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Abstract

Obesity is a global pandemic associated with macro- and microvascular endothelial dysfunction.
Microvascular endothelial dysfunction has recently emerged as a significant risk factor for the
development of cognitive impairment. In this review, we present evidence from clinical and
preclinical studies supporting a role for obesity in cognitive impairment. Next, we discuss how
obesity-related hyperinsulinemia/insulin resistance, systemic inflammation, and gut dysbiosis lead
to cognitive impairment through induction of endothelial dysfunction and disruption of the blood
brain barrier. Finally, we outline the potential clinical utility of dietary interventions, exercise, and
bariatric surgery in circumventing the impacts of obesity on cognitive function.
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Introduction

Obesity, a pandemic impacting over 1 billion people in the world and 90 million Americans,
is a risk factor for cardiovascular disease, cognitive impairment, and dementia (Toth et al.,
2017). Age and cardiovascular risk factors adversely affect vascular health, which is critical
to normal brain function including cognitive function (DeCarli et al., 2001; Hanon et al.,
2005; Hoth et al., 2007; Panza et al., 2006; Solfrizzi et al., 2004). Disruptions in the vascular
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system, which involves the macro- and microvasculature and the endothelium, occurs prior
to the onset of cognitive impairment (Corriveau et al., 2016). In fact, this is now widely
recognized as a broad-spectrum disorder referred to as vascular contributions to cognitive
impairment and dementia (VCID) (Gorelick et al., 2011).

Endothelial cells have distinct functions in vascular biology. Endothelial cells are
responsible for maintaining vascular tone, regulating blood flow, modulating the
inflammatory response, and the trafficking of molecules between the periphery and the
brain. Endothelial dysfunction disrupts blood flow, reduces vascular tone, and impairs the
blood brain barrier (BBB) (Wardlaw et al., 2013). This is mediated in part by disruption in
specialized receptors on endothelial cells that transduce mechanical and chemical stimuli to
facilitate the release of signaling molecules such as nitric oxide (NO), endothelin, and
prostanoids.

Both clinical and preclinical studies demonstrate that obesity reduces the bioactivity of NO
(Bender et al., 2007; Bourgoin et al., 2008; Damjanovic and Barton, 2008; Rask-Madsen and
King, 2007). Severely obese children display evidence of endothelial dysfunction (Tounian
et al., 2001). Furthermore, severely obese (body mass index, [BMI] =34 kg/mZ2) insulin
resistant individuals demonstrate impairments in blood flow and vascular tone (Steinberg et
al., 1996). This is likely due the downstream signaling consequences associated with
hyperinsulinemia/insulin resistance. Insulin resistance is characterized by reductions in
phosphoinositide 3-kinase (P13K) signhaling and increased mitogen-activated protein kinase
signaling, which leads to decreased NO production, a characteristic of endothelial
dysfunction (Williams et al., 2002). These processes work synergistically to promote
continuous blood flow to the brain, a process known as neurovascular coupling. Obesity
induced disruption of NO has been linked to impaired neurovascular coupling in preclinical
models (Tarantini et al., 2018; Tucsek et al., 2014b). Furthermore, this impairment in
neurovascular coupling has been associated with cognitive impairment and
neurodegeneration (Riddle et al., 2003; Troen et al., 2008; Tucsek et al., 2014a).

Understanding additional mechanisms that contribute to the development of insulin
resistance may have therapeutic potential for preventing or reversing obesity-associated
endothelial dysfunction. Herein, we discuss the role of specific obesity-related mechanisms
including inflammation, hyperinsulinemia/insulin resistance, and gut dysbiosis on
endothelial function and cognitive impairment. Likely, obesity induces a feed-forward cycle
among these various mechanisms, which ultimately culminates into endothelial cell
dysfunction and consequently cognitive impairment (Figure 1). While other mechanisms
such as oxidative stress, mitochondrial dysfunction, and neurotrophic factors are important,
they have been extensively reviewed elsewhere (de Mello et al., 2018; Sripetchwandee et al.,
2018), and thus will not be discussed here. We conclude our review with a summary of
therapeutic strategies currently being investigated for alleviating the detrimental impacts of
obesity-induced cognitive impairment. Understanding the impact of the relationship among
these phenomena may help bring forward new therapeutic strategies to mitigate obesity-
induced cognitive impairment.
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The link between obesity and cognitive impairment

Clinical Studies

Clinical studies evaluating the link between obesity and cognitive impairment demonstrate
inconsistent findings. Some support an association between obesity and cognitive
impairment (Gunstad et al., 2010; Prickett et al., 2015; Wang et al., 2016a) while others fail
to demonstrate a relationship(Reviewed in (Bischof and Park, 2015; Gunstad et al., 2010;
Han et al., 2009). These inconsistent findings may be due to variations in study design. First,
clinical studies may differ based on the population age, which consist of early life (4-18
years old), early to mid-life (19-65 years old), or mid-life to late-life (65+ years old) (Smith
etal., 2011). Overall, studies suggest that early and mid-life obesity are associated with
worse cognitive outcomes. Of these two population ages, mid-life obesity has the most
adverse effects on cognition (Dye et al., 2017). In fact, lower scores on the Mini-Mental
State Examination (MMSE) correlate with midlife obesity (Bischof and Park, 2015).
Cognitive performance on tests involving visual memory, organization, executive function,
attention and visuomotor speed was worse in individuals with central obesity in midlife
(Wolf et al., 2007). A previous study reported that late-life obesity correlated with better
performance on attention and executive function tasks (Gunstad et al., 2010); however, a
recent study reported no association between late-life obesity and cognitive impairment
(Deckers et al., 2017). Overall, these studies suggest that aging may play a role in obesity-
related cognitive impairment; however, the mechanisms have not been elucidated.

In addition to cognitive deficits, recent data suggest that differences in brain structure in
obese and non-obese populations are present. For example, volumes of brainstem and
diencephalon reduction were noted in early adulthood obesity (Marques-Iturria et al., 2013).
Likewise, lower cortical thickness was observed in the left superior frontal and right medial
orbitofrontal cortex in a similar group of patients, which may provide some explanation
about the association between obesity and cognitive dysfunction in obese individuals
(Marques-Iturria et al., 2013). Others have demonstrated that populations with increased
BMI display decreased global brain volume and gray-matter volume with decreased neural
viability in both frontal and parietal cortices (Gazdzinski et al., 2008). Similarly, reductions
in global white matter integrity (\erstynen et al., 2012) and atrophy of the temporal, frontal,
occipital cortices, hippocampus, thalamus, and midbrain have also been noted in other
populations with increased BMI (as reviewed in Shafer et al. (Shefer et al., 2013).
Coinciding with these findings is the observation that a high BMI in midlife leads to
declines in neuron and myelin viability (Gazdzinski et al., 2008) and may be associated with
abnormalities in altered brain plasticity (Wang et al., 2016a). Collectively, these studies
show that obesity may be a causal link for deleterious changes in brain structure. Additional
studies are needed to confirm the aforementioned findings.

Second, clinical studies may use different indices for “obesity” designation. The majority of
clinical studies use body mass index (BM1=30 kg/m?2) as the obesity metric. Unfortunately,
BMI does not account for alterations in body composition; hence, it inadequately correlates
with adiposity. Central adiposity metrics, such as waist circumference (= 40 inches for men
and = 35 inches for women) or waist-hip ratio (= 1 for men and = 0.8 for women), correlate
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better with cognitive impairment (Han et al., 2009; Nilsson and Nilsson, 2009; Wang et al.,
2016a).

Third, studies differ based on the cognitive test used to assess cognitive impairment. This
stems from the fact that the term “impairment” is broad and involves multiple cognitive
domains. Thus, it is difficult to assess every cognitive domain in a single study, which may
lead to conflicting reports. Still, strong evidence from the extant literature suggest that
obesity negatively impacts memory and is associated with poor performance on
psychomotor, selective attention, decision making, and executive function tests (as reviewed
in Dye et al. (Dye et al., 2017).

Finally, while many clinical studies report the presence or absence of comorbidities such as
hypertension, hypercholesterolemia, diabetes, dyslipidemia, or hyperglycemia, some studies
fail to adjust for comorbidities when assessing the link between obesity and cognitive
deficiencies. A study by Singh-Manoux and colleagues demonstrated that obese individuals
who were metabolically unhealthy had a faster rate of cognitive decline compared to obese
individuals without metabolic abnormalities over a 10-year period (Singh-Manoux et al.,
2012). While this study demonstrates obesity works synergistically with metabolic disorders
to drive changes in cognition, the authors also showed that obesity in the absence of
metabolic disorders increased the rate of global cognitive decline in comparison to the rate
of decline in normal weight individuals (Singh-Manoux et al., 2012). These reports have
since been confirmed by other groups as well (Ala Abu Saleh, 2015; Farah et al., 2016).
Table 1 summarizes clinical studies from the past decade taking into consideration study
population age, obesity metrics, cognitive test, and comorbidities for each of the specified
studies. Given the great variability in clinical studies, it is difficult to evaluate potential
mechanisms that drive obesity-related cognitive impairment. Preclinical animal models
provide the opportunity to explore novel mechanisms underlying the pathogenesis of
obesity-related cognitive impairment and to develop innovative therapies.

Preclinical Studies

The western diet has been regarded as playing a significant role in the obesity epidemic. In
animal models, the diet is comprised of at least 40% of calories from fat and supplemented
with a lesser amount of simple carbohydrates (Lesniewski et al., 2013). Diet-induced obesity
tends to vary between laboratories, with some using both high-fat and high simple-
carbohydrate concentrations, while others use one or the other. Western and high simple-
carbohydrate diet models induce cognitive impairment and brain dysregulation in rodent
models (Darling et al., 2013; Hsu et al., 2015; Jurdak and Kanarek, 2009; Kanoski and
Davidson, 2011; Yeomans, 2017). This cognitive deficit is apparent despite either no change
in weight reported or minimal changes compared to a high-fat diet (HFD) (Jurdak and
Kanarek, 2009; Kanoski and Davidson, 2011). Standing alone, the HFD mouse model of
obesity has clinical translatability (Aroor et al., 2018; Pulakat et al., 2011), and will be
discussed here.

Similar to clinical studies, preclinical animal studies also suffer from the lack of consistency
in study design. First, the age of HFD induction and the duration of feeding differs across
preclinical studies. The impact of juvenile onset HFD feeding on cognitive performance has
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been rigorously reviewed, with the vast majority of studies demonstrating a causative
relationship (Del Olmo and Ruiz-Gayo, 2018; Noble and Kanoski, 2016). This has been
corroborated in both the adult and aged mouse phenotypes (reviewed (Cordner and
Tamashiro, 2015). Studies demonstrate cognitive impairment after two weeks (McLean et
al., 2018; Sims-Robinson et al., 2016a), 9 days (Murray et al., 2009), and even as early as 3
days on a HFD (Thaler et al., 2012), indicating that the length of feeding does not appear to
be a major factor.

Second, the percentage of fat used for HFD treatment varies among the preclinical studies.
Typically, obesity is induced by feeding animals a diet containing 32-60% of calories from
fat. Studies with diets consisting of >40% of kilocalories from fat report diet-induced
cognitive impairment in both mice and rats (Fu et al., 2017; Underwood and Thompson,
2016; Wang et al., 2016b). In contrast, some studies demonstrate that HFD does not
correlate with cognitive impairment (Kosari et al., 2012; Li et al., 2013; Mielke et al., 2006).
The impact of HFD in preclinical models on cognitive function has been extensively
reviewed (Cordner and Tamashiro, 2015).

Third, similar to clinical studies, preclinical studies differ in the type of cognitive test
utilized to assess cognitive impairment. Studies demonstrate that diet-induced obesity
reduces performance in Morris water maze (Cordner and Tamashiro, 2015; Gladding et al.,
2018; Kasper et al., 2018; Sims-Robinson et al., 2016a; Spinelli et al., 2017), novel object
recognition (Cordner and Tamashiro, 2015; Kadish et al., 2016; Sims-Robinson et al.,
2016a; Sona et al., 2018), and Y-maze (Almeida-Suhett et al., 2017; Cordner and Tamashiro,
2015; Gladding et al., 2018; Labouesse et al., 2018; Martins et al., 2017; Sona et al., 2018).
The Morris water maze, Y-maze, and Novel Object Recognition task are designed to test
spatial, working, and recognition memory, respectively. Finally, HFD mice display multiple
comorbidities such as hyperinsulinemia, glucose intolerance, and hypertension (Buettner et
al., 2007; Oakes et al., 1997; Tschop and Heiman, 2001; Vincent et al., 2009) depending on
the percentage of fat used and the duration of HFD feeding. Table 2 summarizes preclinical
studies published from 2016-2019 comparing differences in the timeline of HFD feeding,
percentage of fat in the experimental diet, cognitive test, and the presence of comorbidities.
Despite the variability among preclinical studies, animal models provide the opportunity to
explore the molecular mechanisms underlying obesity-related cognitive impairment.

Molecular mechanisms contributing to obesity-induced cognitive

impairment

Several mechanisms play a role in obesity-related cognitive impairment (Dye et al., 2017;
Kanoski and Davidson, 2011; Miller and Spencer, 2014; Noble and Kanoski, 2016).
Vascular contributions to cognitive impairment has been increasingly recognized in both
preclinical and clinical studies (Akiguchi and Yamamoto, 2010; Fulop et al., 2018; Khan et
al., 2018; Toth et al., 2017). HFD is associated with decreased vascular integrity in the brain
of rodent models (de Aquino et al., 2018; Fu et al., 2017; Kalyan-Masih et al., 2016).
Furthermore, BBB integrity is compromised following HFD (Freeman and Granholm, 2012;
Kanoski et al., 2010). The BBB plays a fundamental role in maintaining brain homeostasis.
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Given that endothelial cells are one of the major cell types that form the BBB, obesity driven
endothelial dysfunction contributes to BBB impairment through several mechanisms
(Wardlaw et al., 2013). Hence, understanding the potential impact of obesity on endothelial
cell function may be a key factor reversing obesity-associated cognitive impairment.

BBB breakdown precedes and activates neuroinflammation and neurodegeneration.
Evidence from studies in aged animal models of obesity suggest that chronic HFD leads to
enhanced plasma-derived IgG leakage into the hippocampal perivascular space (Tucsek et
al., 2014a). Similarly, these authors showed that aged-mice fed a HFD for 24 months had
decreased hippocampal microvascular density accompanied by impairments in hippocampal-
dependent cognitive function compared to mice on a normal chow diet (Tucsek et al.,
2014b). These studies suggest that increased neuroinflammation may induce declines in
microvascular integrity leading to cognitive decline and that these changes are compounded
with increasing age. Several mechanisms contribute to obesity-induced BBB breakdown and
its deleterious cerebrovascular effects.

One mechanism of obesity mediated BBB breakdown is through disruption of tight junctions
at the level of the endothelium (Zlokovic, 2008). Obese type 2 diabetic mice display declines
in tight junction proteins Zonula occluden-1 (Z0O-1) and claudin-12 (Salameh et al., 2019).
Interestingly, treatment with the mitochondrial carbonic anhydrase inhibitor, topiramate,
improved tight junction protein expression and restored BBB integrity in these animals
(Salameh et al., 2019). Likewise, increases in thrombin induced pericyte activation led to
declines in ZO-1 and occludin but not claudin-5 in a HFD mouse model (Machida et al.,
2017). Collectively, these studies suggest that obesity may induce tight junction disruption
leading to BBB breakdown.

In addition, infiltration of serum-derived substances into the hippocampal space allows for
microglial activation and subsequent reductions in endothelial cell tight junction protein
expression in obesity (Sumi et al., 2010)(Shigemoto-Mogami et al., 2018). Long chain
saturated fatty acids derived from chronic HFD intake facilitate activation of microglia to
promote chronic neuroinflammation (Dalvi et al., 2017; Fritsche, 2015; Thaler et al., 2012),
which contributes to cognitive impairment (Kahn and Flier, 2000; Thaler et al., 2012). HFD
aged mice also display exacerbated activation of microglia associated with impaired
hippocampal learning and memory deficits (Valcarcel-Ares et al., 2019). Accordingly,
Bocarsly et al. reported that diet-induced obesity led to reductions in dendritic spines as well
as altered microglial morphology within the prefrontal cortex, a phenomenon accompanied
by deficits in prefrontal cortex-dependent cognitive tasks (Bocarsly et al., 2015).
Interestingly, pharmacological inhibition of microglia activation in obese mice was shown to
be protective against cognitive degradation as a result of improvements in BBB integrity
(Cope et al., 2018). Additional mechanisms underlying obesity-induced initiation of BBB
breakdown will be described below.

Systemic Inflammation

Chronic consumption of a “western diet” promotes systemic inflammation. Although there
are various sources of inflammation with HFD consumption, the main source stems from
white adipose tissue hypertrophy and dysfunction. Migrant macrophages homing to
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hypertrophic adipose tissue adopt an atypical pro-inflammatory phenotype (Ghanim et al.,
2004). Notably, multiple adipose tissue macrophage (ATM) subsets exist in obese adipose
tissue. These populations have distinct functions, express specific markers, and have specific
tissue distributions not typical of M1 (pro-inflammatory) or M2 (anti-inflammatory)
phenotypes (Coats et al., 2017; Gordon, 2003; Kratz et al., 2014; Xu et al., 2013). Instead,
obese ATMs reflect a distinct metabolically active group of surface expression markers
induced by free fatty acids, high glucose, and hyperinsulinemia (Kratz et al., 2014), which
subsequently drive adipocyte hypertrophy (Lumeng et al., 2007; Weisberg et al., 2003). In
mice, both resident and recruited ATMs make up about 50% of adipose tissue cells in obese
animals compared to 10% in lean animals (Guilherme et al., 2008; Weisberg et al., 2003).
Upon activation, ATMs produce pro-inflammatory cytokines including Interleukin (IL)-6
and tumor necrosis factor (TNF)-a.

Interleukin-6 (IL-6)—IL-6 is produced by ATMs and has pleiotropic effects on
inflammation, the immune response, and vascular function (Roytblat et al., 2000; Yasukawa
et al., 1987). Accumulating evidence suggest that IL-6 is a major inflammatory cytokine that
increases with adipocyte hypertrophy in obesity (Almuraikhy et al., 2016). Clinical studies
in obese patients demonstrate that IL-6 and IL-6 receptor expression are upregulated in
subcutaneous adipose tissue from patients with increased BMI and percentage body fat
compared to lean subjects (Mohamed-Ali et al., 1997; Sindhu et al., 2015). IL-6 is
purportedly a better correlate of obesity and insulin resistance compared to other cytokines,
however there are conflicting reports about IL-6 that make its role in obesity-induced
pathophysiology unclear. Administration of Tocilizumab, the anti-1L-6 drug, reduced
systemic inflammation but led to metabolic syndrome and weight gain (Febbraio et al.,
2010), and IL-6 knockout mice demonstrate overt obesity onset, insulin resistance, and M1
macrophage polarization (Matthews et al., 2010; Mauer et al., 2014; Wallenius et al., 2002).
As such, it has become increasingly evident that IL-6 in the CNS plays a critical role in
modulating body weight and metabolism through signaling in the CNS (Fernandez-Gayol et
al., 2019; Timper et al., 2017). Although IL-6 appears beneficial for modulating weight via
CNS signaling, its chronic systemic presence in obesity may be linked to detrimental effects
on cognition.

Accumulating evidence suggest that obesity-induced systemic inflammation is associated
with poorer cognitive outcomes. IL-6 is known to disrupt neural circuitry responsible for
cognitive functioning and task completion (Vallieres et al., 1997), inhibit neurogenesis
(Monije et al., 2003), decrease synaptic plasticity (Poluektova et al., 2005), and impede
learning and memory performance (Braida et al., 2004) in mice. Reports on the impact of
IL-6 on cognitive decline in obesity have been inconsistent with some supporting a role for
IL-6 in cognitive decline (Donzis and Tronson, 2014; Lai et al., 2017; Lampe et al., 2019;
Palta et al., 2015; Singh-Manoux et al., 2014; Weaver et al., 2002; Yaffe et al., 2003) and
others failing to demonstrate a role for IL-6 in cognitive decline (as reviewed in Donzis and
Tronson, 2014). A longitudinal study in the Whitehall Il cohort found that mid-life 1L-6
plasma concentrations were predictive of cognitive decline (Singh-Manoux et al., 2014).
Despite these positive associations, a recent study suggest that IL-6 is not associated with
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cognition (Wennberg et al., 2018). It is well established that IL-6 negatively impacts vascular
function, which can have long-term deleterious impacts on the BBB.

An overwhelming body of evidence suggest that IL-6 has deleterious impacts on endothelial
cells (Hartman and Frishman, 2014; Schwingshackl and Hoffmann, 2014). Although the
endothelium does not express the membrane IL-6 receptor, IL-6 is secreted from endothelial
cells and has various direct and indirect effects on the endothelium (Hou et al., 2008). One
study demonstrated that 1L-6 significantly impaired endothelial colony forming cell
outgrowth, which was restored after inhibition of the IL-6 receptor (Shahrivari et al., 2017).
Experimental overexpression of IL-6 in the brains of mice leads to BBB permeability and
neuroinflammation, while IL-6 knockout mice have preserved BBB function despite an
enhanced inflammatory response (Paul et al., 2003). IL-6 BBB dysfunction are likely caused
by signaling at the cellular level, as IL-6 suppresses endothelial NO expression and
bioavailability (Saura et al., 2006). IL-6 also works in concert with TNF-a. to disrupt
adherens/tight junction expression and increased permeability through suppression of tight
junctions in brain microvascular endothelial cells (Rochfort et al., 2016; Rochfort and
Cummins, 2015).

TNF-a—TNF-a is constitutively produced by ATMs in dysfunctional adipose tissue of
obese subjects and acts as a potential mediator of insulin resistance (Cawthorn and Sethi,
2008; Hotamisligil et al., 1993) through activation of phosphatases, which impair insulin
signaling (Nieto-Vazquez et al., 2008). Impaired insulin signaling contributes to increased
adiposity (Zhou and Rui, 2013). A recent study in obese hemodialysis patients showed that
TNF-a was associated with abdominal obesity (Beberashvili et al., 2019). It is particularly
noteworthy that genetic ablation of the TNF-a receptor 1 makes mice resistant to diet-
induced obesity (Romanatto et al., 2009).

Under normal physiological conditions, constitutive production of hippocampal TNF-a
modulates synaptic strength (Beattie et al., 2002), and elevated hippocampal levels in HFD
mice correlate with cognitive impairment (Jeon et al., 2012; Ma et al., 2018). Evidence that
cognitive impairment is mitigated through suppression of systemic TNF-a concentrations
within the hippocampus points to a role for TNF-a in modulating cognitive decline (Grundy
et al., 2014; Labrousse et al., 2012). Despite these findings, there are conflicting reports
about the role of TNF-a on cognition. An independent study in FIFD mice failed to
demonstrate a correlation between TNF-a and cognitive function (Boitard et al., 2014).
Despite these findings, a recent study reported that administration of infliximab, a TNF-a
inhibitor impermeable to the BBB, improves pathology in transgenic Alzheimer’s disease
mice, a model commonly associated with cognitive impairment (Paouri et al., 2017).

TNF-a may modulate cognitive function through its effects on the micro vasculature and
endothelium. Small vessels excised from obese patient perivascular tissue are less responsive
to endothelium-dependent relaxation, a mechanism likely due to TNF-a-induced
endogenous oxidative stress signaling (Virdis et al., 2011). This same group demonstrated
that small arteries in perivascular adipose tissue produce TNF-a and oxidative stress in
excess, leading to loss of vasorelaxation (Virdis et al., 2015). Infliximab administration leads
to improvements in vascular reactivity to acetylcholine, a vasodilator, in obese subjects with
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metabolic syndrome (El Assar et al., 2013; Tesauro et al., 2008). Small arteries dissected
from the visceral fat of obese patients display suppressed endothelial dependent relaxation in
response to acetylcholine; however, aberrant response was mitigated by infliximab (Virdis et
al., 2011). Similar findings have been observed in rodent models of obesity and/or models
with an inflammatory phenotype. HFD consumption increases TNF-a in both the femoral
artery and corpus cavernosum of rats (Sponton et al., 2017). Isolated mesenteric vascular
beds from HFD mice displayed improvements in insulin-mediated vasodilation upon
treatment with infliximab (da Costa et al., 2016). Collectively, this evidence points to role
for TNF-a in mediating microvascular damage in obesity.

As previously stated, damage to the microvasculature in the periphery ultimately leads to
changes in vascular structures of the CNS. While this evidence points to a role for TNF-a in
obesity-related endothelial dysfunction in the periphery, TNF-a mediated endothelial
dysfunction also occurs at the BBB (Deli et al., 1995). TNF-a increases permeability of
human brain microvascular endothelial cells (Didier et al., 2003). Thus, it’s no surprise that
TNF-a modulates disruption of BBB integrity. The administration of the TNF-a inhibitor,
etanercept, restores BBB integrity and cognition in mice (Cheng et al., 2018). Overall, these
data suggest a role for inflammation in obesity-related cognitive impairment. Inadvertently,
chronic low-grade inflammation, often observed in obesity, have been implicated in the
pathogenesis of hyperinsulinemia and insulin resistance (Esser et al., 2014).

Hyperinsulinemia

CNS insulin receptor signaling is important for synaptic plasticity, neuronal survival,
learning and memory, etc. (see Chiu and Cline (2010) for a comprehensive review). Diet-
induced obesity leads to hyperinsulinemia and is associated with impaired CNS insulin
signaling (Hussain et al., 2019; Petrov et al., 2015; Sims-Robinson et al., 2016a); however,
the mechanisms are not known. Impaired CNS insulin signaling is typically attributed to
diet-induced CNS insulin receptor resistance (Hussain et al., 2019; Kim et al., 2011a; Kim et
al., 2011b; Petrov et al., 2015; Sims-Robinson et al., 2016b). Alternatively, impaired CNS
insulin signaling may be due to a deficiency of insulin in the CNS. Hyperinsulinemia and
diet-induced obesity are associated with decreased CNS insulin levels (Begg et al., 2013;
Israel et al., 1993; Kaiyala K. J., 2000). CNS insulin must be transported via receptor-
mediated transport through the BBB from the periphery (Banks et al., 1997; Banks et al.,
2012).

Although limited, evidence from the literature support the notion that CNS insulin transport
is mediated by the insulin receptor (Banks, 2004; Banks et al., 1997; Banks et al., 2012;
King and Johnson, 1985). Insulin uptake in bovine aortic endothelial cells requires normal
insulin signaling (Wang et al., 2013; Wang et al., 2008). Furthermore, these studies
demonstrate that ablating insulin receptor function reduces insulin uptake. High
concentrations of insulin receptors are reported in brain capillaries (Blumling lii and Silva,
2012; Pardridge, 2008; Pardridge and Boado, 2012). Although these studies suggests that the
insulin receptor is involved in receptor-mediated uptake in endothelial cells, it is worth
noting that a recent study demonstrated that insulin can enter the CNS through non-insulin
receptor mediated processes (Rhea et al., 2018). Overall, impaired CNS insulin receptor
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signaling coupled with the reduced CNS insulin transport provides a potential mechanism
underlying obesity-related cognitive impairment.

Obesity is associated with lower cerebrospinal fluid (CSF) insulin, a measure of CNS insulin
levels (Kern et al., 2006; Kullmann et al., 2016). Interestingly, reduced CSF insulin
concentrations are also observed in patients with mild cognitive impairment (Craft et al.,
1998; Gil-Bea et al., 2010). This is associated with an decrease in underlying brain insulin
sensitization (Sims-Robinson et al., 2010), observed through aberrant signaling of the
insulin receptor (Kim et al., 2012) in both the hypothalamus (Ono, 2019) and hippocampus
(Pratchayasakul et al., 2011; Sims-Robinson et al., 2016a). Insulin dysregulation in the
hippocampus have been directly implicated in impaired memory processes such as synaptic
plasticity (McNay et al., 2010; Spinelli et al., 2017; Spolcova et al., 2014; Suarez et al.,
2019). Impaired insulin sensing in the hypothalamus is linked to decreased glucose sensing,
which may eventually lead to a feed forward cycle in the obesity pathology (Chen et al.,
2017; Ono, 2019; Weissmann et al., 2014).

Intravenous insulin has been shown to improve cognition in healthy subjects (Craft et al.,
1999; Craft et al., 1996; Kern et al., 2001), however, this is not a viable treatment option for
cognitive impairment due to secondary complications such as hypoglycemia (Morris and
Burns, 2012). Intranasal insulin has been offered as a way of directly increasing CNS insulin
concentrations, while avoiding altering systemic glucose and insulin levels (Claxton et al.,
2015; Craft et al., 2012; Reger et al., 2006). CNS insulin receptors are highly expressed in
areas of the brain important for memory consolidation and executive functioning such as the
hippocampus (Baskin et al., 1983; Hill et al., 1986), and are specifically concentrated at the
synapses (Laron, 2009). Hence, it is not surprising that intranasal insulin improves memory
in cognitively normal humans (Benedict et al., 2004; Benedict et al., 2007). Additional
studies are warranted to explore the potential role of CNS insulin signaling and transport on
obesity-related cognitive impairment.

Hyperinsulinemia and insulin resistance are linked to decreased BBB integrity (Arnold et al.,
2018) and endothelial cell dysfunction (Muniyappa and Sowers, 2013). Insulin is known to
have a direct vasodilatory effect, mediated through the stimulation of NO production in
endothelial cells (Kuboki et al., 2000) via protein kinase B (Akt) activation (Muniyappa and
Sowers, 2013). Hence, hyperinsulinemia impairs vascular tone. HFD animals exhibit
impaired neurovascular coupling (Tarantini et al., 2018) as well as diminished insulin-
mediated BBB responses, microvascular perfusion, and cognitive decline (de Aquino et al.,
2018; Fu et al., 2017). Interestingly, some studies suggest that insulin sensitizers such as
metformin and pioglitazone may confer beneficial effects on endothelial function
(Muniyappa and Sowers, 2013; Naka et al., 2011; Radenkovic, 2014). These findings taken
together suggest that obesity coupled with hyperinsulinemia may have detrimental effects on
endothelial function. While the inflammation and hyperinsulinemia connection is grounded
in the literature, a mounting body of evidence suggest that the gut microbiome may play a
role in modulating hyperinsulinemia and obesity’s impact on cognition.
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Gut Microbiome

The gut microbiome is an aggregate of more than 100 trillion microorganisms, including
bacteria, viruses, fungi and protozoa (Gill et al., 2006). The microbiome is essential for
microbiota-gut-brain bidirectional communication (Rhee et al., 2009). The two most
prominent bacterial divisions in the gut include gram positive Firmicutes and gram negative
Bacteroidetes, which make up 90% of all phylogenetic types. Changes to food and
environment have drastically altered the microbiome (Gomez, 2017). Disturbance in gut
homeostasis is often due to loss of beneficial bacterial, overgrowth of harmful bacterial, or
loss in microbial diversity also known as gut dysbiosis (DeGruttola et al., 2016). This is
particularly true in obesity; the obese gut in mice and humans has an increased Firmicutes/
Bacteroidetes (F/B) ratio compared to lean controls (Angelakis et al., 2012; Furet et al.,
2010; Kong et al., 2013), leading to greater adiposity (Turnbaugh et al., 2006). Higher F/B
ratios have been linked to numerous disease processes (Flint et al., 2007; Ley et al., 2006)
likely through changes in body-weight, inflammation, insulin sensitivity, and behavior
(Allen et al., 2017; Liang et al., 2018). Furthermore, there is evidence suggesting a decline
in overall bacterial diversity in obese individuals (Yun et al., 2017). While some controversy
exists whether gut dysbiosis impacts obesity, (Sze and Schloss, 2016; Sze and Schloss,
2017), animal models provide more direct approaches at studying the phenomenon. Fecal
transplant from obese mice to germ-free mice leads to the development of obesity (Backhed
et al., 2007; Turnbaugh et al., 2008). Interestingly, the opposite effect can occur with fecal
transplants from lean to obese mice (Sun et al., 2018). Collectively, these studies suggest
that gut dysbiosis may be both a result and potentiator of obesity. Mechanisms underlying
the role of gut dysbiosis in obesity and obesity-induced cognitive impairment have been
reviewed elsewhere (Cuevas-Sierra et al., 2019; Noble et al., 2017).

Gut microbiota homeostasis promotes optimal brain development and cognitive functioning
(Diaz Heijtz et al., 2011) Clinical and preclinical evidence suggests that obesity-induced
changes in the gut microbiome may play a role in the development of cognitive dysfunction.
Patients with dementia have a higher F/B ratio compared to non-demented patients (Saji et
al., 2019), and elderly adults with increased F/B ratios have poorer immediate and delayed
recall scores (Manderino et al., 2017). This is also the case preclinically. Obese mice
demonstrating an increase in F/B ratios and a decline in gut microbiota diversity had
impaired recognition and spatial memory (Zhang et al., 2018). In line with this finding is the
discovery that administration of antibiotics in DIO mice led to improved insulin signaling in
the brain and improved anxiety and depression associated with cognitive functioning(Soto et
al., 2018) Moreover, aged normal weight mice with obese-type gut microbiota displayed
BBB dysfunction, reduced CBF and deteriorations in cognition (Hoffman et al., 2017).
Similarly, a recent discovery by Bruce-Keller et al demonstrated that mice with obese-type
gut microbiota displayed neurocognitive and behavioral disruptions in the absence of obesity
(Bruce-Keller et al., 2015). Interestingly, rats subjected to a western diet had alterations in
hippocampal genes important for neuroplasticity; however, these abnormalities were
reversed with probiotic treatment (Beilharz et al., 2018). Notably, the authors reported that
probiotic administration led to increases in Streptococcus and Lactobacillus in the gut
(Beilharz et al., 2018).
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Diet-induced obesity models that exhibit gut microbiome imbalance and cognitive
impairment also demonstrate reduced tight junction proteins (Zhang et al., 2018). There
appears to be a role for vascular dysfunction in mediating these effects (Braniste et al.,
2014). Microbiome diversity is inversely correlated with arterial stiffness (Li et al., 2017),
and obese-type gut microbiota induces BBB dysfunction and reduced CBF (Hoffman et al.,
2017). Interestingly, intestinal microbiota modulates the expression of BBB tight junction
proteins (Kelly et al., 2015).

One mechanism by which alterations in the microbiome promotes cognitive dysfunction is
through increasing BBB permeability (Braniste et al., 2014). The BBB is comprised of a
tightly sealed monolayer of brain endothelial cells connected at a junctional complex by
tight junction and adherens junction proteins (Hawkins and Davis, 2005). Diet-induced
obesity models that exhibit alterations within the microbiome and cognitive impairment
demonstrated reduced tight junction proteins in the BBB (Kelly et al., 2015). One
mechanism through which microbial gut imbalance may lead to reduced tight junction
proteins at the BBB is through diminished short chain fatty acids (SCFAs) typically
produced during dietary fiber fermentation (Pryde et al., 2002). SCFAs modulate tight
junction formation through enhancing the expression of tight junction proteins within the
prefrontal cortex and hippocampus of the brain of germ-free adult mice (Braniste et al.,
2014). Macrovascular changes also impact cognitive decline. It is well established that
declines in central artery elasticity negatively impacts cognitive function (Palta et al., 2019).
Interestingly, a recent study showed that gut microbial diversity is inversely associated with
central artery stiffness in women, even after adjusting for insulin resistance and other
cardiovascular disease risk factors (Menni et al., 2018). Likewise, antibiotic treatment in
aged mice reversed endothelial dysfunction and arterial stiffening through attenuation of
inflammation and oxidative stress (Brunt et al., 2019). Taken together, these studies suggest
that gut dysbiosis may lead to changes in vascular structure or BBB integrity that are
detrimental for cognitive function. Additional studies are needed in obese preclinical models
and patients to further confirm these findings.

Therapeutic strategies

Dietary Interventions

Diets are often characterized by the macronutrient, which includes fats, proteins, and
carbohydrates, that is primarily providing the source of energy for the body. Given the role
of fatty acids in the development of insulin resistance (Thomas and Pfeiffer, 2012), it is
generally assumed that reducing the dietary intake of fat will be beneficial for improving
insulin resistance; however, such diets are often difficult to maintain. The Mediterranean diet
is not comprised of a fat-restriction, but rather consists of fruits, vegetables, legumes,
cereals, and olive oil. The Mediterranean diet has beneficial effects on insulin resistance,
diabetes risk and overall cardiovascular health (Kastorini et al., 2011; Riserus et al., 2009).
Similarly, the ketogenic diet, a low carbohydrate diet with fat as the primary energy source,
improves glycemic control and insulin sensitivity (Forsythe et al., 2008).

Several previous studies have highlighted the role of diet on inflammation associated with
obesity (Bullo et al., 2007; Calder et al., 2011; Galland, 2010; Lee et al., 2013). The
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Mediterranean diet exerts anti-inflammatory effects by decreasing inflammatory cytokines
including IL-6 and TNF-a. (Calder et al., 2011; Casas et al., 2014; Casas et al., 2016; Hu et
al., 1997; Mena et al., 2009; Urpi-Sarda et al., 2012). The ketogenic diet is associated with a
reduction in inflammatory markers including but not limited to TNF-a (Forsythe et al.,
2008; Ruskin et al., 2009). Cross sectional studies have demonstrated a link between
carbohydrates and inflammatory cytokines (Du et al., 2008; Levitan et al., 2008; Pischon et
al., 2005; Qi et al., 2006a; Qi et al., 2006b). It is clear that diet has impacts on
neuroinflammation. However, conflicting reports exist regarding the role of diet
modification on gliosis.

The composition of the gut microbiota is largely dependent upon diet (Finegold and Rolfe,
1983; Graf et al., 2015; Hayashi et al., 2002; Mueller et al., 2006). A change from a high-fat,
low fiber diet to a low-fat high-fiber diet leads to marked changes in the microbiota within
24 hours (Wu et al., 2011). Western style diets alter the gut microbiota resulting in a
decrease in bacterial diversity (Wu et al., 2011). Whereas, elevated levels of Bacteriodetes
are observed in individuals adhering to the Mediterranean diet (Gutierrez-Diaz et al., 2016).
Likewise, in obese patients with severe metabolic disease, consumption of a Mediterranean
diet or a low fat diet reversed gut dysbiosis (Haro et al., 2017). Unfortunately, the validity
and reproducibility of studies focused on the impact of diet on gut microbiota in humans is
challenging since most investigators rely on self-reporting of dietary habits. Animal models,
however, have provided some useful information. Diet modification from an ad libitum low
fat diet to caloric restriction in young rats reduced the F/B ratio (Tanca et al., 2018). A recent
study in monkeys compared the changes in gut microbiota following a western and
Mediterranean-type diets (Nagpal et al., 2018). Similar to previous studies, alterations in the
gut microbiota were observed (Carmody et al., 2015; David et al., 2014; De Filippo et al.,
2010; Hale et al., 2018; Nagpal et al., 2018). Whether improved outcomes due to dietary
intervention is facilitated through alterations in the microbiome is not well understood.

In the past decade, lifestyle modifications have emerged as an alternative strategy to reduce
the risk of cognitive impairment (Daviglus et al., 2010). A recent review provides a
comprehensive report of randomized controlled trials published from 2014-2016 exploring
the efficacy of various nutritional interventions on preventing the onset of cognitive
disorders and dementia (Agosti, 2018). The Mediterranean diet is one of the most studied
dietary interventions to protect against cognitive decline. According to observational studies,
the Mediterranean diet is associated with a reduced risk of cognitive impairment, mild
cognitive impairment, and Alzheimer’s disease (Lourida et al., 2013; Psaltopoulou et al.,
2013; Singh et al., 2014; Solfrizzi et al., 2017). A randomized controlled trial demonstrated
that subjects randomly assigned to the Mediterranean diet supplemented with extra virgin
olive oil performed better on episodic memory and attention tasks compared with the control
group. Furthermore, the Mediterranean diet subjects demonstrated a significant improvement
in frontal and global cognition (Valls-Pedret et al., 2015). Despite the positive effects from
observational studies, more interventional studies are needed to validate these findings.

In 2011, the American Heart Association established the “Life’s Simple 7,” for achieving
ideal cardiovascular health. The Life’s Simple 7 definition of an ideal cardiovascular diet
includes a diet rich in fruits and vegetables, oily fish, fiber, and low in sodium which is
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similar to the Mediterranean diet (Sacco, 2011). In a large clinical trial known as the
EVIDENT study, participants who had a high Mediterranean Diet adherence score had
higher arterial elasticity (Garcia-Hermoso et al., 2018). Likewise, in a randomized controlled
trial, adherence to the Mediterranean diet for 1.5 years improved endothelial function, as
measured by flow mediated dilation, in diabetic and pre-diabetic patients compared to a low-
fat diet alone (Torres-Pena et al., 2018). These changes in endothelial function may be due to
increases in serum NO and declines in endothelin-1 (Storniolo et al., 2017) and reactive
oxygen species production (Carnevale et al., 2014; Giordano et al., 2012). Subsequent
reports suggest that the Mediterranean diet reduces endothelial cell damage and improves
the regenerative capacity of endothelial progenitor and circulating progenitor cells (Cesari et
al., 2018; Marin et al., 2011). Conversely, carotid atherosclerosis patients on a modified
Mediterranean diet for 20 weeks did not demonstrate improvements in internal carotid or
large basal cerebral artery blood flow or cognitive function (Droste et al., 2014). The
benefits of the diet were likely masked by statin use in two-thirds of the study population as
statins improve NO bioavailability and increase CBF (Droste et al., 2014). The impacts of
the ketogenic diet on the vascular function are not as well understood and additional studies
are needed to understand its impact in cardiovascular health.

Bariatric Surgery

Decades of obesity research indicates that lifestyle interventions including diet and exercise,
are not effective for helping severely obese individuals. The National Institutes of Health
(NIH) established guidelines, which specify that obese individuals with a BMI=35 with
comorbidities or BMI=40 without comorbidities are ideal candidates for weight loss surgery,
known bariatric surgery. Bariatric surgery has emerged as an effective therapy for these
individuals yielding sustained reductions in weight (Adams et al., 2007; Buchwald et al.,
2004; Gloy et al., 2013; Maggard et al., 2005; Maggard-Gibbons et al., 2013; O’Brien et al.,
2013; Padwal et al., 2011; Picot et al., 2009; Sjostrom, 2013; Sjostrom et al., 2007). Roux-
en-Y gastric bypass (RYGB), laparoscopic adjustable gastric banding (LAGB) and
biliopancreatic diversion with duodenal switch represents the three most commonly types of
bariatric surgeries(Buchwald and Oien, 2013). An analysis of various randomized controlled
trials (Arterburn and Courcoulas, 2014) revealed that bariatric surgical procedures results in
greater average weight loss of (~57 pounds) compared with non-surgical options (Dixon et
al., 2008; Ikramuddin et al., 2013; Ikramuddin and Livingston, 2013; Mingrone et al., 2012;
O’Brien et al., 2006; Schauer et al., 2012).

The impact of bariatric surgery on insulin resistance has been extensively reviewed (Rao et
al., 2012). A reduction in fasting glucose and insulin levels as well as improvements in
insulin sensitivity are reported within 3 months following bariatric surgery (Leichman et al.,
2008). Some argue that weight loss is responsible for the improvements in glucose
metabolism and insulin resistance following bariatric surgery (Adami et al., 2004;
Castagneto et al., 1994; Pereira et al., 2003; Summers, 2002). Others suggest that the
reversal of insulin resistance occurs prior to the manifestation of substantial weight loss
(Leichman et al., 2008; Rubino et al., 2010; Schauer et al., 2003; Sugerman et al., 2003)..
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Given that obesity is characterized as a state of chronic inflammation, the anti -inflammatory
changes observed with weight loss play a significant role in overall health (Cottam et al.,
2004). TNF-a is the most frequent cytokine assessed following bariatric surgery due to its
strong associated with insulin resistance (Moller, 2000). Reports on the impact of RYGB
surgery on TNF-a are contradictory demonstrating either no change (Catalan et al., 2007;
Sams et al., 2016), an increase (lllan-Gomez et al., 2012), or a decrease (Miller et al., 2011).
The latter clinical study is consistent with preclinical studies, which reveal a decrease in
TNF-a levels in adipose tissue at 9 weeks post-surgery in rats (Rideout et al., 2010). In
contrast to RYGB, the reports of TNF-a following LAGB are relatively consistent with
multiple groups demonstrating no change in serum levels of TNF-a (Kopp et al., 2003;
Laimer et al., 2002) and a decrease in subcutaneous adipose tissue (Moschen et al., 2010).
The reports for 1L-6 levels following RYGB surgery are also inconsistent demonstrating
either an increase (Illan-Gomez et al., 2012), or a decrease (Lindegaard et al., 2015). Similar
to RYGB, the serum levels of IL-6 also varied across different studies following LAGB with
either no change (Laimer et al., 2002; Moschen et al., 2010) or a decrease (Samaras et al.,
2013). Taken together, these studies suggest that the surgical procedure, post-surgical time
point, and tissue evaluated contribute to the inconsistencies in the field regarding the
potential role of inflammation.

Comprehensive data exploring the impact of bariatric surgery on the microbiome has been
extensively reviewed (Ulker and Yildiran, 2019). Bariatric surgery increased microbial
richness. Previous studies observed an increase in microbial diversity and altered microbial
composition in both man (Furet et al., 2010; Graessler et al., 2013; Kong et al., 2013; Zhang
et al., 2009) and rodents (Li et al., 2011; Liou et al., 2013). Studies suggest that these
changes in the microbiota may be independent of weight loss or caloric restriction and are
maintained up to 9 years post-surgery (Liou et al., 2013; Tremaroli et al., 2015).
Furthermore, colonization of germ-free mice with fecal material from RYGB mice resulted
in weight loss and reduced adiposity, suggesting that RY GB-associated microbiota can
improve host metabolism (Liou et al., 2013; Tremaroli et al., 2015). Overall, these studies
suggest that bariatric surgery leads to alterations in the microbiota.

Severely obese patients seeking bariatric surgery have poorer baseline cognition compared
to healthy weight controls (Prickett et al., 2018). The Longitudinal Assessment of Bariatric
Surgery (LABS) project is a multi-site, prospective longitudinal examination of the safety
and efficacy of bariatric surgery and the impact on cognitive function. Improvements in
multiple cognitive domains following surgery persisted for several years. Executive function
and memory performance remained at this improved level however, attention scores declines
in participants that regained a substantial amount of weight (Alosco et al., 2014a; Alosco et
al., 2014b; Gunstad et al., 2011; Miller et al., 2013). Overall, these data suggest that bariatric
surgery improves obesity-related cognitive impairment.

Severely obese patients experience various structural adaptations in the arteries over time
that lead to increases in blood pressure and subsequent changes in arterial stiffening. While
still limited, studies assessing the long-term impact of bariatric surgery on vascular disease
outcomes are underway. A recent study revealed that morbidly obese patients who
underwent LAGB experienced weight reduction but did not exhibit improvements in
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endothelial function and arterial stiffness after 4-years (Galkine et al., 2018). Conversely, a
study in 16 morbidly obese subjects undergoing bariatric surgery demonstrated that study
participants had improvements in retinal microvascular health after 4 years but not in large
arterial stiffness (Streese et al., 2019). Still, others demonstrated that laparoscopic sleeve
gastrectomy improved insulin mediated microvascular function in morbidly obese patients
with insulin resistance or diabetes (Ministrini et al., 2018). Nevertheless, improvements in
endothelial function and arterial stiffness post-bariatric surgery may be due to surgery-
induced reversal of underlying chronic conditions including sleep apnea (de Assuncao
Machado et al., 2018), high levels of subcutaneous adipose tissue (Backdahl et al., 2018),
insulin resistance and inflammation (Vazquez et al., 2005) that are common amongst obese
patients. Accordingly, studies revealed that markers of inflammation and endothelial
function including ICAM-1, E-selectin, and P-selectin were improved following RYGB
surgery (Stolberg et al., 2018; Vazquez et al., 2005; Yadav et al., 2017) but, these studies
failed to assess changes at the blood vessel level. Moreover, studies examining the impacts
of bariatric surgery on changes at the level of the blood brain barrier are missing. Additional
studies are needed to fully understanding the role of bariatric surgery in improving vascular
dysfunction in obesity.

Structured exercise training improves cardiometabolic health indices (Campbell et al., 2015;
Stefanov et al., 2013; Umpierre et al., 2011). Adolescent girls on a prescriptive resistance
and aerobic exercise training 12 week intervention display 50% lower plasma insulin
concentrations at the end of the intervention period (Bharath et al., 2018). Likewise,
combined resistance and aerobic exercise significantly reduces homeostatic model
assessment of insulin resistance (HOMA-IR) and blood pressure parallel to body fat in obese
adolescent girls (Son et al., 2017). Obese adults with type 2 diabetes demonstrate improved
glycemic control with supervised exercise training, but this effect is not sustained with
unsupervised training (Gajanand et al., 2019). Likewise, running wheel exercise training for
6 weeks led to significant declines in fasting blood glucose levels in mice and HbA; in
HFD rats (Mehta et al., 2018). Voluntary exercise in HFD mice also led to improved insulin
sensitivity (Fjaere et al., 2019). Collectively, these studies suggest that supervised,
prescriptive exercise training is an effective intervention for obesity-induced cardiometabolic
risk factors.

Adipose tissue hypertrophy leads to increased macrophage infiltration and activation
yielding increases in inflammatory cytokine production including IL-6 and TNF-a
(Bjorntorp et al., 1971a; Bjorntorp et al., 1971b; Drolet et al., 2008). Interestingly,
completion of a 3 week high intensity interval training (HIIT) program increased IL-6 in
obese adults while a 3 week moderate-intensity continuous training (MICT) exercise
intervention lead to cytokine suppression (Vella et al., 2017a; Vella et al., 2017b). A
conflicting study in obese elderly adults demonstrated elevated levels of IL-6 following a
prescriptive MICT program (Pedrinolla et al., 2018). HFD rodents undergoing an 8 week
endurance training displayed reductions in TNF-a, and IL-6 (Rocha-Rodrigues et al., 2017).
Combined aerobic and resistance training for 8-weeks in obese subjects leads to reductions
in TNF-a (Jin et al., 2018). Moreover, a 24 week HIIT yields suppression of TNF-a in
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obese adolescents (Tenorio et al., 2018). TNF-a levels are reduced in HFD mice following
wheel running and treadmill exercise (Bradley et al., 2008; Kim and Yi, 2015). Overall,
these studies support a role for exercise in modulating TNF-a in clinical and experimental
models of obesity.

Exercise reportedly increases the diversity of the gut microbiome (Clarke et al., 2014).
Interestingly, obese women exposed only to an endurance exercise intervention for 6 weeks
display inert taxonomic modifications in the gut microbiome (Munukka et al., 2018). BMI
and exercise frequency purportedly dictate gut microbiota diversity (Bai et al., 2018). For
example, two independent studies report that HFD mice experience a shift in microbiota
composition with wheel running exercise (Evans et al., 2014; Schipke et al., 2019). Notably,
a 6-week HIIT treatment in HFD mice led to increased microbiome diversity and F/B ratio
in the fecal microbiota and distal gut (Denou et al., 2016). Conversely, a recent report
demonstrated that low-to-moderate exercise training program was not effective in reversing
HFD induced changes in the microbiome of mice (Ribeiro et al., 2019). Taken together,
these studies suggest that exercise may modulate changes in the microbiome; however,
additional human studies are warranted to clarify the role of exercise in modulating the gut
microbiome.

The effectiveness of exercise on improving cognitive function in obese patients is
inconsistent (Espeland et al., 2017a; Espeland et al., 2017b; Smith et al., 2010) but there is
substantially more evidence supporting a role for the benefits of exercise. For example, a 4-
month high intensity training (HIT) program improves short-term and verbal memory along
with attention and processing speed in middle-age obese patients (Drigny et al., 2014).
Results from the Finnish Geriatric Intervention Study to Prevent Cognitive Impairment and
Disability (FINGER) trial demonstrated that a 2-year diet and structural exercise
intervention improves processing speed and executive function amongst overweight, elderly
subjects compared controls (Ngandu et al., 2015). Interestingly, the benefits of exercise
alone and exercise in combination with diet provided similar improvements in cognition
amongst frail, obese elderly patients (Napoli et al., 2014). These findings are in line with
studies in preclinical models. An early preclinical study demonstrated that HFD-induced
cognitive deficits in hippocampal-dependent memory improved with both voluntary running
wheel or forced treadmill exercise training in Sprague-Dawley (Noble et al., 2014).
Moreover, Jeong et al. revealed that treadmill exercise training in HFD rats improves
memory restoration (Jeong and Kang, 2018). While aerobic interval training in HFD mice
demonstrated improvements in spatial learning and memory (Shi et al., 2018). Collectively,
these studies suggest that exercise training has beneficial effects on obesity-associated
cognitive function in both clinical and preclinical studies.

The majority of studies examining the therapeutic capacity of exercise on arterial de-
stiffening and vascular function in obesity support a role for increased physical activity in
limiting obesity-induced damage to the vasculature. A recent study examining the
effectiveness of a low-volume, HIT training program in obese individuals showed that
skeletal muscle capillarization increased while aortic pulse wave velocity (PWV), a measure
of aortic stiffness downstream of endothelial dysfunction, decreased in obese individuals
(Scott et al., 2019). Interestingly, acute maximal exercise increased carotid-femoral fPWV in
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obese individuals, which may reflect underlying preclinical vascular disease in obesity
(Bunsawat et al., 2017). Still, others have demonstrated that in populations with metabolic
syndrome, an 8-week supervised training program lead to significant improvements in
vascular stiffness and subsequent improvements in metabolic disease and fitness
(Slivovskaja et al., 2018). Consistent with this finding is the discovery that exercise training
effectively de-stiffened the central arteries in obese men independent of weight loss and
dietary modification (Maeda et al., 2015).

In animal models of diet-induced obesity, exercise prevented cerebrovascular damage
despite increases in weight gain (Graham et al., 2019). Similarly, exercise prevented
diastolic dysfunction likely due to declines in oxidative stress and improved mitochondrial
architecture (Bostick et al., 2017). In addition, chronic exercise therapy in obese rats led to
restoration of insulin-mediated vasodilation as well as improvements and skeletal muscle
and cerebral microcirculation (Olver et al., 2017). Additional studies are needed to fully
understand mechanisms responsible for exercise-induced changes at the vascular level in
obese populations.

Conclusions and perspectives

Obesity is a global pandemic that is still on the rise in developing countries. The
interconnected relationship between early- to mid-life obesity and cognitive impairment
makes the public health and economic implications of this issue urgent. Thus, understanding
mechanistic pathways at the intersection of these diseases is important for guiding the
development of therapeutic strategies that prevent and/or reverse disease. The framework
presented in this review is based on our current knowledge of how aberrant endothelial
function in obesity drives changes in the brain that may culminate into cognitive impairment.
Presently, factors associated with obesity including hyperinsulinemia/insulin resistance,
inflammation, and disruption at the microbiota-gut-brain axis appear to orchestrate
pathophysiologic insults at the level of the endothelium. Endothelial dysfunction is an early
event in the manifestation of cognitive impairment and dementia. Establishing a clinical tool
that will detect endothelial dysfunction may be useful for assessing cognitive impairment
risk. Given that endothelial dysfunction promotes premature arterial stiffening, measuring
arterial stiffness may be promising. This can be accomplished by measuring carotid-femoral
pulse wave velocity (cfPWV), which inversely correlates with cognitive function
(Triantafyllidi et al., 2009). Additional studies are needed to understand the clinical utility of
cfPWV in predicting cognitive impairment risk associated with obesity.
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Figure 1. Obesity induces cognitive decline.
Schematic illustrating how the consequences of obesity (hyperinsulinemia, adiposity, and

gut dysbiosis) results in the production of tumor necrosis factor alpha (TNF-a) and
interleukin-6 (IL-6). This culminates into endothelial dysfunction, which leads to increased
cytokine influx, increased blood brain barrier (BBB) permeability, and reduced insulin
transport in the brain. This feed forward cycle of insults ultimately contribute to cognitive
impairment.
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