
Brain-derived neurotrophic factor (BDNF) and TrkB hippocampal 
gene expression are putative predictors of neuritic plaque and 
neurofibrillary tangle pathology

Stephen D. Ginsberg1,2,3,4, Michael H. Malek-Ahmadi6, Melissa J. Alldred1,2, Yinghua 
Chen6, Kewei Chen6, Moses V Chao2,4,5, Scott E. Counts7,8,9,10, Elliott J. Mufson11

1Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY

2Department of Psychiatry, New York University Langone Medical Center, New York, NY

3Department of Neuroscience & Physiology, New York University Langone Medical Center, New 
York, NY

4NYU Neuroscience Institute, New York University Langone Medical Center, New York, NY

5Skirball Institute of Biomolecular Medicine, New York University Langone Medical Center, New 
York, NY

6Banner Alzheimer’s Institute, Phoenix, AZ

7Department of Translational Science and Molecular Medicine, Michigan State University, Grand 
Rapids, MI

8Department of Family Medicine, Michigan State University, East Lansing, MI

9Michigan Alzheimer’s Disease Core Center, Ann Arbor, MI

10Hauenstein Neurosciences Center, Mercy Health Saint Mary’s Hospital, Grand Rapids, MI

11Department of Neurobiology and Neurology, Barrow Neurological Institute, Phoenix, AZ

Abstract

INTRODUCTION: Downregulation of brain-derived neurotrophic factor (BDNF) and its cognate 

neurotrophin receptor, TrkB, were observed during the progression of dementia, but whether the 

Alzheimer’s disease (AD) pathological lesions diffuse plaques, (DPs), neuritic plaques (NPs), and 

neurofibrillary tangles (NFTs) are related to this alteration remains to be clarified.
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METHODS: Negative binomial (NB) regressions were performed using gene expression data 

accrued from a single population of CA1 pyramidal neurons and regional hippocampal dissections 

obtained from participants in the Rush Religious Orders Study (RROS).

RESULTS: Downregulation of Bdnf is independently associated with increased entorhinal cortex 

NPs. Downregulation of TrkB is independently associated with increased entorhinal cortex NFTs 

and CA1 NPs during the progression of AD.

DISCUSSION: Results indicate that BDNF and TrkB dysregulation contribute to AD 

neuropathology, most notably hippocampal NPs and NFTs. These data suggest attenuating BDNF/

TrkB signaling deficits either at the level of BDNF, TrkB, or downstream of TrkB signaling may 

abrogate NPs and/or NFTs.
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Introduction

The neurotrophin brain-derived neurotrophic factor (BDNF) and its cognate neurotrophin 

receptor, TrkB, regulate many key brain functions involved in survival, neurogenesis, 

neuroplasticity, and learning and memory, among others (Cowansage et al., 2010; Leal et al., 

2015; Naito et al., 2017; Tapia-Arancibia et al., 2008; Yoshii and Constantine-Paton, 2010). 

Defects in the expression or activity of BDNF and TrkB are found in a number of 

neurodegenerative disorders (Autry and Monteggia, 2012; Belrose et al., 2014; Michalski et 

al., 2015; Thompson Ray et al., 2011), including mild cognitive impairment (MCI) (Forlenza 

et al., 2015; Ginsberg et al., 2006, 2010; Mufson et al., 2007a, 2012; Peng et al., 2005), 

Alzheimer’s disease (AD) (Allen et al., 2011; Erickson et al., 2010; Ginsberg et al., 2019; 

Tanila, 2017), and Huntington’s disease (Autry and Monteggia, 2012;Zuccato and Cattaneo, 

2009).

Downregulation of Bdnf occurs in the hippocampus in end-stage AD (Alvarez et al., 2014; 

Garzon et al., 2002; Holsinger et al., 2000; Michalski et al., 2015; Murray et al., 1994; 

Phillips et al., 1991; Sen et al, 2017), and those who died with a clinical diagnosis of MCI 

(Ginsberg et al., 2019). In contrast, TrkB, both the extracellular domain (ECD) and tyrosine 

kinase (TK) forms, display significant downregulation in MCI and AD compared to those 

with no cognitive impairment (NCI) in CA1 pyramidal neurons and regional hippocampal 

dissections (Ginsberg et al., 2019). Moreover, downregulation of TrkB ECD and TrkB TK 
significantly correlate with the abundance of neuritic plaques (NPs) and neurofibrillary 

tangles (NFTs), but not diffuse plaques (DPs) (Ginsberg et al., 2019). Specifically, decreased 

TrkB levels are associated with increased hippocampal CA1 NP load, entorhinal cortex 

NFTs, and hippocampal CA1 NFTs (Ginsberg et al., 2019). These correlative findings 

indicate Bdnf and/or TrkB dysfunction may associate with AD lesions during the 

progression of dementia, suggesting boosting BDNF-TrkB signaling as a potential 

therapeutic approach. This association remains an under investigated area in the AD field.
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To determine whether Bdnf and TrkB expression levels are associated with AD 

neuropathology during the progression of AD, we applied negative binomial (NB) 

regressions to expression profile data accrued from a homogeneous population of CA1 

pyramidal neurons and regional hippocampal dissections. Postmortem samples were 

obtained from subjects enrolled in the Rush Religious Orders Study (RROS), a longitudinal 

clinical pathological study of aging and dementia in retired Catholic clergy (Bennett and 

Launer, 2012; Bennett et al., 2002, 2012; Malek-Ahmadi et al., 2018; Mufson et al., 1999, 

2012, 2016a). Each RROS participant received an annual detailed premortem clinical and 

postmortem neuropathological evaluation, enabling an assessment of Bdnf and TrkB levels 

in relation to entorhinal cortex and hippocampal NPs, NFTs, and DPs in the same cases.

Materials and Methods

Clinical evaluation

All subjects came to autopsy with no coexisting clinical conditions contributing to cognitive 

impairment as judged by the examining neurologist and were not receiving 

anticholinesterase drug therapy. A complete description of the RROS cohort has been 

published previously (Bennett and Launer, 2012; Bennett et al., 2002; Mufson et al., 2000, 

2002b, 2016a, 2016b). Premortem cognitive assessments were performed each year prior to 

death. Memory tests consisted of the East Boston Memory immediate and delayed recall, 

Logical Memory immediate and delayed story recall, Consortium to Establish a Registry for 

Alzheimer’s Disease (CERAD) Word List Memory immediate and delayed recall, and 

CERAD Word List Recognition. A board-certified neurologist with expertise in the 

evaluation of the elderly, and blinded to age, sex, race/ethnicity, and clinical data other than 

occupation, education, and information about sensory or motor deficits, used these results to 

summarize impairments in each of the five cognitive domains. At consensus conferences, 

neurologists and neuropsychologists reviewed clinical and medical records and family 

interviews before assigning a final clinical diagnosis. Subjects were clinically categorized as 

NCI, MCI insufficient to meet criteria for dementia, and AD according to the criteria that 

our group and others have reported in a large number of clinical pathology studies that used 

tissue from the RROS (Bennett and Launer, 2012; Bennett et al., 2002; Mufson et al., 2000, 

2002b, 2016a, 2016b). Within the RROS cohort the MCI designation continues to be 

attributed to subjects with impaired cognitive testing who did not display frank dementia 

(Abner et al., 2017; Han et al., 2012, 2015). Case selection for this study was performed in 

association with the Neuropathology Core of the RROS (Oveisgharan et al., 2018; Yu et al., 

2019), similar to our previously published studies (Ginsberg et al., 2019; Malek-Ahmadi et 

al., 2016, 2018; Mufson et al., 2016a, 2016b).

Neuropathological evaluation

For microarray and neuropathological analyses, hippocampal tissue blocks were immersion-

fixed in 4% paraformaldehyde in 0.1 M phosphate buffer, pH 7.2, paraffin embedded, and 

cut at 6 μm thickness (Ginsberg et al., 2010, 2019). A series of tissue sections for each case 

were prepared for neuropathological evaluation including visualization and quantitation of 

NPs, DPs, and NFTs using a modified Bielschowsky silver stain, Thioflavine-S, and 

antibodies directed against amyloid-β peptide (Aβ; 4G8, monoclonal, BioLegend, San 
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Diego, CA) and tau (PHF1, monoclonal, a gift of Dr. Peter Davies, Hofstra Northwell 

School of Medicine) (Ginsberg et al., 2010; Malek-Ahmadi et al., 2016; Mufson et al., 2000, 

2002a). Amyloid plaque load and NFT burden were determined by counting the total 

number of NPs, DPs, and NFTs per subject using a modified Bielschowsky silver stain in 

one square mm area (100x magnification) from the entorhinal cortex and hippocampal CA1 

region (Ginsberg et al., 2019; Malek-Ahmadi et al., 2016; Mufson et al., 2016b).

All cases were evaluated by a board-certified neuropathologist blinded to clinical diagnosis. 

Designation of “normal”, “possible AD”, “probable AD”, or “definite AD” was based on 

estimation of NP density, as established by CERAD (Mirra et al., 1991). Each case also 

received a Braak score using NFT pathology staging (Braak and Braak, 1991). RROS cases 

also received NIA-Reagan diagnosis of Alzheimer’s disease and NINCDS-ADRDA 

designations (Bennett et al., 2012; Dubois et al., 2007; Hyman and Trojanowski, 1997). 

Exclusion criteria include hippocampal sclerosis, Lewy body disease, Parkinson’s disease, 

and identified strokes. Apolipoprotein E (ApoE) allele status was determined as described 

previously (Counts et al., 2007; Mufson et al., 2000, 2016b).

Bdnf and TrkB gene expression in CA1 pyramidal neurons and regional hippocampal 
dissections

The procedures for single population and regional hippocampal microarray analysis on 

human postmortem tissue have been described in detail previously (Ginsberg et al., 2006, 

2010, 2012, 2019; Tieman et al., 2016). Briefly, individual CA1 pyramidal neurons were 

microaspirated via laser capture microdissection (Arcturus PixCell IIe, ThermoFisher 

Scientific, South San Francisco, CA). Fifty CA1 pyramidal neurons were captured for 

population analysis. After accruing CA1 neurons, the remaining tissue containing the 

entorhinal cortex, CA1, CA2, and CA3 sectors, dentate gyrus, and subicular complex medial 

to the rhinal sulcus was microaspirated in total as described previously (Ginsberg et al., 

2012, 2019). RNAs were amplified by the terminal continuation (TC) RNA amplification 

method developed as previously described (Alldred et al., 2008, 2009; Che and Ginsberg, 

2004; Ginsberg 2005, 2008, 2014). The TC RNA amplification protocol is available at http://

cdr.rfmh.org/pages/ginsberglabpage.html. Microaspirated samples were homogenized in 100 

μl of Trizol (ThermoFisher Scientific, Waltham, MA), extracted with chloroform, and 

precipitated utilizing isopropanol (Alldred et al., 2009). RNAs were reverse transcribed in 

the presence of poly d(T) primer (100 ng/μl) and TC primer (100 ng/μl) in 1X first strand 

buffer (ThermoFisher Scientific), 2 μg of linear acrylamide (Applied Biosystems, Foster 

City, CA), 10 mM dNTPs, 100 μM dithiothreitol (DTT), 20 U of SuperRNase Inhibitor 

(Applied Biosystems) and 200 U of reverse transcriptase (Superscript III, ThermoFisher 

Scientific). Single stranded cDNAs were digested and placed in a thermal cycler in a 

solution consisting of 10 mM Tris (pH 8.3), 50 mM KC1, 1.5 mM MgCl2, and 10 U RNase 

H (ThermoFisher Scientific) in a final volume of 100 μl. The thermal cycler program ran as 

follows: RNase H digestion step at 37 °C, 30 minutes; denaturation step 95 °C, 3 minutes; 

primer re-annealing step 60 °C, 5 minutes (Alldred et al., 2009; Che and Ginsberg 2004). 

Samples were purified by column filtration (MilliporeSigma, Billerica, MA). Hybridization 

probes were synthesized by in vitro transcription using 33P incorporation in 40 mM Tris (pH 

7.5), 6 mM MgCl2, 10 mM NaCl, 2 mM spermidine, 10 mM DTT, 2.5 mM ATP, GTP and 
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CTP, 100 μM of cold UTP, 20 U of RNase inhibitor, 2 KU of T7 RNA polymerase (LGC, 

Middleton, WI), and 120 μCi of 33P -UTP (Perkin-Elmer, Boston, MA) (Alldred et al., 2009; 

Ginsberg 2008). The reaction was performed at 37 °C for 4 hours. Radiolabeled TC RNA 

probes were hybridized to custom-designed cDNA arrays without further purification.

Custom-designed cDNA array platforms and hybridization

Arrays were prehybridized (2 hours) and hybridized (12 hours) in a solution consisting of 

6X saline-sodium phosphate-ethylenediaminetetraacetic acid (SSPE), 5X Denhardt’s 

solution, 50% formamide, 0.1% sodium dodecyl sulfate (SDS), and denatured salmon sperm 

DNA (200 μg/ml) at 42 °C in a rotisserie oven (Che and Ginsberg 2004; Ginsberg 2008). 

Following hybridization, arrays were washed sequentially in 2X SSC/0.1% SDS, 1X SSC/

0.1% SDS and 0.5X SSC/0.1% SDS for 15 min each at 37 °C. Arrays were placed in a 

phosphor screen for 24 hours and developed on a phosphor imager (GE Healthcare, 

Piscataway, NJ). All array phosphor images were adjusted to the same brightness and 

contrast levels for data acquisition (Alldred et al., 2012, 2015, 2018).

Hybridization signal intensity was determined utilizing ImageQuant software (GE 

Healthcare). Each array was compared to negative control arrays without any starting RNA. 

Bdnf and TrkB expression was expressed as a ratio of the total hybridization signal intensity 

of the array (Ginsberg et al., 2000, 2006, 2010, 2012, 2019).

Statistical Analysis

For demographic and neuropathological variables, the Chi-square test was used to analyze 

categorical variables. The Kruskall-Wallis test was used to analyze group differences for 

continuous and count variables. The Conover-Inman test was used to test groupwise 

comparisons.

Expression levels of Bdnf and TrkB with AD neuropathology associations were examined 

using NB regression models, employing Bdnf or TrkB as predictor variables with NPs, DPs, 

and NFTs (entorhinal cortex for Model 1 and hippocampal CA1 for Model 2) as the 

outcome variable. An interaction term was included for Bdnf/TrkB and APOE ε4 carrier 

status. Age, gender, and APOE ε4 carrier status were included as covariates in all models.

NB regression models were used due to significantly skewed distributions for entorhinal 

cortex and hippocampal CA1 NPs, DPs, and NFTs in CA1 pyramidal neurons and regional 

hippocampal dissections (Figure 1), which were analogous to NB distributions (Berk and 

MacDonald, 2008). Additional justification for the use of NB regression models (Kim and 

Kriebel, 2009) is presented, as the variance values for each of the pathology measures were 

substantially greater than their means. For CA1 pyramidal neurons, mean entorhinal cortex 

NFT counts were 22.03 with a variance of 359.48 and mean hippocampal CA1 sector NFT 

counts were 23.08 with a variance of 615.54. For regional hippocampal dissections, mean 

entorhinal cortex NFT counts were 16.55 with a variance of 275.23 and mean hippocampal 

CA1 sector NFT counts were 22.82 with a variance of 606.14. Accordingly, entorhinal 

cortex and hippocampal CA1 NP, DP, and NFT data were tested to determine whether they 

followed a NB distribution (p>0.05). NB model fits were assessed by testing residual 

deviance values and their associated degrees of freedom in the chi-square distribution where 
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(p>0.05) indicated good model fit (Tjur, 1998). Statistical analyses were performed using the 

‘glm.nb’ function in R 3.4.0 using the “MASS” package while model fit was determined by 

using the ‘pchisq’ function. NB distribution testing for NP, DP, and NFT data was performed 

using the ‘goodfit’ function in the “vcd” package {The R Project for Statistical Computing, 

www.r-project.org; (Vose, 2008)}. Statistical significance was set at (p≤0.05).

Results

Demographic and neuropathological characteristics for dissections of CA1 pyramidal 
neurons

Demographic and neuropathological characteristics for each group are shown in Table 1. 

Age at death and years of education were not significantly different (p = 0.68, p = 0.19, 

respectively). No significant difference in the proportions of males and females was found (p 

= 0.33). The APOE ε4 allele was more prevalent in AD relative to NCI and MCI (p<0.001). 

Postmortem interval (PMI) and brain weight at autopsy were not significantly different (p = 

0.45, p = 0.23, respectively).

In entorhinal cortex, NCI displayed significantly lower NP counts relative to MCI (p = 0.01) 

and AD (p<0.001), whereas MCI and AD were not significantly different (p =0.11). MCI 

had significantly higher DP counts than NCI (p<0.001). However, differences between NCI 

and AD as well MCI and AD were not statistically significant (p = 0.10, p = 0.30, 

respectively). NCI had significantly lower entorhinal cortex NFTs relative to MCI (p = 0.03) 

and AD (p<0.001). MCI and AD displayed similar levels of NFT pathology (p = 0.08).

Hippocampal CA1 region NP counts were significantly different between all three clinical 

groups (NCK<MCI, p<0.001; NCI<AD, p = 0.001; MCI<AD, p = 0.04). For CA1 region 

DPs, NCI displayed significantly lower counts compared to MCI (p = 0.01) and AD 

(p<0.001). MCI and AD were not significantly different (p = 0.28). For CA1 NFTs, AD had 

significantly greater counts than NCI (p<0.001) and MCI (p=0.02). NCI and MCI were not 

significantly different (p = 0.08).

Braak stage was not significantly different between the clinical groups (p = 0.06). Stage I: 

NCI = 23%, MCI = 13%, AD = 0%; Stage II: NCI = 15%, MCI = 0%, AD = 11%; Stage III: 

NCI= 23%, MCI = 13%, AD = 0%; Stage IV: NCI = 39%, MCI = 40%, AD = 22%; Stage V: 

NCI= 0%, MCI = 33%, AD = 67%. The CERAD criteria Definite AD classification was 

more prevalent in MCI and AD relative to NCI (p = 0.05). The NIA-Reagan High 

Likelihood classification was most prevalent in AD (p<0.001) while the Intermediate 

Likelihood classification was most prevalent in MCI.

Relation of single population CA1 pyramidal neuron Bdnf and TrkB expression levels with 
AD pathology

Bdnf expression within a homogeneous population of CA1 pyramidal neurons was not 

significantly different between clinical groups (p = 0.09; Figure 2A). A separate analysis of 

NCI and MCI demonstrated significant downregulation (p = 0.03). TrkB expression showed 

significant downregulation with disease progression (NCI>MCI, p<0.001; NCI>AD, 

p<0.001; MCI=AD, p = 0.50; Figure 2B). Both Bdnf and TrkB were not significantly 

Ginsberg et al. Page 6

Neurobiol Dis. Author manuscript; available in PMC 2020 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.r-project.org/


associated with PMI (β = −0.06, SE = 0.10, p = 0.57) and (β = 0.00, SE = 0.02, p = 0.95), 

respectively.

Single population CA1 pyramidal neuron Bdnf expression was not significantly associated 

with entorhinal cortex NPs (β = 0.03, SE = 0.11, p = 0.79), DPs (β = −0.06, SE = 0.11, p = 

0.62), or NFTs (β = −0.05, SE = 0.08, p = 0.31) (Table 2). Interactions for APOE ε4 status 

and Bdnf were not statistically significant for NPs (β = −0.10, SE = 0.15, p = 0.53), DPs (β 
= 0.07, SE = 0.16, p = 0.65), or NFTs (β = −0.08, SE = 0.08, p = 0.31). Model fit was 

deemed to be good for the NP (p = 0.14), DP (p = 0.13), and NFT (p = 0.13) models. Bdnf 
was significantly associated with CA1 NPs (β = −0.30, SE = 0.12, p = 0.008; Figure 3A), 

but not with DPs (β = −0.07, SE = 0.11, p = 0.53) or NFTs (β = 0.04, SE = 0.07, p = 0.54) 

(Table 2). Interactions for APOE ε4 status and Bdnf for CA1 region pathology were not 

statistically significant for NPs (β = 0.27, SE = 0.16, p = 0.09), DPs (β = −0.23, SE = 0.16, 

p = 0.15), or NFTs (β = −0.16, SE = 0.10, p = 0.11). Model fit was deemed to be good for 

all models (NPs: p = 0.14, DPs: p = 0.23, NFTs: p = 0.09).

Single population CA1 neuron TrkB expression was not associated with entorhinal cortex 

NPs (β = −0.43, SE = 0.27, p = 0.11) or NFTs (β = −1.02, SE = 0.52, p = 0.10), but showed 

a significant association with DPs (β = −1.37, SE = 0.54, p = 0.02) (Figure 3B and Table 3). 

Model fit was deemed to be good for all models (NPs: p = 0.13, DPs: p = 0.14, NFTs: p = 

0.14). For the CA1 analyses, TrkB was significantly associated with NPs (β = −1.18, SE = 

0.50, p = 0.02; Figure 3C) but not DPs (β = −1.10, SE = 0.63, p = 0.08) or NFTs (β = 

−0.13, SE = 0.35, p = 0.71) (Table 3). The CA1 models all demonstrated good fit (NPs: p = 

0.11, DPs: p = 0.30, NFTs: p = 0.09).

Demographic and neuropathological characteristics for regional hippocampal dissections

Demographic and neuropathological characteristics for each group are shown in Table 4. 

Age at death and years of education were not significantly different across groups examined 

(p = 0.18, p = 0.27, respectively). The proportions of male and female subjects was not 

statistically different (p = 0.74). The APOE ε4 allele was more prevalent in MCI and AD 

relative to NCI (p = 0.03). PMI and brain weight at autopsy were not significantly different 

(p = 0.54, p = 0.14, respectively). Braak stage was significantly different between clinical 

groups (p = 0.02). NCI cases had lower Braak stages relative to MCI and AD. Stage I: NCI = 

23%, MCI = 10%, AD = 0%; Stage II: NCI = 31%, MCI = 0%, AD = 10%; Stage III: NCI= 

15%, MCI = 10%, AD = 0%; Stage IV: NCI= 31%, MCI = 60%, AD = 30%; Stage V: NCI = 

0%, MCI = 20%, AD = 60%). A CERAD diagnosis of Definite AD classification was more 

prevalent in MCI and AD relative to NCI (p = 0.05). The NIA-Reagan High Likelihood 

classification was most prevalent in AD (p<0.001).

Significantly greater entorhinal cortex NP pathology was observed in AD relative to both 

NCI (p<0.001) and MCI (p = 0.02). NCI and MCI were not significantly different (p = 0.17). 

Entorhinal cortex DPs were significantly greater in MCI compared to NCI(p = 0.01). No 

significant difference in DPs were found between NCI and AD (p = 0.14) as well as MCI 

and AD (p = 0.29). Entorhinal cortex NFTs were significantly lower in NCI compared to 

MCI (p = 0.03) and AD (p<0.001). NFT pathology was similar between MCI and AD (p = 
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0.08). Both Bdnf and TrkB were not significantly associated with PMI (β = 0.05, SE = 0.05, 

p = 0.31) and (β = 0.06, SE = 0.04, p = 0.12), respectively.

CA1 region NPs were significantly greater in AD than NCI (p<0.001) while MCI had 

significantly greater CA1 regional NP neuropathology compared to NCI (p = 0.02). MCI 

and AD were not significantly different (p = 0.14). CA1 regional DPs were not significantly 

different between groups (p = 0.18). CA1 NFTs showed group differences that were similar 

to the entorhinal cortex (NCI<MCI, p = 0.01; NCI<AD, p<0.001; MCI=AD, p = 0.15).

Regional hippocampal dissection Bdnf and TrkB expression with AD pathology

Downregulation of hippocampal Bdnf was found between NCI and MCI (p<0.001) while 

upregulation was observed between MCI and AD groups (p = 0.01) (Figure 4A). 

Downregulation of hippocampal TrkB was found between NCI and MCI (p<0.001) and NCI 

and AD (p<0.001) (Figure 4B). No significant difference in TrkB expression was found 

between MCI and AD (p = 0.27).

Among entorhinal cortex pathology measures, hippocampal Bdnf was a significant predictor 

of NPs (β = −0.35, SE = 0.16, p = 0.02; Figure 5A), but not DPs (β = −0.21, SE = 0.17, p = 

0.38) or NFTs (β = −0.04, SE = 0.09, p = 0.70) (Table 5). Bdnf interactions with APOE ε4 

carrier status were not significant for NPs (β = 0.27, SE = 0.24, p = 0.25), DPs (β = 0.23, SE 

= 0.27, p = 0.38), or NFTs (β = −0.09, SE = 0.14, p = 0.54). Entorhinal cortex pathology 

models for Bdnf all demonstrated good fit (NPs: p = 0.19, DPs: p = 0.15, NFTs: p = 0.11). 

For CA1 region pathology measures, Bdnf was not a significant predictor of NPs (β = 0.09, 

SE = 0.18, p = 0.64), DPs (β = −0.16, SE = 0.22, p = 0.45) or NFTs (β = −0.10, SE = 0.11, 

p = 0.35) (Table 5). Bdnf interactions with APOE ε4 carrier status were not significant for 

NPs (β = −0.18, SE = 0.28, p = 0.51), DPs (β = 0.28, SE = 0.32, p = 0.37), or NFTs (β = 

−0.08, SE = 0.17, p = 0.64). Each CA1 pathology model demonstrated good fit (NPs: p = 

0.18, DPs: p = 0.37, NFTs: p = 0.10).

Using hippocampal TrkB as a predictor of entorhinal cortex pathology, a significant 

association was found for NFTs (β = −0.26, SE = 0.10, p = 0.04; Figure 5B), but not DPs (β 
= −0.26, SE = 0.21, p = 0.22) or NPs (β = −0.22, SE = 0.21, p = 0.29) (Table 6). TrkB and 

APOE ε4 carrier status associations were not significant for NPs (β = 0.05, SE = 0.37, p = 

0.89), DPs (β = 0.05, SE = 0.37, p = 0.88), or NFTs (β = 0.00, SE = 0.19, p = 0.99). 

Entorhinal cortex pathology models for TrkB demonstrated good fit (NPs: p = 0.20, DPs: p = 

0.15, NFTs: p = 0.12). For CA1 region pathology measures, TrkB was significantly 

associated with NPs (β = −0.58, SE = 0.19, p = 0.006; Figure 5C), but not DPs (β = −0.31, 

SE = 0.27, p = 0.26) or NFTs (β = −0.26, SE = 0.12, p = 0.08) (Table 6). TrkB interactions 

with APOE ε4 carrier status were not significant for NPs (β = 0.48, SE = 0.39, p = 0.22), 

DPs (β = 0.08, SE = 0.42, p = 0.85), or NFTs (β = −0.28, SE = 0.22, p = 0.21). CA1 region 

pathology models for TrkB all demonstrated good fit (NPs: p = 0.21, DPs: p = 0.35, NFTs: p 

= 0.11).
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Discussion

The present investigation assessed associations between Bdnf and TrkB expression and NPs, 

DPs, and NFTs within a homogeneous population of CA1 pyramidal neurons as well as 

regional hippocampal dissections using postmortem tissues. The NB model using regional 

hippocampal entorhinal cortex NPs as an outcome measure demonstrates that 

downregulation of Bdnf is independently associated with increased regional entorhinal 

cortex NPs. A parallel observation was found with TrkB and entorhinal cortex NFTs. 

Specifically, downregulation of TrkB is independently associated with increased entorhinal 

cortex NFTs. These novel results suggest dysfunctional hippocampal neurotrophin signaling, 

namely BDNF and its cognate receptor TrkB, is associated with, and may possibly be 

upstream of entorhinal cortex NPs and NFTs, early sites of AD pathology. Perhaps 

ameliorating BDNF/TrkB signaling deficits, especially within the entorhinal cortex and 

hippocampus, may potentially abrogate the formation of NP and NFT pathology. Although 

this hypothesis is conjectural, the power of this timely study is that it is an attempt at teasing 

apart a spatio-temporal association between neuronal transcript expression and AD 

pathology that can be validated or rejected in representative model systems. In this scenario, 

findings derived from human disease dictates what to assess in model systems, and not vice 

versa.

Significance of the possible temporal sequence of BDNF/TrkB deficits preceding 

neuropathology lies in its therapeutic potential. Several research laboratories, including our 

group, hypothesize deficits in BDNF signaling leads to selective vulnerability of specific 

neuronal populations, including hippocampal CA1 pyramidal neurons and cholinergic basal 

forebrain neurons of the nucleus basalis of Meynert (Erickson et al., 2010; Ginsberg et al., 

2006, 2010, 2011, 2012, 2019; Mufson et al., 2007a, 2007b; Peng et al., 2005; Tanila, 2017). 

Restoration of BDNF/TrkB signaling, either through neurotrophin delivery (Mitra et al., 

2019; Nagahara et al., 2009, 2013), transactivation of the TrkB receptor, or activation of 

downstream pathways (Mitre et al., 2017; Rajagopal et al., 2004; Skaper, 2008) may provide 

neuroprotection by targeting mechanisms of neuroplasticity as well as preventing and/or 

attenuating amyloid and tau pathology (Arancibia et al., 2008; Mufson et al., 2007a, 2007b, 

2015; Nagahara et al., 2009).

The association(s) between BDNF signaling and the cascades that lead to plaque and tangle 

formation are likely not unidirectional. Rather, a growing number of studies using relevant 

AD animal and cellular models suggests amyloid-β precursor protein (APP) and its 

metabolites, including amyloid-β peptide (Aβ) downregulates BDNF expression and BDNF-

TrkB retrograde trafficking (Garzon and Fahnestock, 2007; Peng et al., 2009; Poon et al., 

2011, 2013), possibly through cyclic adenosine monophosphate response element binding 

protein transcriptional downregulation (Rosa and Fahnestock, 2015). Alternatively, loss of 

BDNF leads to changes in synaptic protein levels (Mariga et al., 2015), cleavage and 

metabolism of APP (Matrone et al., 2008) and tau (Corsetti et al., 2008). Since exogenous 

delivery of BDNF ameliorates synaptic as well as learning and memory deficits in primate 

and rodent AD models (Arancibia et al., 2008; Iwasaki et al., 2012; Nagahara et al., 2009, 

2013), extensive development has gone into devising BDNF brain delivery methods (Jiang et 

al., 2018; Mitra et al., 2019). Moreover, increased tau pathology has been related to a 

Ginsberg et al. Page 9

Neurobiol Dis. Author manuscript; available in PMC 2020 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



depletion of BDNF signaling through the glucocorticoid receptor pathway (Arango-Lievano 

et al., 2016). Tau overexpression decreases BDNF signaling in cellular and mouse models of 

AD and in tauopathy (Mazzaro et al., 2016; Rosa et al., 2016). A defective BDNF response, 

likely through NMDA receptor signaling, has also been observed in a mouse model of 

tauopathy (Burnouf et al., 2013). The present postmortem human tissue findings suggest 

multiple levels of regulation exist between neurotrophin signaling and amyloid and tau 

pathology that merit further investigation in both well-characterized clinical pathological 

cohorts of human subjects during the progression of dementia as well as in animal and 

cellular models that enable temporal sequences and mechanistic interactions to be 

elucidated.

Similar to evaluations of NCI subjects with low- and high-AD pathology (Malek-Ahmadi et 

al., 2016, 2018, 2019) that failed to reveal correlations between DPs and cognitive decline, 

we found Bdnf and TrkB were not associated with DP load. However, CA1 TrkB showed a 

significant inverse association with entorhinal cortex DPs. The present dataset also lends 

support to the contention that NPs are the salient plaque species related to the pathogenesis 

of dementia, while DPs are more likely to be bystanders in disease progression (Dickson, 

2009; Ginsberg et al., 2019; Malek-Ahmadi et al., 2018, 2019; Mufson et al., 2016a).

This study provides proof-of-concept that individual transcripts within a functional gene 

ontology group (e.g., neurotrophins and neurotrophin receptors) can be used to predict (or to 

be an outcome measure) associated with AD neuropathology. Future studies evaluating other 

potential drivers of NPs and NFTs, such as endosomal-lysosomal and autophagy markers, or 

potential drivers of synaptic pathology, such as synaptic-related markers, glutamatergic 

neurotransmission, and GABAergic neurotransmission genes in relation to NPs and NFTs is 

warranted. Moreover, present results highlight the utility of nontraditional informatics/

biostatistics on human postmortem data to drive mechanistic assessments of AD 

pathogenesis. Future studies using microarray and/or RNA-sequencing derived data from 

individual populations and discrete vulnerable brain regions is likely to shed light on nodal 

interactions between gene/encoded protein dysregulation, AD pathological lesions, and 

cognitive decline during the progression of dementia. Machine learning or related systems 

biology modeling approaches (Donnelly-Kehoe et al., 2018; Grassi et al., 2018; Lins et al., 

2017; Signaevsky et al., 2019) appear to be feasible methods to pair neurotrophin 

dysregulation with AD pathology deposition/accumulation.

There are limitations to consider including a lack of direct causality between neurotrophin/

neurotrophin receptor mRNA levels and AD neuropathological lesions in postmortem 

human tissue based clinical pathological investigations. Future mechanistic studies using in 
vitro and in vivo models (Arango-Lievano et al., 2016; Mariga et al., 2015; Mitra et al., 

2019; Nagahara et al., 2009, 2013; Rosa et al., 2016) are warranted based on our findings 

derived from bona fide human disease. Another caveat is the number of subjects relative to 

the number of predictors in the NB regression analyses. All of the NB models we employed 

contained five predictor variables (four main effect and one interaction), which by some 

standards, is too many for the sample sizes used in this study. Although the statistical 

convention that ten subjects per independent variable is ideal to provide valid estimates, 

studies have revealed that as few as two subjects per covariate can provide adequate 
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estimates for regression models (Austin and Steyerberg, 2015). Nonetheless, careful 

consideration was given to the selection of covariates and interaction terms used in the 

models to account for biologically relevant factors. In addition, goodness of fit assessments 

for each model indicated our data met the underlying assumptions of NB distribution. 

Therefore, we contend these models accurately support relationships between Bdnf and 

TrkB expression and NP/NFT pathology.

In summary, NB regression models were employed to infer Bdnf and TrkB within 

homogenous CA1 pyramidal neurons and heterogeneous hippocampal complex dissections 

in relation to NP, NFT, and DP pathology. Based upon our findings, we propose that BDNF 

signaling defects may be upstream of classic AD lesions. This does not preclude the 

possibility that amyloid and tau cascades impinge upon BDNF and TrkB regulation as part 

of a reciprocal regulatory loop exacerbating neurodegenerative pathology and serve as a 

node or hub for therapeutic intervention.
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Abbreviations

Aβ amyloid-β peptide

AD Alzheimer’s disease

ApoE apolipoprotein E

BDNF brain-derived neurotrophic factor

DTT dithiothreitol

DPs diffuse plaques

ECD extracellular domain

MCI mild cognitive impairment

NB negative binomial

NCI no cognitive impairment

NFTs neurofibrillary tangles

NPs neuritic plaques

PMI postmortem interval

RROS Rush Religious Orders Study

SDS sodium dodecyl sulfate
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SSPE 6X saline–sodium phosphate–ethylenediaminetetraacetic acid

TC terminal continuation

TK tyrosine kinase
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Highlights

• Negative binomial models associate Bdnf & TrkB levels with Alzheimer 

neuropathology.

• CA1 neuron and hippocampal Bdnf & TrkB levels are similar in Alzheimer’s 

disease.

• Hippocampal Bdnf inversely correlates with entorhinal cortex neuritic 

plaques.

• Hippocampal TrkB inversely correlates with entorhinal cortex neurofibrillary 

tangles.

• Hippocampal TrkB inversely correlates with hippocampal CA1 neuritic 

plaques.
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Figure 1. 
Frequency distributions of entorhinal cortex (ERC) and CA1 neuritic plaques (NPs), diffuse 

plaques (DPs), and neurofibrillary tangles (NFTs) for homogeneous CA1 pyramidal neurons 

(A-F) and regional hippocampal dissections (G-L). Individual histograms indicate the 

distributions for NP, DP, and NFT counts are heavily skewed toward lower values. Since 

these count data are the outcome variables, negative binomial (NB) regression models were 

used in order to obtain valid estimates of Bdnf and TrkB associations with NP, DP, and NFT 

counts.
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Figure 2. 
A. Boxplots illustrating clinical group differences within homogeneous CA1 pyramidal 

neurons for Bdnf. Bdnf expression was not significantly different between the clinical 

groups (p = 0.09). A separate analysis yielded a significant downregulation in MCI 

compared to NCI (p = 0.03). B. Boxplots illustrating downregulation of TrkB during the 

progression of dementia within homogeneous CA1 pyramidal neurons. TrkB expression 

showed significant group differences where expression decreased with disease progression 

(NCI>MCI, p<0.001; NCI>AD, p<0.001; MCI=AD, p = 0.50).
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Figure 3. 
Association of Bdnf and TrkB expression in homogeneous CA1 pyramidal neurons with 

hippocampal CA1 region neuritic plaques and entorhinal cortex diffuse plaques. A. A 

significant inverse association was found between Bdnf expression and hippocampal CA1 

region neuritic plaques by clinical group (β = −0.30, SE = 0.12, p = 0.008). B. A significant 

inverse association was found between TrkB expression and entorhinal cortex diffuse 

plaques by clinical group (β = −1.37, SE = 0.54, p = 0.02). C. A significant inverse 
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association was found between TrkB expression and hippocampal CA1 region neuritic 

plaques by clinical group (β = −1.18, SE = 0.50, p = 0.02).
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Figure 4. 
A. Boxplots illustrating clinical group differences within regional hippocampal dissections 

for Bdnf. Significant downregulation of Bdnf was found between NCI and MCI (p<0.001) 

while significant upregulation was observed between MCI and AD (p = 0.01). B. Boxplots 

illustrating clinical group differences within regional hippocampal dissections for TrkB. 
Significant downregulation was found for TrkB during the progression of dementia as MCI 

(p<0.001) and AD (p<0.001) displayed significantly less expression than NCI. No 

significant difference in TrkB expression was found between MCI and AD (p = 0.27).
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Figure 5. 
Association of Bdnf and TrkB expression in regional hippocampal dissections with 

entorhinal cortex neuritic plaques, entorhinal cortex neurofibrillary tangles, and hippocampal 

CA1 region neuritic plaques. A. A significant inverse association was found between Bdnf 
expression and entorhinal cortex neuritic plaques by clinical group (β = −0.35, SE = 0.16, p 

= 0.02). B. A significant inverse association was found between TrkB expression and 

entorhinal cortex neurofibrillary tangles by clinical group (β = −0.26, SE = 0.10, p = 0.04). 
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C. A significant inverse association was found between TrkB expression and hippocampal 

CA1 neuritic plaques by clinical group (β = −0.58, SE = 0.19, p = 0.006).
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Table 2.

CA1 pyramidal neuron negative binomial regression models using Bdnf as a predictor of entorhinal cortex and 

hippocampal AD pathology.

Entorhinal Cortex Coefficient SE p-value

Outcome = NPs

Bdnf 0.03 0.11 0.79

APOE ε4 1.40 0.80 0.08

APOE ε4 x Bdnf −0.10 0.15 0.53

Outcome = DPs

Bdnf −0.06 0.11 0.62

APOE ε4 0.17 0.87 0.84

APOE ε4 x Bdnf 0.07 0.16 0.65

Outcome = NFTs

Bdnf −0.05 0.05 0.32

APOE ε4 1.01 0.39 0.01*

APOE ε4 x Bdnf −0.08 0.08 0.31

Hippocampal CA1 Coefficient SE p-value

Outcome = NPs

Bdnf −0.30 0.12 0.008*

APOE ε4 0.05 0.76 0.95

APOE ε4 x Bdnf 0.27 0.16 0.09

Outcome = DPs

Bdnf −0.07 0.11 0.53

APOE ε4 2.47 0.81 0.002*

APOE ε4 x Bdnf −0.23 0.16 0.15

Outcome = NFTs

Bdnf 0.04 0.07 0.54

APOE ε4 1.26 0.53 0.02*

APOE ε4 x Bdnf −0.16 0.10 0.11

Models included age at death, gender, and APOE ε4 carrier status. SE = standard error.

*
= significant.
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Table 3.

CA1 pyramidal neuron NB regression models using TrkB as a predictor of entorhinal cortex and hippocampal 

AD pathology.

Entorhinal Cortex Coefficient SE p-value

Outcome = NPs

TrkB −1.02 0.52 0.10

APOE ε4 −0.70 1.26 0.58

APOE ε4 x TrkB 1.18 0.98 0.23

Outcome = DPs

TrkB −1.37 0.54 0.02*

APOE ε4 −1.16 1.34 0.39

APOE ε4 x TrkB 0.99 1.04 0.34

Outcome = NFTs

TrkB −0.43 0.27 0.11

APOE ε4 0.16 0.67 0.81

APOE ε4 x TrkB 0.37 0.52 0.48

Hippocampal CA1 Coefficient SE p-value

Outcome = NPs

TrkB −1.18 0.50 0.02*

APOE ε4 −1.25 1.21 0.30

APOE ε4 x TrkB 1.64 0.94 0.08

Outcome = DPs

TrkB −1.10 0.63 0.08

APOE ε4 −0.16 1.41 0.91

APOE ε4 x TrkB 1.46 1.09 0.18

Outcome = NFTs

TrkB −0.13 0.35 0.71

APOE ε4 0.34 0.90 0.70

APOE ε4 x TrkB 0.22 0.69 0.75

Models included age at death, gender, and APOE ε4 carrier status. SE = standard error.

*
= significant.
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Table 5.

Regional hippocampal negative binomial regression models using Bdnf as a predictor of entorhinal cortex and 

hippocampal CA1 AD pathology.

Entorhinal Cortex Coefficient SE p-value

Outcome = NPs

Bdnf −0.35 0.16 0.02*

APOE ε4 −0.79 1.45 0.58

APOE ε4 x Bdnf 0.27 0.24 0.25

Outcome = DPs

Bdnf −0.21 0.17 0.23

APOE ε4 −1.05 1.66 0.53

APOE ε4 x Bdnf 0.23 0.27 0.38

Outcome = NFTs

Bdnf −0.04 0.09 0.70

APOE ε4 1.04 0.88 0.24

APOE ε4 x Bdnf −0.09 0.14 0.54

Hippocampal CA1 Coefficient SE p-value

Outcome = NPs

Bdnf 0.09 0.18 0.64

APOE ε4 1.85 1.75 0.29

APOE ε4 x Bdnf −0.18 0.28 0.51

Outcome = DPs

Bdnf −0.16 0.22 0.45

APOE ε4 0.22 1.97 0.91

APOE ε4 x Bdnf 0.28 0.32 0.37

Outcome = NFTs

Bdnf −0.10 0.11 0.35

APOE ε4 0.78 1.06 0.46

APOE ε4 x Bdnf −0.08 0.17 0.64

Models included age at death, gender, and APOE ε4 carrier status. SE = standard error.

*
= significant.
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Table 6.

Hippocampal dissection negative binomial regression models using TrkB as a predictor of entorhinal cortex 

and hippocampal CA1 AD pathology.

Entorhinal Cortex Coefficient SE p-value

Outcome = NPs

TrkB −0.22 0.21 0.29

APOE ε4 0.50 1.34 0.71

APOE ε4 x TrkB 0.05 0.37 0.89

Outcome = DPs

TrkB −0.26 0.21 0.22

APOE ε4 −0.12 1.37 0.93

APOE ε4 x TrkB 0.05 0.37 0.88

Outcome = NFTs

TrkB −0.26 0.10 0.04*

APOE ε4 0.45 0.68 0.51

APOE ε4 x TrkB 0.00 0.19 0.99

Hippocampal CA1 Coefficient SE p-value

Outcome = NPs

TrkB −0.58 0.19 0.006*

APOE ε4 −0.88 1.38 0.52

APOE ε4 x TrkB 0.48 0.39 0.22

Outcome = DPs

TrkB −0.31 0.27 0.26

APOE ε4 1.68 1.56 0.28

APOE ε4 x TrkB 0.08 0.42 0.85

Outcome = NFTs

TrkB −0.26 0.12 0.08

APOE ε4 0.98 0.81 0.22

APOE ε4 x TrkB −0.28 0.22 0.21

Models included age at death, gender, and APOE ε4 carrier status. SE = standard error.

*
= significant.
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