-lactamase inhibitor (BLI) 

combinations to target β-lactamasemediated resistant Gram-negatives.

Areas covered: The latest progress in 20 different approved, developing, and preclinical BL-

BLI combinations to target serine β-lactamases produced by Gram-negatives are reviewed based 

on primary literature, conference abstracts (when available), and US clinical trial searches within 

the last 5 years. The majority of the compounds that are discussed are being evaluated as part of a 

BL-BLI combination.

Expert opinion: The current trajectory in BLI development is promising; however, a significant 

challenge resides in the selection of an appropriate BL partner as well as the development of 

resistance linked to the BL partner. In addition, dosing regimens for these BL-BLI combinations 

need to be critically evaluated. A revolution in bacterial diagnostics is essential to aid clinicians in 

the appropriate selection of novel BL-BLI combinations for the treatment of serious infections.
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1. Introduction

β-Lactams (BLs) are the largest class of antibiotics. Their mechanism of action is to inhibit 

bacterial cell-wall synthesis by forming a stable adduct with the peptidase domain of 

penicillin-binding proteins (PBPs), thus stalling peptide crosslinking and resulting in cell 

death. There are four major classes of BLs: penicillins, cephalosporins, monobactams, and 

carbapenems. The most common BL resistance mechanism in Gram-negative bacteria is the 

production of β-lactamases or enzymes that hydrolyze the amide bond of β-lactams 

inactivating the antibiotic and its ability to inhibit PBPs. The most problematic and difficult-

to-treat β-lactamase-producing Gram negatives include extended-spectrum β-lactamases 

(ESBL)-producing Enterobacteriaceae, carbapenem-resistant Enterobacteriaceae (CRE) that 

produce KPC- or OXA-48-like carbapenemases, Pseudomonas aeruginosa, and 

Acinetobacter spp. Based on their tertiary structures, four main groups of β-lactamases 

(classes A, B, C, and D) are circulating around the world [1–5]. Classes A, C, and D 

enzymes possess a nucleophilic serine residue that is required for BL hydrolysis; class B 

enzymes are metallo-β-lactamases that require Zn2+ for activity.

To evade the production of β-lactamases, β-lactamase inhibitors (BLIs) were discovered, and 

these molecules are given in combination with a partner BL, as most BLIs do not possess 

significant PBP inhibition on their own. BL-BLI combinations are referred to as β-lactam 

combination drugs by the Clinical Laboratory Standards Institute (CLSI). Clavulanic acid, 

sulbactam, and tazobactam were the first BLIs approved for use in the clinic; however, there 

BLI profiles are largely limited to class A serine penicillinases (e.g. TEM-1, SHV-1) and 

ESBLs (e.g. CTX-M-15) as well as some class C and D β-lactamases (e.g. AmpC and 

OXA-1) [6]. Correspondingly, due to the limited spectrum of these former BLIs as well as 

the spread of antimicrobial resistance in Gram-negatives due to the production of β-

lactamases, novel BL-BLI combinations with expanded profiles were sought.

Three major chemical BLI scaffolds are represented in approved and developing BL-BLI 

combinations. β-Lactambased BLIs (sulfones and oxapenems) continue to have a presence. 

After decades of research, boronic acid BLIs (e.g., vaborbactam and taniborbactam) have 

reached the spotlight. New to the BLI space are diazabicyclooctane (DBO) BLIs (e.g., 

avibactam and relebactam), including DBOs with enhanced chemistries such that they can 

also target PBPs (e.g., durlobactam, zidebactam, and nacubactam). In addition, some older 

BL-BLI combinations were revamped as the partner BL was replaced (i.e., ceftolozane-

tazobactam, cefepime-tazobactam, and ceftibuten-clavulanic acid). Another advancement in 

the BL-BLI field is a renewed focus on pharmacokinetics/pharmacodynamics – this topic 

will not be discussed in this review; thus, the reader is referred to two excellent 

contemporary reviews on this topic [7,8].

2. Recently-approved β-lactam-β-lactamase inhibitor combinations

Four BL-BLI combinations entered clinical use in the last 5 years. Ceftolozane-tazobactam, 

ceftazidime-avibactam, meropenem-vaborbactam, and imipenem-cilastatin-relebactam were 

approved by the Food and Drug Administration (FDA) to treat specific infections by certain 

Gram-negative pathogens (Table 1).
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2.1. Ceftolozane-tazobactam

Ceftolozane-tazobactam was approved by the FDA for the treatment of complicated urinary 

tract infections (cUTI), including acute pyelonephritis and complicated intra-abdominal 

infections (cIAI) when combined with metronidazole in December 2014 in adults ≥ 18 years 

of age (Table 1) [9]. The combination was also approved for hospital-acquired bacterial 

pneumonia (HABP), and ventilator-associated bacterial pneumonia (VABP) for those ≥ 18 

years of age and is being further evaluated for the treatment of infections in persons with 

cystic fibrosis and burns (clinicaltrials.gov identifiers: , and ). Thus, the indications for 

treatment with ceftolozane-tazobactam may expand. Detailed reviews of ceftolozane-

tazobactam are available [10,11].

Ceftolozane is a novel cephalosporin that was designed to be more stable to the class C 

Pseudomonas-derived cephalosporinase (PDC, also referred to as Pseudomonas AmpC) 

[12]. Ceftolozane possesses a reduced affinity for PDC and is not hydrolyzed (Figure 1 and 

Table 2). The BLI partner, tazobactam is a sulfonebased inhibitor with limited inhibitory 

activity against class A carbapenemases and class D oxacillinases [13,14]. Tazobactam was 

previously paired with the penicillin, piperacillin; ceftolozane-tazobactam appears to be 

more cost effective than piperacillin tazobactam due to improved quality-adjusted life years 

[15,16].

Ceftolozane-tazobactam’s strength resides in its potent activity against P. aeruginosa, 

including multi-drug resistant (MDR) strains with 90–98% of contemporary isolates testing 

susceptible [17–26]. Moreover, ceftolozane-tazobactam is a potential carbapenem-sparing 

treatment regimen against ESBL-producing Enterobacteriaceae [18–22,24]. Ceftolozane-

tazobactam’s activity against ESBL-producing K. pneumoniae as revealed through 

susceptibility testing is largely lacking [20,21,24,27]; however, in spite of these in vitro 
results, clinical cure rates are high [28]. Conversely, the combination is mostly ineffective 

against Enterobacteriaceae with serine carbapenemases [29–31].

Since the introduction of the BL-BLI combination, resistance to the ceftolozane-tazobactam 

was reported during treatment and these resistance mechanisms were extensively explored 

[32–38]. The predominant resistance mechanism described is the acquisition of amino acid 

substitutions in PDC; these changes in select residues allow PDC to hydrolyze ceftolozane.

2.2. Ceftazidime-avibactam

In February 2015, ceftazidime-avibactam was approved by the FDA for the treatment of 

cUTIs, including acute pyelonephritis and cIAIs in combination with metronidazole for 

individuals ≥ 3 months of age (Table 1) [39]. Another clinical indication for the treatment of 

HABP/VABP was subsequently added for adults ≥ 18 years old [39]. The reader is directed 

to several recent ceftazidime-avibactam reviews with more in-depth information on the 

combination [40,41].

Ceftazidime is also a cephalosporin with an R1 side chain similar in structure to ceftolozane, 

but an aminothiazole replaces the aminothiadiazole (Figure 1 and Table 2). Avibactam is the 

first diazabicyclooctane (DBO) BLI to reach the clinic. Ceftazidime-avibactam is highly 

potent against Enterobacteriaceae carrying blaKPC and blaOXA-48; the MIC90 values reported 
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include 0.5 μg/mL for 24,750 isolates of Enterobacteriaceae and 2 μg/mL for a panel of 

>500 strains of CRE [42–45]. The activity of this combination extends to P. aeruginosa with 

a comparable percentage of isolates testing susceptible (96.8%) as with ceftolozane-

tazobactam (99%) [46]. The spectrum of activity of ceftazidimeavibactam is attributable to 

avibactam’s ability to inhibit class A, C, and some D β-lactamases, including KPC and 

OXA-48 carbapenemases [47,48].

Resistance to the ceftazidime-avibactam was observed during therapy as well as through in 
vitro screening, and the mechanisms leading to resistance were explored [49–53]. The 

principal mechanism described is the acquisition of amino acid substitutions (e.g. D179Y, 

V240G) in the KPC carbapenemase leading to enhanced catalytic efficiency (e.g. lower 

affinity or increased hydrolysis) toward ceftazidime. Other resistance mechanisms including 

membrane permeability and drug efflux were also found to influence ceftazidime-avibactam 

resistance.

2.3. Meropenem-vaborbactam

In August 2017, meropenem-vaborbactam was approved by the FDA for treatment of cUTI, 

including pyelonephritis in adults ≥ 18 years of age (Table 1) [54]. A Phase 1 clinical trial to 

test meropenem-vaborbactam in pediatric populations with bacterial infections is currently 

recruiting patients (clinicaltrials.gov identifier: ). In addition, the combination completed 

Phase 3 clinical trials for the treatment of serious bacterial infections (e.g. HABP, VABP, and 

bacteremia) due to CRE in adults ≥ 18 years old (clinicaltrials.gov identifier: ) [55]. 

Consequently, the indications for use of meropenem-vaborbactam may expand. Additional 

information on meropenem-vaborbactam is available in the following review articles [56–

59].

Meropenem is a carbapenem and vaborbactam is a novel monocyclic boronic acid-based 

BLI and the first BL-boronate BLI combination to reach the market, which was highly 

anticipated due to the decades of research by many scientists on boronic acids and serine β-

lactamases (Figure 1 and Table 2) [6]. Vaborbactam is an inhibitor of many class A and C β-

lactamases, including KPC carbapenemases. Intriguingly, vaborbactam also demonstrates 

some inhibitory activity (IC50 values = 136–631 μM) against class B metallo-β-lactamases, 

including all three subclasses, B1, B2, and B3 [60]. The combination of meropenem-

vaborbactam demonstrates potent antimicrobial activity against CRE with an MIC90 value of 

1 μg/mL for meropenem when vaborbactam is maintained at 8 μg/mL [61,62]. Against a 

large panel (10,426 strains) of contemporary Enterobacteriaceae, meropenem and 

meropenem-vaborbactam possessed an MIC90 value of 0.06 μg/mL; however, against KPC 

producers the MIC90 values for meropenem and meropenem-vaborbactam differentiated to 

>32 μg/mL and 0.5 μg/mL, respectively [63]. Unlike ceftazidime-avibactam, vaborbactam 

does not potentiate the activity of meropenem against P. aeruginosa in vitro [64]. However, 

in a neutropenic murine thigh infection model with P. aeruginosa, meropenem-vaborbactam 

did reduce bacterial load; thus, the combination may have some utility against other Gram 

negatives [65].

In Enterobacteriaceae, resistance to meropenem-vaborbactam in vitro was attributed to the 

loss of expression of porins as well as increased expression of blaKPC [66–68]. 
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Ceftazidimeavibactam-resistant KPC-3 variants (e.g. V240G and D179Y) remained 

susceptible to meropenem-vaborbactam [68].

2.4. Imipenem-cilastatin-relebactam

In July 2019, imipenem-cilastatin-relebactam was approved by the FDA to treat of cUTIs 

and cIAIs caused by certain susceptible Gram-negative bacteria, in adults with limited or no 

alternative therapies available (Table 1) [69]. The combination is being further evaluated in 

Phase 3 trials for the treatment of infections in persons with HABP and VABP 

(clinicaltrials.gov identifier: ). This carbapenem-DBO combination possesses antimicrobial 

activity against Enterobacteriaceae (MIC90 value = 0.5–1 μg/mL) and P. aeruginosa (MIC90 

value = 2 μg/mL) producing class A and C β-lactamases (Figure 1 and Table 2) [70–72]. 

Relebactam is a potent inhibitor of KPC-2 and AmpC β-lactamases with Ki app values of 2.3 

μM and 3.4 μM respectively [73,74]. The imipenem-relebactam combination is effective at 

reducing bacterial load in neutropenic murine disseminated and pulmonary infection models 

caused by P. aeruginosa and Enterobacteriaceae [75]. Unlike ceftazidime-avibactam, the 

MICs of imipenem-relebactam are not effected by D179 variants of the KPC-2 

carbapenemase [76]. However, loss of antimicrobial activity for imipenem-relebactam was 

reported in Enterobacteriaceae due to lack of expression of porins [77–80]. Interestingly, 

oprD mutants in P. aeruginosa are more susceptible to imipenem-relebactam; this result is 

likely due to the essentiality of blaampC expression in the oprD null background [80–82].

3. β-lactam-β-lactamase inhibitor combinations in development

Eight BL-BLI combinations are in various stages (Phase 1–3) of clinical development. These 

combinations include two BL-sulfone BLI combinations (i.e., cefepime-enmetazobactam 

and cefepime-tazobactam), several BL-DBO-BLI combinations (i.e., aztreonamavibactam, 

sulbactam-durlobactam, cefepime-zidebactam, meropenem-nacubactam, and cefpodoxime 

proxetil-ETX0282), and a BL-boronate-BLI combination (i.e., cefepime-taniborbactam). 

Multiple unique features exist for the BL-DBO-BLI combinations: dual-action, increased 

reactivity, and oral bioavailability.

Durlobactam, zidebactam, nacubactam, and ETX0282 possess dual PBP and β-lactamase 

inhibitor activity. These BLIs with β- lactam activity are occasionally referred to as β-lactam 

‘enhancers’. When given in combination with a β-lactam partner, these DBOs not only 

inhibit the β-lactamases, but also target PBPs. These combinations work synergistically by 

targeting different PBPs at the same time, thus these DBOs ‘enhance’ the activity of the 

partner β-lactam. The chosen partner β-lactams for these DBOs, sulbactam, cefepime, 

meropenem, and cefpodoxime are potent PBP3 inhibitors resulting in the characteristic 

filamentation of the bacteria cell upon inhibition; conversely the DBOs inhibit PBP2 thus 

resulting in the formation of spheroplasts [83–85]. Together these BL-DBO combinations 

produced ‘spindle-shaped’ cells.

Using innovative chemistry, diazabicyclooctenone DBOs, durlobactam and ETX0282 were 

engineered with a double bond between C3 and C4 and methyl groups at the C3 position 

[85]. These modifications increased their reactivity as well as enhanced binding to β-

lactamases. Predecessor DBOs, such as avibactam, lacked inhibitor activity against most 
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class D β-lactamases (e.g., OXA-23 and OXA-24/40). Consequently, this subclass of DBOs 

was rationally-designed using in silico approaches to expand the inhibition profile of DBOs 

to include class D β-lactamases.

Due to poor oral bioavailability, most BL-BLI combinations in development are only 

available in an intravenous formulation. IV drug administration is a critical route for drug 

delivery, but has associated risks and caveats (e.g., variable venous access, phlebitis, 

thrombophlebitis, infiltration, extravasation, infections, higher costs) [86,87]. Oral step-

down therapy is beneficial as it eliminates the risks associated with IV administration and 

has the potential to decrease the length of hospital stay as well as improve quality of life for 

patients [88–94]. Cefopodoxime-ETX0282 is a novel oral BL-BLI combination in clinical 

trials.

3.1. Aztreonam-avibactam

Pfizer is developing the combination of aztreonam-avibactam, which will be entering Phase 

3 clinical trials for the treatment of serious bacterial infections due to metallo-β-lactamase 

producing Gram negatives (clinicaltrials.gov identifier: ) (Figure 2 and Table 2). Aztreonam, 

the only monobactam β-lactam approved for clinical use in the US, is stable to metallo-β-

lactamases and by adding avibactam, the combination demonstrates antimicrobial activity 

against Enterobacteriaceae co-producing class B and A or C β-lactamases [95–97]. In 

neutropenic murine thigh infection models caused by metallo-β-lactamase producing 

Enterobacteriaceae and P. aeruginosa, aztreonam-avibactam lower the bacterial load [98]. 

Resistance to aztreonam-avibactam was reported in a panel of clinical isolates of E. coli 
producing blaNDM-1 [99]. The mechanism of resistance was a four amino acid insertion into 

PBP3 abrogating the activity of aztreonam.

3.2. Cefepime-enmetazobactam

The cefepime-enmetazobactam combination is being developed by Allecra Therapeutics and 

is in Phase 3 clinical trials for cUTI (clinicaltrials.gov identifier: ). The combination 

possesses potent activity against Enterobacteriaceae producing class A ESBLs and is a 

potential carbapenem-sparing treatment regimen [100,101]. Enmetazobactam is a 

penicillanic acid sulfone β-lactamase inhibitor, similar in structure to tazobactam (Figure 2 

and Table 2). However, enmetazobactam possesses a methyl group on the triazole moiety 

that gives the molecule a neutral charge and is predicted to enhance entry into the bacterial 

cell as well as interactions with β-lactamases [102]. Enmetazobactam inhibits class A β-

lactamases, including KPC carbapenemases with IC50 values ≤ 0.52 μM [102]. In murine 

neutropenic thigh infection and immunocompetent septicemia models using cefepime-

resistant Enterobacteriaceae, the cefepime-enmetazobactam combination significantly 

reduced bacterial burdens [102,103]. According to the developer’s website, enmetazobactam 

will likely be paired with piperacillin as well.

3.3. Sulbactam-durlobactam

Entasis Therapeutics is a pioneer in the development of antimicrobial niche therapy, their 

sulbactam-durlobactam (ETX2514) combination is slated to target MDR Acinetobacter spp. 

(Figure 2 and Table 2). This BL-BLI is in Phase 3 clinical trials for A. baumannii-
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calcoaceticus complex HABP, VABP, and bacteremia (clinicaltrials.gov identifier: ). This is 

the only BL-BLI combination in development that demonstrates potent antimicrobial 

activity against Acinetobacter spp., a formidable threat to public health [85,104]. Sulbactam 

is traditionally known as a BLI, however due to sulbactam’s strong affinity for PBP3 in 

Acinetobacter spp., this BLI behaves as a BL [105]. Durlobactam inhibits class A, C, and D 

β-lactamases, thus is able to target the AmpC of Acinetobacter spp. (Acinetobacter-derived 

cephalosporinase, ADC) as well as the major groups of acquired oxacillinases (i.e., 

OXA-23-, OXA-24/40-, and OXA-58-families) in Acinetobacter spp [85,104]. Durlobactam 

also possesses β-lactam properties as it can inhibit PBP2 [85]. The sulbactam-durlobactam 

combination is effective in neutropenic murine thigh and lung infections models caused by 

MDR Acinetobacter spp. [85,104]. To identify potential resistance mechanisms to 

sulbactam-durlobactam, the combination and each drug alone were used to select for 

resistant mutants. With sulbactam, mutations in pbp3 were identified that result in amino 

acid substitutions to the PBP3 active site and affect sulbactam binding [106]. Moreover, 

alterations in the bacterial stringent response occurred, which were correlated with 

durlobactam exposure [106].

3.4. Cefepime-tazobactam

The cefepime-tazobactam combination at a 1:1 ratio in development by Wockhardt Ltd will 

be entering Phase 3 clinical trials for cUTI and acute pyelonephritis (clinicaltrials.gov 

identifier: ) (Figure 2 and Table 2). CLSI established susceptibility dose dependent (SDD) 

breakpoints (≤ 2 μg/mL up to ≤ 8 μg/mL) for cefepime that vary based on the chosen dose 

and infusion (0.5–2 grams every 8–12 hours) [107]. The addition of tazobactam will help 

cefepime cover isolates producing ESBLs that are resistant to piperacillin-tazobactam as 

well as strains with derepressed AmpCs [108,109]. Within the combination, cefepime is set 

at maximum dosage of 2 grams with 2 grams of tazobactam and is suggested to be 

administered every 8 hours as an extended infusion (90 min), thus allowing for broader 

coverage of isolates with higher cefepime-tazobactam MICs (8–16 μg/mL) [107,109]. 

Cefepimetazobactam demonstrates potent antimicrobial activity against Enterobacteriaceae, 

including those producing ESBLs with MIC90 values of 0.25 and 0.5 μg/mL when 

tazobactam if fixed at 4 and 8 μg/mL, respectively [107]. In addition, high-dose extended-

infusion cefepime-tazobactam has potential applicability against KPC-producing 

Enterobacteriaceae [108,109].

3.5. Cefepime-taniborbactam

A novel cephem-bicyclic-boronate-BLI combination, cefepime-taniborbactam 

(VNRX-5133), which is entering in Phase 3 clinical trials for cUTI and acute pyelonephritis 

is in development by VenatoRx Pharmaceuticals (clinicaltrials.gov identifier: ) (Figure 2 and 

Table 2). Taniborbactam potentiates the activity of cefepime against groups of 

Enterobacteriaceae producing KPC, VIM, NDM, ESBLs, and AmpCs, but not strains 

carrying IMP metallo-β-lactamases [110,111]. Moreover, cefepime-taniborbactam was 

found to be more potent than ceftolozane-tazobactam against a panel of P. aeruginosa, 70% 

vs. 56% of isolates tested susceptible, respectively [112]. Taniborbactam is a potent inhibitor 

of class A, B, C, and D β-lactamases with a Ki of 21.6 nM for the VIM-2 metallo-β-

lactamase [113]. In addition, ceftazidime-avibactam-resistant KPC-3 variants and 
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ceftolozane-tazobactam-resistant PDC variants (except the E221K variant in the parent 

background) were susceptible to cefepime-taniborbactam [114]. The combination was found 

to be efficacious in a neutropenic murine lung infection model caused by cephalosporin-

resistant K. pneumoniae and murine bacteremia and neutropenic-thigh infection models 

caused by carbapenem-resistant Enterobacteriaceae, including metallo-β-lactamase 

producers [115–117]. In Enterobacteriaceae, loss of porin production resulted in increased 

MICs to cefepime-taniborbactam; thus alterations in permeability impacts resistance to this 

combination [118].

3.6. Cefepime-zidebactam

Wockhardt, Ltd is developing the cephem-DBO combination of cefepime-zidebactam that 

has completed Phase 1 clinical trials (clinicaltrials.gov identifiers: , , , ) (Figure 2 and Table 

2). Cefepime-zidebactam at a 1:1 ratio demonstrated antimicrobial activity against 5946 

strains of Enterobacteriaceae and 1291 isolates of P. aeruginosa with reported MIC90 values 

of 0.12 and 4 μg/mL, respectively [119]. As zidebactam is a β-lactam ‘enhancer’, the 

cefepime-zidebactam combination also possesses activity against Enterobacteriaceae 

producing metallo-β-lactamases and class D oxacillinases and P. aeruginosa with metallo-β-

lactamases [120–122]. Zidebactam, referred to as a bicyclo-acyl hydrazide on the basis of its 

chemical scaffold, inhibits class A and C β-lactamases and PBP-2 of K. pneumoniae, P. 
aeruginosa, and A. baumannii [84,123–125]. Despite poor in vitro activity (MICs 16–64 

μg/mL) against A. baumannii, cefepime-zidebactam reduced bacterial burdens in 

neutropenic murine lung and thigh infection models with cefepime-resistant A. baumannii 
isolates [126,127]. The discrepancy in the in vitro and in vivo observations was likely due to 

the β-lactam ‘enhancer’ properties of zidebactam that alter the PK/PD properties of 

cefepime [128]. A similar observation was obtained with P. aeruginosa [129]. The eventual 

cefepime-zidebactam MIC susceptibility breakpoints will likely need to take these 

disagreements into account [130].

3.7. Meropenem-nacubactam

Meropenem-nacubactam is a carbapenem-DBO-BLI combination that completed Phase 1 

clinical trials (clinicaltrials. gov identifier: ) and is being developed by NacuGen 

Therapeutics, a joint venture between Fedora Pharmaceuticals and Meiji Seika Pharma 

(Figure 2 and Table 2). The addition of nacubactam restored meropenem susceptibility to 

Enterobacteriaceae including an isogenic panel of E. coli producing ceftazidime-avibactam-

resistant KPC-3 variants [131–134]. As a result of meropenem-nacubactam’s dual action, 

the combination also demonstrates reasonable activity (e.g. 71.2% of 309 isolates possessed 

an MIC of ≤1 μg/mL meropenem with 4 μg/mL of nacubactam) against metallo-β-lactamase 

producing Enterobacteriaceae [132,133,135]. Nacubactam inhibits PBP2 of 

Enterobacteriaceae and is a potent inhibitor of class A and C β-lactamases (IC50 < 1 μM) 

[83,136]. In neutropenic murine lung and cUTI infection models, meropenem-nacubactam 

was efficacious against Enterobacteriaceae-producing class A carbapenemases and 

Enterobacteriaceae-producing class A, B, C, or D β-lactamases, respectively [137,138]. 

Resistance to the nacubactam alone was attributable in most cases to global stringent 

response signal with induction of RpoS [139].
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3.8. Cefpodoxime proxetil-etx0282

Cefpodoxime proxetil-ETX0282 is a novel oral cephem-diazabicyclooctenone combination 

in development by Entasis Therapeutics and is the first novel oral BL-BLI combination to 

reach Phase 1 clinical trials (clinicaltrials.gov identifier: ) (Figure 2 and Table 2). The active 

components, cefpodoxime and ETX1317 demonstrate activity against Enterobacteriaceae 

and isogenic E. coli producing class A, C, and D β-lactamases [140–142]. In addition, 

ceftazidime-avibactam-resistant KPC-3 variants (V240G, D179Y, and D179Y/T243M) were 

susceptible to the combination [143]. ETX1317 inhibits class A, C and D β-lactamase with 

an IC50 values <0.54 μM and also binds to E. coli PBP2 [142]. The addition of ETX0282 to 

cefpodoxime reduced bacterial burdens in murine UTI and thigh infection models using 

ESBL-producing E. coli and KPC-2-producing K. pneumoniae [142,144].

4. Preclinical β-lactam-β-lactamase inhibitor combinations

Four novel BL-BLI combinations are in preclinical stages of development. These include a 

carbapenem-DBO combination, two oral-stepdown BL-BLIs, and a novel siderophore-

cephem-DBO combination.

4.1. Meropenem-WCK 4234

WCK 4234 is a BLI with a DBO scaffold and a nitrile side chain and is in preclinical testing 

by Wockhardt Ltd in combination with meropenem under the name WCK 5999 (Figure 3 

and Table 2). WCK 4234 is unique as it is the first molecule in the DBO class reported to 

meaningfully inhibit class D oxacillinases [123,145]. Correspondingly, at the time of its 

unveiling, WCK 4234 possessed superior inhibitory kinetic constants compared to 

avibactam and relebactam against class A and D β-lactamases [123]. Combined with 

meropenem, WCK 4234 lowered MICs against A. baumannii producing OXA-23, 

OXA-24/40 and OXA-51 carbapenemases [145]. Meropenem-WCK 4234 also demonstrated 

activity against Enterobacteriaceae producing KPCs and OXA-48-like β-lactamases 

[123,145]. The meropenem-WCK 4234 combination was not listed in the 2017–2018 

Annual Report available on the developer’s website; the status is uncertain.

4.2. Ceftibuten-clavulanate

A novel oral combination of ceftibuten-clavulanate, a cephem-oxapenem BLI was in 

preclinical development for ESBL-producing Enterobacteriaceae by Achaogen (Figure 3 and 

Table 2). Ceftibuten-clavulanate was the most active oral agent tested against a world-wide 

collection of 5,568 isolates of Enterobacteriaceae from 2017 [146,147]. Moreover, the 

pharmacodynamics of ceftibuten-clavulanate were evaluated in an in vitro chemostat model 

and a murine thigh infection model using ESBL-producing Enterobacteriaceae [148,149]. 

Unfortunately, in April 2019, Achaogen filed for bankruptcy, so the future of ceftibuten-

clavulanate is unclear.

4.3. Ceftibuten-VNRX-7145

In preclinical testing by VenatoRx Pharmaceuticals, ceftibutenVNRX-7145 is an oral 

cephem-bicyclic boronate BLI combination that debuted at the American Chemical Society 

(ACS) National Meeting in 2019 (Figure 3 and Table 2) [150]. Ceftibuten combined with 
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VNRX-5236, the active molecule, demonstrates activity against Enterobacteriaceae 

producing class A, C, and D β-lactamases, including KPC and OXA-48 carbapenemases 

[151–154]. VNRX-5236 is a potent inhibitor of serine β-lactamases with an IC50 value of 

<0.5 μM for all tested enzymes [155]. The addition of VNRX-5236 to ceftibuten reduced 

bacterial burdens in neutropenic murine UTI and thigh infection models using ESBL- and 

KPC-2-producing E. coli and OXA-48 and KPC-producing Enterobacteriaceae, respectively 

[156,157].

4.4. GT-1-GT-055

The GT-1-GT-055 combination is a joint venture between Geom Therapeutics and 

LegoChem Biosciences and first debuted at American Society of Microbiology’s Microbe 

meeting in 2018. GT-1 is a novel siderophore-based cephalosporin with an R1 side chain 

similar to ceftazidime, but with the addition of chloride to the aminothiazole (Figure 3 and 

Table 2). The introduction of the siderophore moiety enhances bacterial cell entry by 

allowing the drug to use the bacterial ferric iron transport system. GT-055 is a DBO-based 

BLI that also selectively binds to PBP2 in E. coli and K. pneumoniae (Figure 3) [158]. The 

GT-1-GT-055 combination possesses potent activity (MIC90 2–4 mg/L) against a panel of 

Enterobacteriaceae producing class A, B, and C β-lactamases [159]. Against P. aeruginosa 
and A. baumannii, MIC90 values were 0.5–1 mg/L and 8 mg/L, respectively for GT1-

GT-055 [160]. The combination also reduced bacterial loads ~1–2 logs below stasis in a 

murine thigh infection model with K. pneumoniae producing KPC-2 or GES-5 [161]. In 

Australia, Phase 1 clinical trials were discontinued in April 2019 which suggests that the 

development of this combination may have stalled (Australianclinicaltrials.gov identifier: 

ACTRN12618001980224).

5. Promising β-lactamase inhibitors

Based on their potent β-lactamase inhibitory activity, the MK-6183, QPX7728, ARX-1798, 

and BOS-572 BLIs are reviewed below despite lack of definitive or proposed β-lactam 

partners. Each of these BLIs has distinctive traits that fuel interest in further development.

5.1. MK-6183 (CB-238,618, CB-618)

MK-6183 is a DBO-based inhibitor that completed Phase 1 clinical trials in February 2019 

(clinicaltrials.gov identifier: ) (Figure 4). The clinical trial was initiated by the compound’s 

former developer, Cubist; however, in 2015 Cubist was acquired by Merck and MK-6183 

was transferred. To date, the pharmacokinetics-pharmacodynamics (PK/PD) relationship for 

MK-6183 efficacy in combination with various β-lactams against β-lactamase-producing 

Enterobacteriaceae was determined [162,163]. Based on their PK/PD observations, the 

authors suggest the MK-6183 may be useful as a ‘standalone’ BLI for the clinician to pair 

with the ‘right’ β-lactam [162]. The status of this compound is unknown as Merck’s website 

does not list the drug in its pipeline.

5.2. QPX7728

In preclinical evaluation by Qpex Biopharma, QPX7728 is a novel bicyclic boronate-based 

BLI that was identified following in silico screening against serine and metallo-β-lactamases 
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(Figure 4) [164]. This BLI debuted at American Society of Microbiology’s Microbe 2019 

meeting in San Francisco, CA [165]. Combined with either aztreonam, ceftolozane, or 

meropenem, QPX7728 lowers MICs against Enterobacteriaceae, A. baumannii and P. 
aeruginosa producing class A, B, C, and D β-lactamases. QPX7728 also potentiated oral β-

lactams, ceftibuten and tebipenem against CRE. QPX7728 possesses nM Ki values against 

purified class A, B, C, and D β-lactamases. In murine thigh and lung infection models, 

meropenem-QPX7728 lowered the bacterial load.

5.3. ARX-1796

ARX-1796 (AV-006) is an avibactam prodrug in preclinical testing by Arixa 

Pharmaceuticals (Figure 4). The charged sulfate moiety on avibactam limits its oral 

bioavailability; however, the addition of a neopentyl ester group to the sulfate enhances oral 

bioavailability in rats, dogs, and monkeys [166–168]. The oral β-lactams, ceftibuten, 

cefixime, amoxicillin, cefpodoxime, sulopenem, and tebipenem, were evaluated in 

combination with avibactam against a panel of Enterobacteriaceae producing ESBLs, KPCs, 

AmpCs, and OXA-48 and ceftibuten-avibactam demonstrated the lowest MICs overall 

[169,170]. Consequently, ARX-1796 may be partnered with ceftibuten.

5.4. BOS-572 (IID572)

Part of the DBO family, BOS-572 possesses a third ring that transforms this BLI into a 

dioxotriazatricyclohendecane (Figure 4). Originally discovered by Novartis, the compound 

is preclinical evaluation by Boston Pharmaceuticals. BOS-572 does not possess antibacterial 

activity on its own; thus, it must be combined with a β-lactam partner [171]. Combined with 

piperacillin, BOS-572 lowers MICs against an isogenic panel of E. coli carrying single class 

A, C, and D β-lactamases, including KPC-2 and OXA-48 carbapenemases [171]. The 

acylation rate (k2/Ki) of BOS-572 is ~32x faster compared to avibactam against CTX-M-15 

[171]. Relative to piperacillin-tazobactam with an MIC90 of >64 mg/L against 190 

Enterobacteriaceae, piperacillin-BOS-572 possessed an MIC90 of 16 mg/L [171].

6. Conclusion

In this review, the latest advances in BL-BLI combinations were reviewed, including 

approved agents, ones in various stages of development (i.e., Phases 1–4), as well as BL-BLI 

combinations in preclinical testing. Significant progress was made in the past decade to 

develop BL-BLI combinations that target some of the most formidable Gram-negatives 

(ESBL-producing Enterobacteriaceae, CRE, P. aeruginosa, and A. baumannii). The spectrum 

of inhibition for these novel BLIs include class A, B, C, and D β-lactamases. Multiple BL-

BLI combinations are carbapenem-sparing treatment regimens. Three oral stepdown BL-BLI 

combinations are in or close to the pipeline. Within the next decade, many of these new 

agents are anticipated to reach clinical use.

7. Expert opinion

A key finding in the field of BL-BLI development is the discovery of novel boronic acid- 

and DBO-based BLI scaffolds that inhibit the β-lactamases of today (e.g., KPC- and OXA- 
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carbapenemases). This advancement was critical in order to provide clinicians with 

alternative therapies to treat infections caused by CRE and MDR P. aeruginosa. Prior to this 

achievement, treatment options were limited to toxic agents, such as colistin. Another 

exciting development is the bicyclic boronates that inhibit metallo-β-lactamases. Between 

these BL-bicyclic boronate BLI combinations and aztreonam-avibactam, hopefully, the 

clinician will soon have an agent to use against Enterobacteriaceae-producing metallo-β-

lactamases. A major advance in BL-BLI development is also oral step-down therapy, thus 

removing the risks associated with IV administration, reducing costs and improving the 

quality of life for patients.

Dosing regimens for these BL-BLI combinations need to be critically evaluated. For 

example, higher-dose extended infusion cefepime-tazobactam capitalizes on the safety of 

these two molecules. By increasing the dosage to the maximum, the spectrum of activity for 

this combination expands to potentially include CRE. However, caution is warranted, and 

the addition of therapeutic drug monitoring to clinical practice would likely enhance the 

utility of the antibiotic arsenal as well as reduce emergence of resistance.

A significant challenge exists in the selection of BL partners for these BLIs. Given what has 

been observed to date with ceftolozane-tazobactam and ceftazidime-avibactam, the BL 

partner is critical. Upon release of these two new BL-BLI combinations, resistance emerged 

during treatment. Single amino acid substitutions in the PDC and KPC β-lactamases were 

the main drivers behind resistance to these BL-BLI combinations. The PDC and KPC 

variants were more catalytically ‘competent’ against the partner BLs, diminishing their 

efficacy against PBPs when in combination. Are partner-less BLIs an option? MK-6183 was 

suggested to be useful as a ‘standalone’ BLI that could be then partnered pro re nata by an 

infectious disease clinician with a select BL to target different Gram-negatives. For example, 

MK-6183 paired with aztreonam may be effective against metallo-β-lactamaseproducing 

Enterobacteriaceae vs. MK-6183 partnered with imipenem may demonstrate activity against 

KPC-producing Enterobacteriaceae. However, such a practice would require intricate 

knowledge of the bacteria responsible for the infection as well as the resistance mechanisms 

present.

For the future, rapid methods to identify the bacterium and resistance mechanisms produced 

is critical toward choosing the correct antibiotic as well as preserving the antibiotics in our 

armamentarium. Molecular diagnostics in other fields has exponentially advanced; however, 

bacterial diagnostics remain trapped in the 1940s [172]. For true advancement, additional 

diagnostic tools are necessary. In fact, the challenge for the current Longitude Prize, which 

is a £10 million prize funded by several agencies in the United Kingdom, is to design an 

‘accurate, rapid, affordable and easy to use’ point of care bacterial diagnostic test that will 

help combat antimicrobial resistance. Nevertheless, as we wait in anticipation, the latest 

advances in BL-BLI combinations are promising.
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Article highlights

• The development of novel BL-BLI combinations has escalated over the last 

decade.

• The spectrum of activity for 20 different novel BL-BLI combinations, 

including in vitro and in vivo studies, are presented; in addition, potential 

resistance mechanisms are described.

• The boronic acid- and diazabicyclooctane-based BLI scaffolds are likely the 

most outstanding advances in the field.

• The pursuit of novel ‘oral-stepdown’ BL-BLI combinations is fundamental 

necessity in the antibiotic arsenal.

• The greatest limitations in BL-BLI development are the selection of the BL 

partner, appropriate dosing strategies to obtain clinical cure, as well as rapid 

bacterial diagnostics to pinpoint the most suitable therapies.

This box summarizes key points contained in the article.
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Figure 1. 
FDA-approved BL-BLI combinations.
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Figure 2. 
BL-BLI combinations in clinical development.
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Figure 3. 
BL-BLI combinations in preclinical testing.
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Figure 4. 
BLIs in preclinical testing.
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