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Abstract

Obesity is a global pandemic associated with macro- and microvascular endothelial dysfunction. 

Microvascular endothelial dysfunction has recently emerged as a significant risk factor for the 

development of cognitive impairment. In this review, we present evidence from clinical and 

preclinical studies supporting a role for obesity in cognitive impairment. Next, we discuss how 

obesity-related hyperinsulinemia/insulin resistance, systemic inflammation, and gut dysbiosis lead 

to cognitive impairment through induction of endothelial dysfunction and disruption of the blood 

brain barrier. Finally, we outline the potential clinical utility of dietary interventions, exercise, and 

bariatric surgery in circumventing the impacts of obesity on cognitive function.
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Introduction

Obesity, a pandemic impacting over 1 billion people in the world and 90 million Americans, 

is a risk factor for cardiovascular disease, cognitive impairment, and dementia (Toth et al., 

2017). Age and cardiovascular risk factors adversely affect vascular health, which is critical 

to normal brain function including cognitive function (DeCarli et al., 2001; Hanon et al., 

2005; Hoth et al., 2007; Panza et al., 2006; Solfrizzi et al., 2004). Disruptions in the vascular 
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system, which involves the macro- and microvasculature and the endothelium, occurs prior 

to the onset of cognitive impairment (Corriveau et al., 2016). In fact, this is now widely 

recognized as a broad-spectrum disorder referred to as vascular contributions to cognitive 

impairment and dementia (VCID) (Gorelick et al., 2011).

Endothelial cells have distinct functions in vascular biology. Endothelial cells are 

responsible for maintaining vascular tone, regulating blood flow, modulating the 

inflammatory response, and the trafficking of molecules between the periphery and the 

brain. Endothelial dysfunction disrupts blood flow, reduces vascular tone, and impairs the 

blood brain barrier (BBB) (Wardlaw et al., 2013). This is mediated in part by disruption in 

specialized receptors on endothelial cells that transduce mechanical and chemical stimuli to 

facilitate the release of signaling molecules such as nitric oxide (NO), endothelin, and 

prostanoids.

Both clinical and preclinical studies demonstrate that obesity reduces the bioactivity of NO 

(Bender et al., 2007; Bourgoin et al., 2008; Damjanovic and Barton, 2008; Rask-Madsen and 

King, 2007). Severely obese children display evidence of endothelial dysfunction (Tounian 

et al., 2001). Furthermore, severely obese (body mass index, [BMI] ≥34 kg/m2) insulin 

resistant individuals demonstrate impairments in blood flow and vascular tone (Steinberg et 

al., 1996). This is likely due the downstream signaling consequences associated with 

hyperinsulinemia/insulin resistance. Insulin resistance is characterized by reductions in 

phosphoinositide 3-kinase (PI3K) signaling and increased mitogen-activated protein kinase 

signaling, which leads to decreased NO production, a characteristic of endothelial 

dysfunction (Williams et al., 2002). These processes work synergistically to promote 

continuous blood flow to the brain, a process known as neurovascular coupling. Obesity 

induced disruption of NO has been linked to impaired neurovascular coupling in preclinical 

models (Tarantini et al., 2018; Tucsek et al., 2014b). Furthermore, this impairment in 

neurovascular coupling has been associated with cognitive impairment and 

neurodegeneration (Riddle et al., 2003; Troen et al., 2008; Tucsek et al., 2014a).

Understanding additional mechanisms that contribute to the development of insulin 

resistance may have therapeutic potential for preventing or reversing obesity-associated 

endothelial dysfunction. Herein, we discuss the role of specific obesity-related mechanisms 

including inflammation, hyperinsulinemia/insulin resistance, and gut dysbiosis on 

endothelial function and cognitive impairment. Likely, obesity induces a feed-forward cycle 

among these various mechanisms, which ultimately culminates into endothelial cell 

dysfunction and consequently cognitive impairment (Figure 1). While other mechanisms 

such as oxidative stress, mitochondrial dysfunction, and neurotrophic factors are important, 

they have been extensively reviewed elsewhere (de Mello et al., 2018; Sripetchwandee et al., 

2018), and thus will not be discussed here. We conclude our review with a summary of 

therapeutic strategies currently being investigated for alleviating the detrimental impacts of 

obesity-induced cognitive impairment. Understanding the impact of the relationship among 

these phenomena may help bring forward new therapeutic strategies to mitigate obesity-

induced cognitive impairment.
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The link between obesity and cognitive impairment

Clinical Studies

Clinical studies evaluating the link between obesity and cognitive impairment demonstrate 

inconsistent findings. Some support an association between obesity and cognitive 

impairment (Gunstad et al., 2010; Prickett et al., 2015; Wang et al., 2016a) while others fail 

to demonstrate a relationship(Reviewed in (Bischof and Park, 2015; Gunstad et al., 2010; 

Han et al., 2009). These inconsistent findings may be due to variations in study design. First, 

clinical studies may differ based on the population age, which consist of early life (4–18 

years old), early to mid-life (19–65 years old), or mid-life to late-life (65+ years old) (Smith 

et al., 2011). Overall, studies suggest that early and mid-life obesity are associated with 

worse cognitive outcomes. Of these two population ages, mid-life obesity has the most 

adverse effects on cognition (Dye et al., 2017). In fact, lower scores on the Mini-Mental 

State Examination (MMSE) correlate with midlife obesity (Bischof and Park, 2015). 

Cognitive performance on tests involving visual memory, organization, executive function, 

attention and visuomotor speed was worse in individuals with central obesity in midlife 

(Wolf et al., 2007). A previous study reported that late-life obesity correlated with better 

performance on attention and executive function tasks (Gunstad et al., 2010); however, a 

recent study reported no association between late-life obesity and cognitive impairment 

(Deckers et al., 2017). Overall, these studies suggest that aging may play a role in obesity-

related cognitive impairment; however, the mechanisms have not been elucidated.

In addition to cognitive deficits, recent data suggest that differences in brain structure in 

obese and non-obese populations are present. For example, volumes of brainstem and 

diencephalon reduction were noted in early adulthood obesity (Marques-Iturria et al., 2013). 

Likewise, lower cortical thickness was observed in the left superior frontal and right medial 

orbitofrontal cortex in a similar group of patients, which may provide some explanation 

about the association between obesity and cognitive dysfunction in obese individuals 

(Marques-Iturria et al., 2013). Others have demonstrated that populations with increased 

BMI display decreased global brain volume and gray-matter volume with decreased neural 

viability in both frontal and parietal cortices (Gazdzinski et al., 2008). Similarly, reductions 

in global white matter integrity (Verstynen et al., 2012) and atrophy of the temporal, frontal, 

occipital cortices, hippocampus, thalamus, and midbrain have also been noted in other 

populations with increased BMI (as reviewed in Shafer et al. (Shefer et al., 2013). 

Coinciding with these findings is the observation that a high BMI in midlife leads to 

declines in neuron and myelin viability (Gazdzinski et al., 2008) and may be associated with 

abnormalities in altered brain plasticity (Wang et al., 2016a). Collectively, these studies 

show that obesity may be a causal link for deleterious changes in brain structure. Additional 

studies are needed to confirm the aforementioned findings.

Second, clinical studies may use different indices for “obesity” designation. The majority of 

clinical studies use body mass index (BMI≥30 kg/m2) as the obesity metric. Unfortunately, 

BMI does not account for alterations in body composition; hence, it inadequately correlates 

with adiposity. Central adiposity metrics, such as waist circumference (≥ 40 inches for men 

and ≥ 35 inches for women) or waist-hip ratio (≥ 1 for men and ≥ 0.8 for women), correlate 
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better with cognitive impairment (Han et al., 2009; Nilsson and Nilsson, 2009; Wang et al., 

2016a).

Third, studies differ based on the cognitive test used to assess cognitive impairment. This 

stems from the fact that the term “impairment” is broad and involves multiple cognitive 

domains. Thus, it is difficult to assess every cognitive domain in a single study, which may 

lead to conflicting reports. Still, strong evidence from the extant literature suggest that 

obesity negatively impacts memory and is associated with poor performance on 

psychomotor, selective attention, decision making, and executive function tests (as reviewed 

in Dye et al. (Dye et al., 2017).

Finally, while many clinical studies report the presence or absence of comorbidities such as 

hypertension, hypercholesterolemia, diabetes, dyslipidemia, or hyperglycemia, some studies 

fail to adjust for comorbidities when assessing the link between obesity and cognitive 

deficiencies. A study by Singh-Manoux and colleagues demonstrated that obese individuals 

who were metabolically unhealthy had a faster rate of cognitive decline compared to obese 

individuals without metabolic abnormalities over a 10-year period (Singh-Manoux et al., 

2012). While this study demonstrates obesity works synergistically with metabolic disorders 

to drive changes in cognition, the authors also showed that obesity in the absence of 

metabolic disorders increased the rate of global cognitive decline in comparison to the rate 

of decline in normal weight individuals (Singh-Manoux et al., 2012). These reports have 

since been confirmed by other groups as well (Ala Abu Saleh, 2015; Farah et al., 2016). 

Table 1 summarizes clinical studies from the past decade taking into consideration study 

population age, obesity metrics, cognitive test, and comorbidities for each of the specified 

studies. Given the great variability in clinical studies, it is difficult to evaluate potential 

mechanisms that drive obesity-related cognitive impairment. Preclinical animal models 

provide the opportunity to explore novel mechanisms underlying the pathogenesis of 

obesity-related cognitive impairment and to develop innovative therapies.

Preclinical Studies

The western diet has been regarded as playing a significant role in the obesity epidemic. In 

animal models, the diet is comprised of at least 40% of calories from fat and supplemented 

with a lesser amount of simple carbohydrates (Lesniewski et al., 2013). Diet-induced obesity 

tends to vary between laboratories, with some using both high-fat and high simple-

carbohydrate concentrations, while others use one or the other. Western and high simple-

carbohydrate diet models induce cognitive impairment and brain dysregulation in rodent 

models (Darling et al., 2013; Hsu et al., 2015; Jurdak and Kanarek, 2009; Kanoski and 

Davidson, 2011; Yeomans, 2017). This cognitive deficit is apparent despite either no change 

in weight reported or minimal changes compared to a high-fat diet (HFD) (Jurdak and 

Kanarek, 2009; Kanoski and Davidson, 2011). Standing alone, the HFD mouse model of 

obesity has clinical translatability (Aroor et al., 2018; Pulakat et al., 2011), and will be 

discussed here.

Similar to clinical studies, preclinical animal studies also suffer from the lack of consistency 

in study design. First, the age of HFD induction and the duration of feeding differs across 

preclinical studies. The impact of juvenile onset HFD feeding on cognitive performance has 
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been rigorously reviewed, with the vast majority of studies demonstrating a causative 

relationship (Del Olmo and Ruiz-Gayo, 2018; Noble and Kanoski, 2016). This has been 

corroborated in both the adult and aged mouse phenotypes (reviewed (Cordner and 

Tamashiro, 2015). Studies demonstrate cognitive impairment after two weeks (McLean et 

al., 2018; Sims-Robinson et al., 2016a), 9 days (Murray et al., 2009), and even as early as 3 

days on a HFD (Thaler et al., 2012), indicating that the length of feeding does not appear to 

be a major factor.

Second, the percentage of fat used for HFD treatment varies among the preclinical studies. 

Typically, obesity is induced by feeding animals a diet containing 32-60% of calories from 

fat. Studies with diets consisting of ≥40% of kilocalories from fat report diet-induced 

cognitive impairment in both mice and rats (Fu et al., 2017; Underwood and Thompson, 

2016; Wang et al., 2016b). In contrast, some studies demonstrate that HFD does not 

correlate with cognitive impairment (Kosari et al., 2012; Li et al., 2013; Mielke et al., 2006). 

The impact of HFD in preclinical models on cognitive function has been extensively 

reviewed (Cordner and Tamashiro, 2015).

Third, similar to clinical studies, preclinical studies differ in the type of cognitive test 

utilized to assess cognitive impairment. Studies demonstrate that diet-induced obesity 

reduces performance in Morris water maze (Cordner and Tamashiro, 2015; Gladding et al., 

2018; Kasper et al., 2018; Sims-Robinson et al., 2016a; Spinelli et al., 2017), novel object 

recognition (Cordner and Tamashiro, 2015; Kadish et al., 2016; Sims-Robinson et al., 

2016a; Sona et al., 2018), and Y-maze (Almeida-Suhett et al., 2017; Cordner and Tamashiro, 

2015; Gladding et al., 2018; Labouesse et al., 2018; Martins et al., 2017; Sona et al., 2018). 

The Morris water maze, Y-maze, and Novel Object Recognition task are designed to test 

spatial, working, and recognition memory, respectively. Finally, HFD mice display multiple 

comorbidities such as hyperinsulinemia, glucose intolerance, and hypertension (Buettner et 

al., 2007; Oakes et al., 1997; Tschop and Heiman, 2001; Vincent et al., 2009) depending on 

the percentage of fat used and the duration of HFD feeding. Table 2 summarizes preclinical 

studies published from 2016-2019 comparing differences in the timeline of HFD feeding, 

percentage of fat in the experimental diet, cognitive test, and the presence of comorbidities. 

Despite the variability among preclinical studies, animal models provide the opportunity to 

explore the molecular mechanisms underlying obesity-related cognitive impairment.

Molecular mechanisms contributing to obesity-induced cognitive 

impairment

Several mechanisms play a role in obesity-related cognitive impairment (Dye et al., 2017; 

Kanoski and Davidson, 2011; Miller and Spencer, 2014; Noble and Kanoski, 2016). 

Vascular contributions to cognitive impairment has been increasingly recognized in both 

preclinical and clinical studies (Akiguchi and Yamamoto, 2010; Fulop et al., 2018; Khan et 

al., 2018; Toth et al., 2017). HFD is associated with decreased vascular integrity in the brain 

of rodent models (de Aquino et al., 2018; Fu et al., 2017; Kalyan-Masih et al., 2016). 

Furthermore, BBB integrity is compromised following HFD (Freeman and Granholm, 2012; 

Kanoski et al., 2010). The BBB plays a fundamental role in maintaining brain homeostasis. 
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Given that endothelial cells are one of the major cell types that form the BBB, obesity driven 

endothelial dysfunction contributes to BBB impairment through several mechanisms 

(Wardlaw et al., 2013). Hence, understanding the potential impact of obesity on endothelial 

cell function may be a key factor reversing obesity-associated cognitive impairment.

BBB breakdown precedes and activates neuroinflammation and neurodegeneration. 

Evidence from studies in aged animal models of obesity suggest that chronic HFD leads to 

enhanced plasma-derived IgG leakage into the hippocampal perivascular space (Tucsek et 

al., 2014a). Similarly, these authors showed that aged-mice fed a HFD for 24 months had 

decreased hippocampal microvascular density accompanied by impairments in hippocampal-

dependent cognitive function compared to mice on a normal chow diet (Tucsek et al., 

2014b). These studies suggest that increased neuroinflammation may induce declines in 

microvascular integrity leading to cognitive decline and that these changes are compounded 

with increasing age. Several mechanisms contribute to obesity-induced BBB breakdown and 

its deleterious cerebrovascular effects.

One mechanism of obesity mediated BBB breakdown is through disruption of tight junctions 

at the level of the endothelium (Zlokovic, 2008). Obese type 2 diabetic mice display declines 

in tight junction proteins Zonula occluden-1 (ZO-1) and claudin-12 (Salameh et al., 2019). 

Interestingly, treatment with the mitochondrial carbonic anhydrase inhibitor, topiramate, 

improved tight junction protein expression and restored BBB integrity in these animals 

(Salameh et al., 2019). Likewise, increases in thrombin induced pericyte activation led to 

declines in ZO-1 and occludin but not claudin-5 in a HFD mouse model (Machida et al., 

2017). Collectively, these studies suggest that obesity may induce tight junction disruption 

leading to BBB breakdown.

In addition, infiltration of serum-derived substances into the hippocampal space allows for 

microglial activation and subsequent reductions in endothelial cell tight junction protein 

expression in obesity (Sumi et al., 2010)(Shigemoto-Mogami et al., 2018). Long chain 

saturated fatty acids derived from chronic HFD intake facilitate activation of microglia to 

promote chronic neuroinflammation (Dalvi et al., 2017; Fritsche, 2015; Thaler et al., 2012), 

which contributes to cognitive impairment (Kahn and Flier, 2000; Thaler et al., 2012). HFD 

aged mice also display exacerbated activation of microglia associated with impaired 

hippocampal learning and memory deficits (Valcarcel-Ares et al., 2019). Accordingly, 

Bocarsly et al. reported that diet-induced obesity led to reductions in dendritic spines as well 

as altered microglial morphology within the prefrontal cortex, a phenomenon accompanied 

by deficits in prefrontal cortex-dependent cognitive tasks (Bocarsly et al., 2015). 

Interestingly, pharmacological inhibition of microglia activation in obese mice was shown to 

be protective against cognitive degradation as a result of improvements in BBB integrity 

(Cope et al., 2018). Additional mechanisms underlying obesity-induced initiation of BBB 

breakdown will be described below.

Systemic Inflammation

Chronic consumption of a “western diet” promotes systemic inflammation. Although there 

are various sources of inflammation with HFD consumption, the main source stems from 

white adipose tissue hypertrophy and dysfunction. Migrant macrophages homing to 

Buie et al. Page 6

Neurobiol Dis. Author manuscript; available in PMC 2020 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



hypertrophic adipose tissue adopt an atypical pro-inflammatory phenotype (Ghanim et al., 

2004). Notably, multiple adipose tissue macrophage (ATM) subsets exist in obese adipose 

tissue. These populations have distinct functions, express specific markers, and have specific 

tissue distributions not typical of M1 (pro-inflammatory) or M2 (anti-inflammatory) 

phenotypes (Coats et al., 2017; Gordon, 2003; Kratz et al., 2014; Xu et al., 2013). Instead, 

obese ATMs reflect a distinct metabolically active group of surface expression markers 

induced by free fatty acids, high glucose, and hyperinsulinemia (Kratz et al., 2014), which 

subsequently drive adipocyte hypertrophy (Lumeng et al., 2007; Weisberg et al., 2003). In 

mice, both resident and recruited ATMs make up about 50% of adipose tissue cells in obese 

animals compared to 10% in lean animals (Guilherme et al., 2008; Weisberg et al., 2003). 

Upon activation, ATMs produce pro-inflammatory cytokines including Interleukin (IL)-6 

and tumor necrosis factor (TNF)-α.

Interleukin-6 (IL-6)—IL-6 is produced by ATMs and has pleiotropic effects on 

inflammation, the immune response, and vascular function (Roytblat et al., 2000; Yasukawa 

et al., 1987). Accumulating evidence suggest that IL-6 is a major inflammatory cytokine that 

increases with adipocyte hypertrophy in obesity (Almuraikhy et al., 2016). Clinical studies 

in obese patients demonstrate that IL-6 and IL-6 receptor expression are upregulated in 

subcutaneous adipose tissue from patients with increased BMI and percentage body fat 

compared to lean subjects (Mohamed-Ali et al., 1997; Sindhu et al., 2015). IL-6 is 

purportedly a better correlate of obesity and insulin resistance compared to other cytokines, 

however there are conflicting reports about IL-6 that make its role in obesity-induced 

pathophysiology unclear. Administration of Tocilizumab, the anti-IL-6 drug, reduced 

systemic inflammation but led to metabolic syndrome and weight gain (Febbraio et al., 

2010), and IL-6 knockout mice demonstrate overt obesity onset, insulin resistance, and M1 

macrophage polarization (Matthews et al., 2010; Mauer et al., 2014; Wallenius et al., 2002). 

As such, it has become increasingly evident that IL-6 in the CNS plays a critical role in 

modulating body weight and metabolism through signaling in the CNS (Fernandez-Gayol et 

al., 2019; Timper et al., 2017). Although IL-6 appears beneficial for modulating weight via 

CNS signaling, its chronic systemic presence in obesity may be linked to detrimental effects 

on cognition.

Accumulating evidence suggest that obesity-induced systemic inflammation is associated 

with poorer cognitive outcomes. IL-6 is known to disrupt neural circuitry responsible for 

cognitive functioning and task completion (Vallieres et al., 1997), inhibit neurogenesis 

(Monje et al., 2003), decrease synaptic plasticity (Poluektova et al., 2005), and impede 

learning and memory performance (Braida et al., 2004) in mice. Reports on the impact of 

IL-6 on cognitive decline in obesity have been inconsistent with some supporting a role for 

IL-6 in cognitive decline (Donzis and Tronson, 2014; Lai et al., 2017; Lampe et al., 2019; 

Palta et al., 2015; Singh-Manoux et al., 2014; Weaver et al., 2002; Yaffe et al., 2003) and 

others failing to demonstrate a role for IL-6 in cognitive decline (as reviewed in Donzis and 

Tronson, 2014). A longitudinal study in the Whitehall II cohort found that mid-life IL-6 

plasma concentrations were predictive of cognitive decline (Singh-Manoux et al., 2014). 

Despite these positive associations, a recent study suggest that IL-6 is not associated with 
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cognition (Wennberg et al., 2018). It is well established that IL-6 negatively impacts vascular 

function, which can have long-term deleterious impacts on the BBB.

An overwhelming body of evidence suggest that IL-6 has deleterious impacts on endothelial 

cells (Hartman and Frishman, 2014; Schwingshackl and Hoffmann, 2014). Although the 

endothelium does not express the membrane IL-6 receptor, IL-6 is secreted from endothelial 

cells and has various direct and indirect effects on the endothelium (Hou et al., 2008). One 

study demonstrated that IL-6 significantly impaired endothelial colony forming cell 

outgrowth, which was restored after inhibition of the IL-6 receptor (Shahrivari et al., 2017). 

Experimental overexpression of IL-6 in the brains of mice leads to BBB permeability and 

neuroinflammation, while IL-6 knockout mice have preserved BBB function despite an 

enhanced inflammatory response (Paul et al., 2003). IL-6 BBB dysfunction are likely caused 

by signaling at the cellular level, as IL-6 suppresses endothelial NO expression and 

bioavailability (Saura et al., 2006). IL-6 also works in concert with TNF-α to disrupt 

adherens/tight junction expression and increased permeability through suppression of tight 

junctions in brain microvascular endothelial cells (Rochfort et al., 2016; Rochfort and 

Cummins, 2015).

TNF-α—TNF-α is constitutively produced by ATMs in dysfunctional adipose tissue of 

obese subjects and acts as a potential mediator of insulin resistance (Cawthorn and Sethi, 

2008; Hotamisligil et al., 1993) through activation of phosphatases, which impair insulin 

signaling (Nieto-Vazquez et al., 2008). Impaired insulin signaling contributes to increased 

adiposity (Zhou and Rui, 2013). A recent study in obese hemodialysis patients showed that 

TNF-α was associated with abdominal obesity (Beberashvili et al., 2019). It is particularly 

noteworthy that genetic ablation of the TNF-α receptor 1 makes mice resistant to diet-

induced obesity (Romanatto et al., 2009).

Under normal physiological conditions, constitutive production of hippocampal TNF-α 
modulates synaptic strength (Beattie et al., 2002), and elevated hippocampal levels in HFD 

mice correlate with cognitive impairment (Jeon et al., 2012; Ma et al., 2018). Evidence that 

cognitive impairment is mitigated through suppression of systemic TNF-α concentrations 

within the hippocampus points to a role for TNF-α in modulating cognitive decline (Grundy 

et al., 2014; Labrousse et al., 2012). Despite these findings, there are conflicting reports 

about the role of TNF-α on cognition. An independent study in FIFD mice failed to 

demonstrate a correlation between TNF-α and cognitive function (Boitard et al., 2014). 

Despite these findings, a recent study reported that administration of infliximab, a TNF-α 
inhibitor impermeable to the BBB, improves pathology in transgenic Alzheimer’s disease 

mice, a model commonly associated with cognitive impairment (Paouri et al., 2017).

TNF-α may modulate cognitive function through its effects on the micro vasculature and 

endothelium. Small vessels excised from obese patient perivascular tissue are less responsive 

to endothelium-dependent relaxation, a mechanism likely due to TNF-α-induced 

endogenous oxidative stress signaling (Virdis et al., 2011). This same group demonstrated 

that small arteries in perivascular adipose tissue produce TNF-α and oxidative stress in 

excess, leading to loss of vasorelaxation (Virdis et al., 2015). Infliximab administration leads 

to improvements in vascular reactivity to acetylcholine, a vasodilator, in obese subjects with 
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metabolic syndrome (El Assar et al., 2013; Tesauro et al., 2008). Small arteries dissected 

from the visceral fat of obese patients display suppressed endothelial dependent relaxation in 

response to acetylcholine; however, aberrant response was mitigated by infliximab (Virdis et 

al., 2011). Similar findings have been observed in rodent models of obesity and/or models 

with an inflammatory phenotype. HFD consumption increases TNF-α in both the femoral 

artery and corpus cavernosum of rats (Sponton et al., 2017). Isolated mesenteric vascular 

beds from HFD mice displayed improvements in insulin-mediated vasodilation upon 

treatment with infliximab (da Costa et al., 2016). Collectively, this evidence points to role 

for TNF-α in mediating microvascular damage in obesity.

As previously stated, damage to the microvasculature in the periphery ultimately leads to 

changes in vascular structures of the CNS. While this evidence points to a role for TNF-α in 

obesity-related endothelial dysfunction in the periphery, TNF-α mediated endothelial 

dysfunction also occurs at the BBB (Deli et al., 1995). TNF-α increases permeability of 

human brain microvascular endothelial cells (Didier et al., 2003). Thus, it’s no surprise that 

TNF-α modulates disruption of BBB integrity. The administration of the TNF-α inhibitor, 

etanercept, restores BBB integrity and cognition in mice (Cheng et al., 2018). Overall, these 

data suggest a role for inflammation in obesity-related cognitive impairment. Inadvertently, 

chronic low-grade inflammation, often observed in obesity, have been implicated in the 

pathogenesis of hyperinsulinemia and insulin resistance (Esser et al., 2014).

Hyperinsulinemia

CNS insulin receptor signaling is important for synaptic plasticity, neuronal survival, 

learning and memory, etc. (see Chiu and Cline (2010) for a comprehensive review). Diet-

induced obesity leads to hyperinsulinemia and is associated with impaired CNS insulin 

signaling (Hussain et al., 2019; Petrov et al., 2015; Sims-Robinson et al., 2016a); however, 

the mechanisms are not known. Impaired CNS insulin signaling is typically attributed to 

diet-induced CNS insulin receptor resistance (Hussain et al., 2019; Kim et al., 2011a; Kim et 

al., 2011b; Petrov et al., 2015; Sims-Robinson et al., 2016b). Alternatively, impaired CNS 

insulin signaling may be due to a deficiency of insulin in the CNS. Hyperinsulinemia and 

diet-induced obesity are associated with decreased CNS insulin levels (Begg et al., 2013; 

Israel et al., 1993; Kaiyala K. J., 2000). CNS insulin must be transported via receptor-

mediated transport through the BBB from the periphery (Banks et al., 1997; Banks et al., 

2012).

Although limited, evidence from the literature support the notion that CNS insulin transport 

is mediated by the insulin receptor (Banks, 2004; Banks et al., 1997; Banks et al., 2012; 

King and Johnson, 1985). Insulin uptake in bovine aortic endothelial cells requires normal 

insulin signaling (Wang et al., 2013; Wang et al., 2008). Furthermore, these studies 

demonstrate that ablating insulin receptor function reduces insulin uptake. High 

concentrations of insulin receptors are reported in brain capillaries (Blumling Iii and Silva, 

2012; Pardridge, 2008; Pardridge and Boado, 2012). Although these studies suggests that the 

insulin receptor is involved in receptor-mediated uptake in endothelial cells, it is worth 

noting that a recent study demonstrated that insulin can enter the CNS through non-insulin 

receptor mediated processes (Rhea et al., 2018). Overall, impaired CNS insulin receptor 
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signaling coupled with the reduced CNS insulin transport provides a potential mechanism 

underlying obesity-related cognitive impairment.

Obesity is associated with lower cerebrospinal fluid (CSF) insulin, a measure of CNS insulin 

levels (Kern et al., 2006; Kullmann et al., 2016). Interestingly, reduced CSF insulin 

concentrations are also observed in patients with mild cognitive impairment (Craft et al., 

1998; Gil-Bea et al., 2010). This is associated with an decrease in underlying brain insulin 

sensitization (Sims-Robinson et al., 2010), observed through aberrant signaling of the 

insulin receptor (Kim et al., 2012) in both the hypothalamus (Ono, 2019) and hippocampus 

(Pratchayasakul et al., 2011; Sims-Robinson et al., 2016a). Insulin dysregulation in the 

hippocampus have been directly implicated in impaired memory processes such as synaptic 

plasticity (McNay et al., 2010; Spinelli et al., 2017; Spolcova et al., 2014; Suarez et al., 

2019). Impaired insulin sensing in the hypothalamus is linked to decreased glucose sensing, 

which may eventually lead to a feed forward cycle in the obesity pathology (Chen et al., 

2017; Ono, 2019; Weissmann et al., 2014).

Intravenous insulin has been shown to improve cognition in healthy subjects (Craft et al., 

1999; Craft et al., 1996; Kern et al., 2001), however, this is not a viable treatment option for 

cognitive impairment due to secondary complications such as hypoglycemia (Morris and 

Burns, 2012). Intranasal insulin has been offered as a way of directly increasing CNS insulin 

concentrations, while avoiding altering systemic glucose and insulin levels (Claxton et al., 

2015; Craft et al., 2012; Reger et al., 2006). CNS insulin receptors are highly expressed in 

areas of the brain important for memory consolidation and executive functioning such as the 

hippocampus (Baskin et al., 1983; Hill et al., 1986), and are specifically concentrated at the 

synapses (Laron, 2009). Hence, it is not surprising that intranasal insulin improves memory 

in cognitively normal humans (Benedict et al., 2004; Benedict et al., 2007). Additional 

studies are warranted to explore the potential role of CNS insulin signaling and transport on 

obesity-related cognitive impairment.

Hyperinsulinemia and insulin resistance are linked to decreased BBB integrity (Arnold et al., 

2018) and endothelial cell dysfunction (Muniyappa and Sowers, 2013). Insulin is known to 

have a direct vasodilatory effect, mediated through the stimulation of NO production in 

endothelial cells (Kuboki et al., 2000) via protein kinase B (Akt) activation (Muniyappa and 

Sowers, 2013). Hence, hyperinsulinemia impairs vascular tone. HFD animals exhibit 

impaired neurovascular coupling (Tarantini et al., 2018) as well as diminished insulin-

mediated BBB responses, microvascular perfusion, and cognitive decline (de Aquino et al., 

2018; Fu et al., 2017). Interestingly, some studies suggest that insulin sensitizers such as 

metformin and pioglitazone may confer beneficial effects on endothelial function 

(Muniyappa and Sowers, 2013; Naka et al., 2011; Radenkovic, 2014). These findings taken 

together suggest that obesity coupled with hyperinsulinemia may have detrimental effects on 

endothelial function. While the inflammation and hyperinsulinemia connection is grounded 

in the literature, a mounting body of evidence suggest that the gut microbiome may play a 

role in modulating hyperinsulinemia and obesity’s impact on cognition.
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Gut Microbiome

The gut microbiome is an aggregate of more than 100 trillion microorganisms, including 

bacteria, viruses, fungi and protozoa (Gill et al., 2006). The microbiome is essential for 

microbiota-gut-brain bidirectional communication (Rhee et al., 2009). The two most 

prominent bacterial divisions in the gut include gram positive Firmicutes and gram negative 

Bacteroidetes, which make up 90% of all phylogenetic types. Changes to food and 

environment have drastically altered the microbiome (Gomez, 2017). Disturbance in gut 

homeostasis is often due to loss of beneficial bacterial, overgrowth of harmful bacterial, or 

loss in microbial diversity also known as gut dysbiosis (DeGruttola et al., 2016). This is 

particularly true in obesity; the obese gut in mice and humans has an increased Firmicutes/

Bacteroidetes (F/B) ratio compared to lean controls (Angelakis et al., 2012; Furet et al., 

2010; Kong et al., 2013), leading to greater adiposity (Turnbaugh et al., 2006). Higher F/B 

ratios have been linked to numerous disease processes (Flint et al., 2007; Ley et al., 2006) 

likely through changes in body-weight, inflammation, insulin sensitivity, and behavior 

(Allen et al., 2017; Liang et al., 2018). Furthermore, there is evidence suggesting a decline 

in overall bacterial diversity in obese individuals (Yun et al., 2017). While some controversy 

exists whether gut dysbiosis impacts obesity, (Sze and Schloss, 2016; Sze and Schloss, 

2017), animal models provide more direct approaches at studying the phenomenon. Fecal 

transplant from obese mice to germ-free mice leads to the development of obesity (Backhed 

et al., 2007; Turnbaugh et al., 2008). Interestingly, the opposite effect can occur with fecal 

transplants from lean to obese mice (Sun et al., 2018). Collectively, these studies suggest 

that gut dysbiosis may be both a result and potentiator of obesity. Mechanisms underlying 

the role of gut dysbiosis in obesity and obesity-induced cognitive impairment have been 

reviewed elsewhere (Cuevas-Sierra et al., 2019; Noble et al., 2017).

Gut microbiota homeostasis promotes optimal brain development and cognitive functioning 

(Diaz Heijtz et al., 2011) Clinical and preclinical evidence suggests that obesity-induced 

changes in the gut microbiome may play a role in the development of cognitive dysfunction. 

Patients with dementia have a higher F/B ratio compared to non-demented patients (Saji et 

al., 2019), and elderly adults with increased F/B ratios have poorer immediate and delayed 

recall scores (Manderino et al., 2017). This is also the case preclinically. Obese mice 

demonstrating an increase in F/B ratios and a decline in gut microbiota diversity had 

impaired recognition and spatial memory (Zhang et al., 2018). In line with this finding is the 

discovery that administration of antibiotics in DIO mice led to improved insulin signaling in 

the brain and improved anxiety and depression associated with cognitive functioning(Soto et 

al., 2018) Moreover, aged normal weight mice with obese-type gut microbiota displayed 

BBB dysfunction, reduced CBF and deteriorations in cognition (Hoffman et al., 2017). 

Similarly, a recent discovery by Bruce-Keller et al demonstrated that mice with obese-type 

gut microbiota displayed neurocognitive and behavioral disruptions in the absence of obesity 

(Bruce-Keller et al., 2015). Interestingly, rats subjected to a western diet had alterations in 

hippocampal genes important for neuroplasticity; however, these abnormalities were 

reversed with probiotic treatment (Beilharz et al., 2018). Notably, the authors reported that 

probiotic administration led to increases in Streptococcus and Lactobacillus in the gut 

(Beilharz et al., 2018).
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Diet-induced obesity models that exhibit gut microbiome imbalance and cognitive 

impairment also demonstrate reduced tight junction proteins (Zhang et al., 2018). There 

appears to be a role for vascular dysfunction in mediating these effects (Braniste et al., 

2014). Microbiome diversity is inversely correlated with arterial stiffness (Li et al., 2017), 

and obese-type gut microbiota induces BBB dysfunction and reduced CBF (Hoffman et al., 

2017). Interestingly, intestinal microbiota modulates the expression of BBB tight junction 

proteins (Kelly et al., 2015).

One mechanism by which alterations in the microbiome promotes cognitive dysfunction is 

through increasing BBB permeability (Braniste et al., 2014). The BBB is comprised of a 

tightly sealed monolayer of brain endothelial cells connected at a junctional complex by 

tight junction and adherens junction proteins (Hawkins and Davis, 2005). Diet-induced 

obesity models that exhibit alterations within the microbiome and cognitive impairment 

demonstrated reduced tight junction proteins in the BBB (Kelly et al., 2015). One 

mechanism through which microbial gut imbalance may lead to reduced tight junction 

proteins at the BBB is through diminished short chain fatty acids (SCFAs) typically 

produced during dietary fiber fermentation (Pryde et al., 2002). SCFAs modulate tight 

junction formation through enhancing the expression of tight junction proteins within the 

prefrontal cortex and hippocampus of the brain of germ-free adult mice (Braniste et al., 

2014). Macrovascular changes also impact cognitive decline. It is well established that 

declines in central artery elasticity negatively impacts cognitive function (Palta et al., 2019). 

Interestingly, a recent study showed that gut microbial diversity is inversely associated with 

central artery stiffness in women, even after adjusting for insulin resistance and other 

cardiovascular disease risk factors (Menni et al., 2018). Likewise, antibiotic treatment in 

aged mice reversed endothelial dysfunction and arterial stiffening through attenuation of 

inflammation and oxidative stress (Brunt et al., 2019). Taken together, these studies suggest 

that gut dysbiosis may lead to changes in vascular structure or BBB integrity that are 

detrimental for cognitive function. Additional studies are needed in obese preclinical models 

and patients to further confirm these findings.

Therapeutic strategies

Dietary Interventions

Diets are often characterized by the macronutrient, which includes fats, proteins, and 

carbohydrates, that is primarily providing the source of energy for the body. Given the role 

of fatty acids in the development of insulin resistance (Thomas and Pfeiffer, 2012), it is 

generally assumed that reducing the dietary intake of fat will be beneficial for improving 

insulin resistance; however, such diets are often difficult to maintain. The Mediterranean diet 

is not comprised of a fat-restriction, but rather consists of fruits, vegetables, legumes, 

cereals, and olive oil. The Mediterranean diet has beneficial effects on insulin resistance, 

diabetes risk and overall cardiovascular health (Kastorini et al., 2011; Riserus et al., 2009). 

Similarly, the ketogenic diet, a low carbohydrate diet with fat as the primary energy source, 

improves glycemic control and insulin sensitivity (Forsythe et al., 2008).

Several previous studies have highlighted the role of diet on inflammation associated with 

obesity (Bullo et al., 2007; Calder et al., 2011; Galland, 2010; Lee et al., 2013). The 
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Mediterranean diet exerts anti-inflammatory effects by decreasing inflammatory cytokines 

including IL-6 and TNF-α (Calder et al., 2011; Casas et al., 2014; Casas et al., 2016; Hu et 

al., 1997; Mena et al., 2009; Urpi-Sarda et al., 2012). The ketogenic diet is associated with a 

reduction in inflammatory markers including but not limited to TNF-α (Forsythe et al., 

2008; Ruskin et al., 2009). Cross sectional studies have demonstrated a link between 

carbohydrates and inflammatory cytokines (Du et al., 2008; Levitan et al., 2008; Pischon et 

al., 2005; Qi et al., 2006a; Qi et al., 2006b). It is clear that diet has impacts on 

neuroinflammation. However, conflicting reports exist regarding the role of diet 

modification on gliosis.

The composition of the gut microbiota is largely dependent upon diet (Finegold and Rolfe, 

1983; Graf et al., 2015; Hayashi et al., 2002; Mueller et al., 2006). A change from a high-fat, 

low fiber diet to a low-fat high-fiber diet leads to marked changes in the microbiota within 

24 hours (Wu et al., 2011). Western style diets alter the gut microbiota resulting in a 

decrease in bacterial diversity (Wu et al., 2011). Whereas, elevated levels of Bacteriodetes 

are observed in individuals adhering to the Mediterranean diet (Gutierrez-Diaz et al., 2016). 

Likewise, in obese patients with severe metabolic disease, consumption of a Mediterranean 

diet or a low fat diet reversed gut dysbiosis (Haro et al., 2017). Unfortunately, the validity 

and reproducibility of studies focused on the impact of diet on gut microbiota in humans is 

challenging since most investigators rely on self-reporting of dietary habits. Animal models, 

however, have provided some useful information. Diet modification from an ad libitum low 

fat diet to caloric restriction in young rats reduced the F/B ratio (Tanca et al., 2018). A recent 

study in monkeys compared the changes in gut microbiota following a western and 

Mediterranean-type diets (Nagpal et al., 2018). Similar to previous studies, alterations in the 

gut microbiota were observed (Carmody et al., 2015; David et al., 2014; De Filippo et al., 

2010; Hale et al., 2018; Nagpal et al., 2018). Whether improved outcomes due to dietary 

intervention is facilitated through alterations in the microbiome is not well understood.

In the past decade, lifestyle modifications have emerged as an alternative strategy to reduce 

the risk of cognitive impairment (Daviglus et al., 2010). A recent review provides a 

comprehensive report of randomized controlled trials published from 2014–2016 exploring 

the efficacy of various nutritional interventions on preventing the onset of cognitive 

disorders and dementia (Agosti, 2018). The Mediterranean diet is one of the most studied 

dietary interventions to protect against cognitive decline. According to observational studies, 

the Mediterranean diet is associated with a reduced risk of cognitive impairment, mild 

cognitive impairment, and Alzheimer’s disease (Lourida et al., 2013; Psaltopoulou et al., 

2013; Singh et al., 2014; Solfrizzi et al., 2017). A randomized controlled trial demonstrated 

that subjects randomly assigned to the Mediterranean diet supplemented with extra virgin 

olive oil performed better on episodic memory and attention tasks compared with the control 

group. Furthermore, the Mediterranean diet subjects demonstrated a significant improvement 

in frontal and global cognition (Valls-Pedret et al., 2015). Despite the positive effects from 

observational studies, more interventional studies are needed to validate these findings.

In 2011, the American Heart Association established the “Life’s Simple 7,” for achieving 

ideal cardiovascular health. The Life’s Simple 7 definition of an ideal cardiovascular diet 

includes a diet rich in fruits and vegetables, oily fish, fiber, and low in sodium which is 
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similar to the Mediterranean diet (Sacco, 2011). In a large clinical trial known as the 

EVIDENT study, participants who had a high Mediterranean Diet adherence score had 

higher arterial elasticity (Garcia-Hermoso et al., 2018). Likewise, in a randomized controlled 

trial, adherence to the Mediterranean diet for 1.5 years improved endothelial function, as 

measured by flow mediated dilation, in diabetic and pre-diabetic patients compared to a low-

fat diet alone (Torres-Pena et al., 2018). These changes in endothelial function may be due to 

increases in serum NO and declines in endothelin-1 (Storniolo et al., 2017) and reactive 

oxygen species production (Carnevale et al., 2014; Giordano et al., 2012). Subsequent 

reports suggest that the Mediterranean diet reduces endothelial cell damage and improves 

the regenerative capacity of endothelial progenitor and circulating progenitor cells (Cesari et 

al., 2018; Marin et al., 2011). Conversely, carotid atherosclerosis patients on a modified 

Mediterranean diet for 20 weeks did not demonstrate improvements in internal carotid or 

large basal cerebral artery blood flow or cognitive function (Droste et al., 2014). The 

benefits of the diet were likely masked by statin use in two-thirds of the study population as 

statins improve NO bioavailability and increase CBF (Droste et al., 2014). The impacts of 

the ketogenic diet on the vascular function are not as well understood and additional studies 

are needed to understand its impact in cardiovascular health.

Bariatric Surgery

Decades of obesity research indicates that lifestyle interventions including diet and exercise, 

are not effective for helping severely obese individuals. The National Institutes of Health 

(NIH) established guidelines, which specify that obese individuals with a BMI≥35 with 

comorbidities or BMI≥40 without comorbidities are ideal candidates for weight loss surgery, 

known bariatric surgery. Bariatric surgery has emerged as an effective therapy for these 

individuals yielding sustained reductions in weight (Adams et al., 2007; Buchwald et al., 

2004; Gloy et al., 2013; Maggard et al., 2005; Maggard-Gibbons et al., 2013; O’Brien et al., 

2013; Padwal et al., 2011; Picot et al., 2009; Sjostrom, 2013; Sjostrom et al., 2007). Roux-

en-Y gastric bypass (RYGB), laparoscopic adjustable gastric banding (LAGB) and 

biliopancreatic diversion with duodenal switch represents the three most commonly types of 

bariatric surgeries(Buchwald and Oien, 2013). An analysis of various randomized controlled 

trials (Arterburn and Courcoulas, 2014) revealed that bariatric surgical procedures results in 

greater average weight loss of (~57 pounds) compared with non-surgical options (Dixon et 

al., 2008; Ikramuddin et al., 2013; Ikramuddin and Livingston, 2013; Mingrone et al., 2012; 

O’Brien et al., 2006; Schauer et al., 2012).

The impact of bariatric surgery on insulin resistance has been extensively reviewed (Rao et 

al., 2012). A reduction in fasting glucose and insulin levels as well as improvements in 

insulin sensitivity are reported within 3 months following bariatric surgery (Leichman et al., 

2008). Some argue that weight loss is responsible for the improvements in glucose 

metabolism and insulin resistance following bariatric surgery (Adami et al., 2004; 

Castagneto et al., 1994; Pereira et al., 2003; Summers, 2002). Others suggest that the 

reversal of insulin resistance occurs prior to the manifestation of substantial weight loss 

(Leichman et al., 2008; Rubino et al., 2010; Schauer et al., 2003; Sugerman et al., 2003)..
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Given that obesity is characterized as a state of chronic inflammation, the anti -inflammatory 

changes observed with weight loss play a significant role in overall health (Cottam et al., 

2004). TNF-α is the most frequent cytokine assessed following bariatric surgery due to its 

strong associated with insulin resistance (Moller, 2000). Reports on the impact of RYGB 

surgery on TNF-α are contradictory demonstrating either no change (Catalan et al., 2007; 

Sams et al., 2016), an increase (Illan-Gomez et al., 2012), or a decrease (Miller et al., 2011). 

The latter clinical study is consistent with preclinical studies, which reveal a decrease in 

TNF-α levels in adipose tissue at 9 weeks post-surgery in rats (Rideout et al., 2010). In 

contrast to RYGB, the reports of TNF-α following LAGB are relatively consistent with 

multiple groups demonstrating no change in serum levels of TNF-α (Kopp et al., 2003; 

Laimer et al., 2002) and a decrease in subcutaneous adipose tissue (Moschen et al., 2010). 

The reports for IL-6 levels following RYGB surgery are also inconsistent demonstrating 

either an increase (Illan-Gomez et al., 2012), or a decrease (Lindegaard et al., 2015). Similar 

to RYGB, the serum levels of IL-6 also varied across different studies following LAGB with 

either no change (Laimer et al., 2002; Moschen et al., 2010) or a decrease (Samaras et al., 

2013). Taken together, these studies suggest that the surgical procedure, post-surgical time 

point, and tissue evaluated contribute to the inconsistencies in the field regarding the 

potential role of inflammation.

Comprehensive data exploring the impact of bariatric surgery on the microbiome has been 

extensively reviewed (Ulker and Yildiran, 2019). Bariatric surgery increased microbial 

richness. Previous studies observed an increase in microbial diversity and altered microbial 

composition in both man (Furet et al., 2010; Graessler et al., 2013; Kong et al., 2013; Zhang 

et al., 2009) and rodents (Li et al., 2011; Liou et al., 2013). Studies suggest that these 

changes in the microbiota may be independent of weight loss or caloric restriction and are 

maintained up to 9 years post-surgery (Liou et al., 2013; Tremaroli et al., 2015). 

Furthermore, colonization of germ-free mice with fecal material from RYGB mice resulted 

in weight loss and reduced adiposity, suggesting that RYGB-associated microbiota can 

improve host metabolism (Liou et al., 2013; Tremaroli et al., 2015). Overall, these studies 

suggest that bariatric surgery leads to alterations in the microbiota.

Severely obese patients seeking bariatric surgery have poorer baseline cognition compared 

to healthy weight controls (Prickett et al., 2018). The Longitudinal Assessment of Bariatric 

Surgery (LABS) project is a multi-site, prospective longitudinal examination of the safety 

and efficacy of bariatric surgery and the impact on cognitive function. Improvements in 

multiple cognitive domains following surgery persisted for several years. Executive function 

and memory performance remained at this improved level however, attention scores declines 

in participants that regained a substantial amount of weight (Alosco et al., 2014a; Alosco et 

al., 2014b; Gunstad et al., 2011; Miller et al., 2013). Overall, these data suggest that bariatric 

surgery improves obesity-related cognitive impairment.

Severely obese patients experience various structural adaptations in the arteries over time 

that lead to increases in blood pressure and subsequent changes in arterial stiffening. While 

still limited, studies assessing the long-term impact of bariatric surgery on vascular disease 

outcomes are underway. A recent study revealed that morbidly obese patients who 

underwent LAGB experienced weight reduction but did not exhibit improvements in 
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endothelial function and arterial stiffness after 4-years (Galkine et al., 2018). Conversely, a 

study in 16 morbidly obese subjects undergoing bariatric surgery demonstrated that study 

participants had improvements in retinal microvascular health after 4 years but not in large 

arterial stiffness (Streese et al., 2019). Still, others demonstrated that laparoscopic sleeve 

gastrectomy improved insulin mediated microvascular function in morbidly obese patients 

with insulin resistance or diabetes (Ministrini et al., 2018). Nevertheless, improvements in 

endothelial function and arterial stiffness post-bariatric surgery may be due to surgery-

induced reversal of underlying chronic conditions including sleep apnea (de Assuncao 

Machado et al., 2018), high levels of subcutaneous adipose tissue (Backdahl et al., 2018), 

insulin resistance and inflammation (Vazquez et al., 2005) that are common amongst obese 

patients. Accordingly, studies revealed that markers of inflammation and endothelial 

function including ICAM-1, E-selectin, and P-selectin were improved following RYGB 

surgery (Stolberg et al., 2018; Vazquez et al., 2005; Yadav et al., 2017) but, these studies 

failed to assess changes at the blood vessel level. Moreover, studies examining the impacts 

of bariatric surgery on changes at the level of the blood brain barrier are missing. Additional 

studies are needed to fully understanding the role of bariatric surgery in improving vascular 

dysfunction in obesity.

Exercise

Structured exercise training improves cardiometabolic health indices (Campbell et al., 2015; 

Stefanov et al., 2013; Umpierre et al., 2011). Adolescent girls on a prescriptive resistance 

and aerobic exercise training 12 week intervention display 50% lower plasma insulin 

concentrations at the end of the intervention period (Bharath et al., 2018). Likewise, 

combined resistance and aerobic exercise significantly reduces homeostatic model 

assessment of insulin resistance (HOMA-IR) and blood pressure parallel to body fat in obese 

adolescent girls (Son et al., 2017). Obese adults with type 2 diabetes demonstrate improved 

glycemic control with supervised exercise training, but this effect is not sustained with 

unsupervised training (Gajanand et al., 2019). Likewise, running wheel exercise training for 

6 weeks led to significant declines in fasting blood glucose levels in mice and HbA1c in 

HFD rats (Mehta et al., 2018). Voluntary exercise in HFD mice also led to improved insulin 

sensitivity (Fjaere et al., 2019). Collectively, these studies suggest that supervised, 

prescriptive exercise training is an effective intervention for obesity-induced cardiometabolic 

risk factors.

Adipose tissue hypertrophy leads to increased macrophage infiltration and activation 

yielding increases in inflammatory cytokine production including IL-6 and TNF-α 
(Bjorntorp et al., 1971a; Bjorntorp et al., 1971b; Drolet et al., 2008). Interestingly, 

completion of a 3 week high intensity interval training (HIIT) program increased IL-6 in 

obese adults while a 3 week moderate-intensity continuous training (MICT) exercise 

intervention lead to cytokine suppression (Vella et al., 2017a; Vella et al., 2017b). A 

conflicting study in obese elderly adults demonstrated elevated levels of IL-6 following a 

prescriptive MICT program (Pedrinolla et al., 2018). HFD rodents undergoing an 8 week 

endurance training displayed reductions in TNF-α, and IL-6 (Rocha-Rodrigues et al., 2017). 

Combined aerobic and resistance training for 8-weeks in obese subjects leads to reductions 

in TNF-α (Jin et al., 2018). Moreover, a 24 week HIIT yields suppression of TNF-α in 

Buie et al. Page 16

Neurobiol Dis. Author manuscript; available in PMC 2020 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



obese adolescents (Tenorio et al., 2018). TNF-α levels are reduced in HFD mice following 

wheel running and treadmill exercise (Bradley et al., 2008; Kim and Yi, 2015). Overall, 

these studies support a role for exercise in modulating TNF-α in clinical and experimental 

models of obesity.

Exercise reportedly increases the diversity of the gut microbiome (Clarke et al., 2014). 

Interestingly, obese women exposed only to an endurance exercise intervention for 6 weeks 

display inert taxonomic modifications in the gut microbiome (Munukka et al., 2018). BMI 

and exercise frequency purportedly dictate gut microbiota diversity (Bai et al., 2018). For 

example, two independent studies report that HFD mice experience a shift in microbiota 

composition with wheel running exercise (Evans et al., 2014; Schipke et al., 2019). Notably, 

a 6-week HIIT treatment in HFD mice led to increased microbiome diversity and F/B ratio 

in the fecal microbiota and distal gut (Denou et al., 2016). Conversely, a recent report 

demonstrated that low-to-moderate exercise training program was not effective in reversing 

HFD induced changes in the microbiome of mice (Ribeiro et al., 2019). Taken together, 

these studies suggest that exercise may modulate changes in the microbiome; however, 

additional human studies are warranted to clarify the role of exercise in modulating the gut 

microbiome.

The effectiveness of exercise on improving cognitive function in obese patients is 

inconsistent (Espeland et al., 2017a; Espeland et al., 2017b; Smith et al., 2010) but there is 

substantially more evidence supporting a role for the benefits of exercise. For example, a 4-

month high intensity training (HIT) program improves short-term and verbal memory along 

with attention and processing speed in middle-age obese patients (Drigny et al., 2014). 

Results from the Finnish Geriatric Intervention Study to Prevent Cognitive Impairment and 

Disability (FINGER) trial demonstrated that a 2-year diet and structural exercise 

intervention improves processing speed and executive function amongst overweight, elderly 

subjects compared controls (Ngandu et al., 2015). Interestingly, the benefits of exercise 

alone and exercise in combination with diet provided similar improvements in cognition 

amongst frail, obese elderly patients (Napoli et al., 2014). These findings are in line with 

studies in preclinical models. An early preclinical study demonstrated that HFD-induced 

cognitive deficits in hippocampal-dependent memory improved with both voluntary running 

wheel or forced treadmill exercise training in Sprague-Dawley (Noble et al., 2014). 

Moreover, Jeong et al. revealed that treadmill exercise training in HFD rats improves 

memory restoration (Jeong and Kang, 2018). While aerobic interval training in HFD mice 

demonstrated improvements in spatial learning and memory (Shi et al., 2018). Collectively, 

these studies suggest that exercise training has beneficial effects on obesity-associated 

cognitive function in both clinical and preclinical studies.

The majority of studies examining the therapeutic capacity of exercise on arterial de-

stiffening and vascular function in obesity support a role for increased physical activity in 

limiting obesity-induced damage to the vasculature. A recent study examining the 

effectiveness of a low-volume, HIT training program in obese individuals showed that 

skeletal muscle capillarization increased while aortic pulse wave velocity (PWV), a measure 

of aortic stiffness downstream of endothelial dysfunction, decreased in obese individuals 

(Scott et al., 2019). Interestingly, acute maximal exercise increased carotid-femoral fPWV in 
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obese individuals, which may reflect underlying preclinical vascular disease in obesity 

(Bunsawat et al., 2017). Still, others have demonstrated that in populations with metabolic 

syndrome, an 8-week supervised training program lead to significant improvements in 

vascular stiffness and subsequent improvements in metabolic disease and fitness 

(Slivovskaja et al., 2018). Consistent with this finding is the discovery that exercise training 

effectively de-stiffened the central arteries in obese men independent of weight loss and 

dietary modification (Maeda et al., 2015).

In animal models of diet-induced obesity, exercise prevented cerebrovascular damage 

despite increases in weight gain (Graham et al., 2019). Similarly, exercise prevented 

diastolic dysfunction likely due to declines in oxidative stress and improved mitochondrial 

architecture (Bostick et al., 2017). In addition, chronic exercise therapy in obese rats led to 

restoration of insulin-mediated vasodilation as well as improvements and skeletal muscle 

and cerebral microcirculation (Olver et al., 2017). Additional studies are needed to fully 

understand mechanisms responsible for exercise-induced changes at the vascular level in 

obese populations.

Conclusions and perspectives

Obesity is a global pandemic that is still on the rise in developing countries. The 

interconnected relationship between early- to mid-life obesity and cognitive impairment 

makes the public health and economic implications of this issue urgent. Thus, understanding 

mechanistic pathways at the intersection of these diseases is important for guiding the 

development of therapeutic strategies that prevent and/or reverse disease. The framework 

presented in this review is based on our current knowledge of how aberrant endothelial 

function in obesity drives changes in the brain that may culminate into cognitive impairment. 

Presently, factors associated with obesity including hyperinsulinemia/insulin resistance, 

inflammation, and disruption at the microbiota-gut-brain axis appear to orchestrate 

pathophysiologic insults at the level of the endothelium. Endothelial dysfunction is an early 

event in the manifestation of cognitive impairment and dementia. Establishing a clinical tool 

that will detect endothelial dysfunction may be useful for assessing cognitive impairment 

risk. Given that endothelial dysfunction promotes premature arterial stiffening, measuring 

arterial stiffness may be promising. This can be accomplished by measuring carotid-femoral 

pulse wave velocity (cfPWV), which inversely correlates with cognitive function 

(Triantafyllidi et al., 2009). Additional studies are needed to understand the clinical utility of 

cfPWV in predicting cognitive impairment risk associated with obesity.
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Abbreviations

ATM Adipose tissue macrophage

BBB blood brain barrier

BMI body mass index

cfPWV carotid-femoral pulse wave velocity

CNS central nervous system

CSF cerebral spinal fluid

FINGER Finnish Geriatric Intervention Study to Prevent Cognitive Impairment 

and Disability

F/B Firmicutes/Bacteroidetes

HFD high-fat diet

HIIT high intensity interval training

HOMA-IR homeostatic model assessment of insulin resistance

IL interleukin

LAGB laparoscopic adjustable gastric banding

LABS Longitudinal Assessment of Bariatric Surgery

MICT moderate-intensity continuous training

NIH National Institutes of Health

NO nitric oxide

PI3k phosphoinositide 3-kinase

Akt protein kinase b

RYGB Roux-en-Y gastric bypass

TNF tumor necrosis factor

VCID vascular contributions to cognitive impairment and dementia
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Figure 1. Obesity induces cognitive decline.
Schematic illustrating how the consequences of obesity (hyperinsulinemia, adiposity, and 

gut dysbiosis) results in the production of tumor necrosis factor alpha (TNF-α) and 

interleukin-6 (IL-6). This culminates into endothelial dysfunction, which leads to increased 

cytokine influx, increased blood brain barrier (BBB) permeability, and reduced insulin 

transport in the brain. This feed forward cycle of insults ultimately contribute to cognitive 

impairment.

Buie et al. Page 38

Neurobiol Dis. Author manuscript; available in PMC 2020 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Buie et al. Page 39

Ta
b

le
 1

.

Im
pa

ct
s 

of
 o

be
si

ty
 o

n 
co

gn
iti

on
 a

cr
os

s 
th

e 
lif

es
pa

n

A
ut

ho
rs

P
op

ul
at

io
n

A
ge

 r
an

ge
 

(m
ea

n,
 s

d)
N

St
ud

y 
D

es
ig

n
O

be
si

ty
 

In
di

ce
s

A
re

as
 o

f 
co

gn
it

iv
e 

fu
nc

ti
on

in
g 

as
se

ss
ed

 (
m

ea
su

re
s)

F
in

di
ng

s 
(a

bb
re

vi
at

ed
)

R
is

k 
F

ac
to

rs
 

C
on

si
de

re
d 

(a
dj

us
te

d 
fo

r?
)

(D
av

is
 a

nd
 

C
oo

pe
r, 

20
11

)
E

ar
ly

 li
fe

, o
be

se
7-

11
 y

ea
rs

 
(9

.3
±

1.
1)

17
0

C
ro

ss
-s

ec
tio

na
l 

co
ho

rt
 s

tu
dy

B
M

I,
 W

C
, 

X
-r

ay
 

ad
ip

os
ity

ex
ec

ut
iv

e 
fu

nc
tio

n 
(c

og
ni

tiv
e 

as
se

ss
m

en
t 

sy
st

em
)

[−
]:

ex
ec

ut
iv

e 
fu

nc
tio

n 
an

d 
ob

es
ity

no
ne

(J
an

se
n 

et
 a

l.,
 

20
11

)

E
ar

ly
 li

fe
, 

he
al

th
y 

w
ei

gh
t 

an
d 

ov
er

w
ei

gh
t

O
ve

rw
ei

gh
t 

(1
0±

0.
9)

, h
ea

lth
y 

w
ei

gh
t(

9.
9±

0.
7)

32
C

ro
ss

-s
ec

tio
na

l 
st

ud
y

B
M

I

pe
rc

ep
tu

al
 r

ea
so

ni
ng

 (
C

ol
or

ed
 

Pr
og

re
ss

iv
e 

M
at

ri
ce

s 
te

st
);

 p
er

ce
pt

io
n 

an
d 

m
ov

em
en

t (
C

hr
on

om
et

ri
c 

m
en

ta
l 

ro
ta

tio
n 

te
st

)

[−
]:

 p
er

ce
pt

io
n 

an
d 

m
ov

em
en

t, 
pe

rc
ep

tu
al

 
re

as
on

in
g 

an
d 

ob
es

ity
no

ne

(S
ch

w
ar

tz
 e

t 
al

., 
20

13
)

E
ar

ly
 li

fe
, o

be
se

12
-1

8 
ye

ar
s;

 
m

al
es

 (
14

.9
±

1.
8)

; 
fe

m
al

es
 

(1
5.

1±
1.

9)

91
1

C
ro

ss
-s

ec
tio

na
l 

re
tr

os
pe

ct
iv

e 
co

ho
rt

 s
tu

dy

V
is

ce
ra

l 
fa

t (
M

R
I)

, 
to

ta
l b

od
y 

fa
t

pr
oc

es
si

ng
 s

pe
ed

 (
au

to
m

at
ic

 a
nd

 
co

nt
ro

lle
d 

de
te

ct
io

n 
sp

ee
d,

 s
ym

bo
l s

ea
r, 

co
di

ng
);

 in
te

rf
er

en
ce

 (
St

ro
op

 C
ol

or
-

W
or

d 
Te

st
) 

R
uf

f 
2 

&
 7

 S
el

ec
tiv

e 
A

tte
nt

io
n 

Te
st

);
 w

or
ki

ng
 m

em
or

y(
Se

lf
-

O
rd

er
ed

 P
oi

nt
in

g 
Ta

sk
);

 v
is

uo
sp

at
ia

l 
m

em
or

y(
D

ot
 lo

ca
tio

n 
L

ea
rn

in
g)

; v
er

ba
l 

m
em

or
y(

St
or

ie
s 

su
bt

es
ts

 o
f 

th
e 

C
hi

ld
re

n’
s 

M
em

or
y 

Sc
al

e)
; c

og
ni

tiv
e 

fl
ex

ib
ili

ty
 (

Se
m

an
tic

 a
nd

 P
ho

ne
m

ic
 

fl
ue

nc
y)

; a
ll 

do
m

ai
ns

 (
W

IS
C

-I
II

)

[−
]:

 p
ro

ce
ss

in
g 

sp
ee

d,
 

w
or

ki
ng

 m
em

or
y,

 
re

si
st

an
ce

 to
 

in
te

rf
er

en
ce

, c
og

ni
tiv

e 
fl

ex
ib

ili
ty

 a
nd

 v
is

ce
ra

l 
fa

t
[+

]:
 p

ro
ce

ss
in

g 
sp

ee
d,

 
ve

rb
al

 m
em

or
y 

an
d 

to
ta

l b
od

y 
fa

t

no
ne

(V
er

de
jo

-G
ar

ci
a 

et
 a

l.,
 2

01
0)

E
ar

ly
 li

fe
, 

he
al

th
y 

an
d 

ov
er

w
ei

gh
t

13
-1

6 
ye

ar
s;

 
ov

er
w

ei
gh

t/o
be

se
 

(1
4.

3±
 1

.2
);

 
he

al
th

y 
(1

5.
3±

0.
9)

61
C

ro
ss

-s
ec

tio
na

l
B

M
I

an
xi

et
y 

an
d 

im
pu

ls
iv

ity
(I

m
pu

ls
iv

e 
be

ha
vi

or
 s

ca
le

, s
en

si
tiv

ity
 to

 p
un

is
hm

en
t 

an
d 

re
w

ar
d 

qu
es

tio
nn

ai
re

);
 m

en
ta

l 
fl

ex
ib

ili
ty

 (
L

et
te

r-
nu

m
be

r 
se

qu
en

ci
ng

, 
T

M
T

B
);

 r
ea

so
ni

ng
 (

A
na

lo
gi

ca
l 

re
as

on
in

g 
si

m
ila

ri
tie

s)
; p

la
nn

in
g 

(z
oo

 
m

ap
);

 in
te

rf
er

en
ce

(S
tr

oo
p 

te
st

);
 

fl
ex

ib
ili

ty
 (

Fi
ve

 D
ig

it 
Te

st
, T

M
TA

);
 s

el
f-

re
gu

la
tio

n 
(r

ev
is

ed
-s

tr
at

eg
y 

ap
pl

ic
at

io
n 

te
st

 R
-S

A
T

);
 d

ec
is

io
n 

m
ak

in
g 

(I
ow

a 
G

am
bl

in
g 

Te
st

)

[-
]:

In
hi

bi
tio

n,
 

fl
ex

ib
ili

ty
, d

ec
is

io
n 

m
ak

in
g,

 f
le

xi
bi

lit
y 

an
d 

B
M

I
[ø

]:
 w

or
ki

ng
 m

em
or

y,
 

pl
an

ni
ng

, m
em

or
y 

an
d 

B
M

I
no

ne

(L
ok

ke
n 

et
 a

l.,
 

20
09

)
E

ar
ly

 li
fe

, o
be

se
13

-1
9 

ye
ar

s 
(1

5.
9±

 1
.7

)
25

C
ro

ss
-s

ec
tio

na
l 

re
tr

os
pe

ct
iv

e 
co

ho
rt

 s
tu

dy
B

M
I

re
ad

in
g 

ab
ili

ty
(W

de
 R

an
ge

 a
ch

ie
ve

m
en

t 
te

st
);

 in
te

lli
ge

nc
e 

(W
ec

hs
le

r 
A

bb
re

vi
at

e 
Sc

al
e 

of
 I

nt
el

lig
en

ce
);

 g
lo

ba
l c

og
ni

tio
n 

(C
om

pu
te

ri
ze

d 
C

og
ni

tiv
e 

Te
st

 B
at

te
ry

);
 

ve
rb

al
 f

lu
en

cy
 a

nd
 m

em
or

y(
D

ig
its

pa
n,

 
V

er
ba

l I
nt

er
fe

re
nc

e)
; a

tte
nt

io
n 

(C
on

tin
uo

us
 p

er
fo

rm
an

ce
 ta

sk
, 

Sw
itc

hi
ng

 o
f 

A
tte

nt
io

n)
; v

is
uo

sp
at

ia
l 

(M
as

k 
ta

sk
);

 I
m

pu
ls

iv
ity

(G
o-

N
o 

G
o 

te
st

)

[−
]:

 a
tte

nt
io

n,
 

ex
ec

ut
iv

e 
fu

nc
tio

n 
an

d 
ob

es
ity

H
yp

er
te

ns
io

n,
 T

yp
e 

2 
di

ab
et

es
 (

no
)

(F
er

ge
nb

au
m

 e
t 

al
., 

20
09

)

E
ar

ly
- M

id
-l

if
e,

 
he

al
th

y,
 

ov
er

w
ei

gh
t, 

ob
es

e

19
-6

5 
ye

ar
s

20
7

C
ro

ss
-s

ec
tio

na
l

B
M

I,
 W

C
ex

ec
ut

iv
e 

fu
nc

tio
n 

(C
lo

ck
 D

ra
w

in
g 

Te
st

),
 v

is
ua

l a
tte

nt
io

n 
an

d 
ta

sk
 s

w
itc

hi
ng

 
(T

M
TA

/B
)

[−
]:

 c
og

ni
tiv

e 
pe

rf
or

m
an

ce
 a

nd
 

ob
es

ity
/in

cr
ea

se
d 

w
ai

st
 c

ir
cu

m
fe

re
nc

e;

M
et

ab
ol

ic
 s

yn
dr

om
e,

 
dy

sl
ip

id
em

ia
, i

ns
ul

in
 

re
si

st
an

ce
, h

yp
er

te
ns

io
n 

di
ab

et
es

 (
ye

s)

Neurobiol Dis. Author manuscript; available in PMC 2020 December 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Buie et al. Page 40

A
ut

ho
rs

P
op

ul
at

io
n

A
ge

 r
an

ge
 

(m
ea

n,
 s

d)
N

St
ud

y 
D

es
ig

n
O

be
si

ty
 

In
di

ce
s

A
re

as
 o

f 
co

gn
it

iv
e 

fu
nc

ti
on

in
g 

as
se

ss
ed

 (
m

ea
su

re
s)

F
in

di
ng

s 
(a

bb
re

vi
at

ed
)

R
is

k 
F

ac
to

rs
 

C
on

si
de

re
d 

(a
dj

us
te

d 
fo

r?
)

[ø
]:

 c
og

ni
tiv

e 
pe

rf
or

m
an

ce
 a

nd
 

ov
er

w
ei

gh
t o

r 
he

al
th

y 
w

ei
gh

t

(G
un

st
ad

 e
t a

l.,
 

20
10

)
M

id
- l

at
e 

lif
e,

 
ov

er
w

ei
gh

t

19
-9

3 
(5

5±
 1

6.
9)

1,
70

3

C
ro

ss
-s

ec
tio

na
l 

an
d 

lo
ng

itu
di

na
l, 

pr
os

pe
ct

iv
e 

co
ho

rt
 s

tu
dy

B
M

I,
 

W
H

R
, 

w
ei

gh
t

gl
ob

al
 c

og
ni

tio
n 

(M
M

SE
);

w
or

ki
ng

 
m

em
or

y 
(W

A
IS

-R
);

 v
is

ua
l a

tte
nt

io
n/

co
gn

iti
ve

 f
le

xi
bi

lit
y 

(T
M

TA
/B

);
 v

er
ba

l 
le

ar
ni

ng
, f

lu
en

cy
 a

nd
 m

em
or

y(
C

al
if

or
ni

a 
V

er
ba

l L
ea

rn
in

g 
Te

st
, L

et
te

r 
Fl

ue
nc

y,
 

B
os

to
n 

N
am

in
g 

Te
st

,)
; M

em
or

y 
(P

ro
sp

ec
tiv

e 
M

em
or

y 
Te

st
 B

en
to

n 
V

is
ua

l R
et

en
tio

n 
Te

st
, B

le
ss

ed
 

In
fo

rm
at

io
n-

M
em

or
y-

C
on

ce
nt

ra
tio

n 
te

st
);

 v
is

uo
-s

pa
tia

l (
C

ar
d 

R
ot

at
io

ns
)

[−
]:

 g
lo

ba
l c

og
ni

tiv
e 

pe
rf

or
m

an
ce

, 
at

te
nt

io
n,

 m
em

or
y,

 
ve

rb
al

 f
lu

en
cy

, a
nd

 
B

M
I,

 W
C

, o
r 

W
H

C
[+

]:
 v

is
uo

sp
at

ia
l/

T
M

T
B

 a
nd

 B
M

I,
 W

C
, 

or
 W

H
C

Ty
pe

 2
 d

ia
be

te
s/

gl
uc

os
e 

in
to

le
ra

nc
e,

 
hy

pe
rt

en
si

on
 (

ye
s)

(D
ec

ke
rs

 e
t a

l.,
 

20
17

)
E

ar
ly

-l
at

e 
lif

e,
 

ob
es

e
24

-8
1 

ye
ar

s 
(5

8±
 1

5)
1,

82
3

L
on

gi
tu

di
na

l 
co

ho
rt

 s
tu

dy
B

M
I,

 W
C

ve
rb

al
 le

ar
ni

ng
 a

nd
 m

em
or

y 
(V

is
ua

l 
V

er
ba

l L
ea

rn
in

g 
Te

st
);

 e
xe

cu
tiv

e 
fu

nc
tio

n 
(C

on
ce

pt
 S

hi
ft

in
g 

Te
st

);
 

pr
oc

es
si

ng
 s

pe
ed

 (
L

et
te

r 
D

ig
it 

Su
bs

tit
ut

io
n 

Te
st

)

[−
]:

 m
em

or
y,

 
ex

ec
ut

iv
e 

fu
nc

tio
n 

pr
oc

es
si

ng
 s

pe
ed

 a
nd

 
ob

es
ity

H
yp

er
te

ns
io

n,
 ty

pe
 2

 
di

ab
et

es
, c

ar
di

ov
as

cu
la

r 
di

se
as

e,
 d

ep
re

ss
iv

e 
sy

m
pt

om
s 

(n
o)

(N
ils

so
n 

an
d 

N
ils

so
n,

 2
00

9)
E

ar
ly

, M
id

-l
at

e,
 

L
at

e 
lif

e,
 n

or
m

al
 

w
ei

gh
t, 

ov
er

w
ei

gh
t

35
-5

5 
ye

ar
s 

(4
7.

0±
6.

0)
; 6

0-
70

 
ye

ar
s

3,
52

6
C

ro
ss

-s
ec

tio
na

l, 
pr

os
pe

ct
iv

e 
co

ho
rt

 s
tu

dy

B
M

I,
 

W
H

R

w
or

d 
co

m
pr

eh
en

si
on

 ta
sk

, g
lo

ba
l 

co
gn

iti
on

 (
M

M
SE

);
 m

em
or

y(
pr

os
pe

ct
iv

e 
m

em
or

y 
te

st
),

 f
re

e 
re

ca
ll 

te
st

, i
m

m
ed

ia
te

 
fr

ee
 r

ec
al

l t
es

t, 
cu

ed
 te

st
, n

am
e-

st
em

 
co

m
pl

et
io

n 
ta

sk
, n

am
e 

re
co

gn
iti

on
 ta

sk
, 

fl
ue

nc
y 

te
st

[−
]:

 s
em

an
tic

 m
em

or
y 

an
d 

ov
en

/w
ei

gh
t;

[+
]:

 s
pa

tia
l a

bi
lit

y 
an

d 
m

id
dl

e-
ag

ed
 

ov
er

w
ei

gh
t

[ø
]:

 e
pi

so
di

c 
m

em
or

y 
an

d 
ov

er
w

ei
gh

t a
ft

er
 

ad
ju

st
in

g 
fo

r 
C

V
D

 
ri

sk

H
yp

er
te

ns
io

n,
 d

ia
be

te
s,

 
st

ro
ke

 (
no

)

(S
in

gh
-M

an
ou

x 
et

 a
l.,

 2
01

2)

E
ar

ly
 to

 M
id

-
lif

e,
 

m
et

ab
ol

ic
al

ly
 

no
rm

al
, 

ab
no

rm
al

 o
be

se

39
-6

3 
ye

ar
s 

(4
9.

7±
9.

1)
6,

40
1

L
on

gi
tu

di
na

l 
co

ho
rt

, 
pr

os
pe

ct
iv

e 
st

ud
y

B
M

I
re

as
on

in
g 

(A
lic

e 
H

ei
m

 4
-I

);
 m

em
or

y(
20

-
w

or
d 

fr
ee

 r
ec

al
l t

es
t)

; v
er

ba
l f

lu
en

cy
 

(p
ho

ne
m

ic
 a

nd
 s

em
an

tic
)

[−
]:

 c
og

ni
tiv

e 
pe

rf
or

m
an

ce
 o

ve
r 

tim
e 

an
d 

m
et

ab
ol

ic
al

ly
 

ab
no

rm
al

 o
be

si
ty

H
yp

er
te

ns
io

n,
 

ch
ol

es
te

ro
l, 

di
ab

et
es

, 
dy

sl
ip

id
em

ia
, a

nd
 

hy
pe

rg
ly

ce
m

ia
 (

ye
s)

(W
ol

f 
et

 a
l.,

 
20

07
)

E
ar

ly
-L

at
e 

lif
e,

 
ob

es
e

40
-6

9 
ye

ar
s 

(5
2±

7.
9)

1,
81

4

L
on

gi
tu

di
na

l 
co

ho
rt

, 
pr

os
pe

ct
iv

e 
st

ud
y

B
M

I,
 

W
H

R

E
xe

cu
tiv

e 
fu

nc
tio

n 
(n

eu
ro

ps
yc

ho
lo

gi
ca

l 
te

st
 b

at
te

ry
),

 V
is

ua
l a

tte
nt

io
n 

(T
M

T
B

, 
H

V
O

T,
 V

is
ua

l R
ep

ro
du

ct
io

ns
 te

st
 

im
m

ed
ia

te
 a

nd
 d

el
ay

ed
 r

ec
al

l)
ve

rb
al

 a
nd

 
w

or
ki

ng
 m

em
or

y 
(P

ai
re

d 
A

ss
oc

ia
te

s 
te

st
 

im
m

ed
ia

te
 a

nd
 d

el
ay

ed
 r

ec
al

l, 
lo

gi
ca

l 
m

em
or

y 
te

st
 im

m
ed

ia
te

 a
nd

 d
el

ay
ed

 
re

ca
ll)

[−
] 

ex
ec

ut
iv

e 
fu

nc
tio

n,
 v

is
uo

m
ot

or
 

sk
ill

s
H

yp
er

te
ns

io
n 

(y
es

)

(R
oc

he
tte

 e
t a

l.,
 

20
16

)
M

id
-l

at
e 

lif
e,

 
ob

es
e

(4
3±

11
.2

)
17

1
L

on
gi

tu
di

na
l 

pr
os

pe
ct

iv
e 

st
ud

y
B

M
I

gl
ob

al
 c

og
ni

tio
n 

(N
eu

ro
co

gn
iti

ve
 

ba
tte

ry
);

 la
ng

ua
ge

 (
ve

rb
al

 li
st

 
re

co
gn

iti
on

);
 v

er
ba

l m
em

or
y 

(d
ig

 it
 s

pa
n 

fo
rw

ar
d,

 d
ig

it 
sp

an
 b

ac
kw

ar
ds

);
 

A
tte

nt
io

n 
(s

us
ta

in
ed

 a
tte

nt
io

n)
 V

er
ba

l 
Fl

ue
nc

y 
(s

w
itc

hi
ng

 o
f 

at
te

nt
io

n-
di

gi
ts

);
 

in
te

rf
er

en
ce

 (
ve

rb
al

 in
te

rf
er

en
ce

-w
or

d)
; 

[−
]:

 c
og

ni
tiv

e 
pe

rf
or

m
an

ce
 a

nd
 

se
ve

re
 o

be
si

ty

H
yp

er
te

ns
io

n,
 d

ia
be

te
s 

(n
o)

Neurobiol Dis. Author manuscript; available in PMC 2020 December 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Buie et al. Page 41

A
ut

ho
rs

P
op

ul
at

io
n

A
ge

 r
an

ge
 

(m
ea

n,
 s

d)
N

St
ud

y 
D

es
ig

n
O

be
si

ty
 

In
di

ce
s

A
re

as
 o

f 
co

gn
it

iv
e 

fu
nc

ti
on

in
g 

as
se

ss
ed

 (
m

ea
su

re
s)

F
in

di
ng

s 
(a

bb
re

vi
at

ed
)

R
is

k 
F

ac
to

rs
 

C
on

si
de

re
d 

(a
dj

us
te

d 
fo

r?
)

ve
rb

al
 f

lu
en

cy
 (

le
tte

r 
fl

ue
nc

y,
 a

ni
m

al
 

fl
ue

nc
y)

; t
as

k 
sw

itc
hi

ng
 (

sw
itc

hi
ng

 o
f 

at
te

nt
io

n)
; e

xe
cu

tiv
e 

fu
nc

tio
n 

(m
az

e 
er

ro
rs

 a
nd

 m
az

e 
ov

er
ru

n 
er

ro
rs

)

(D
eb

et
te

 e
t a

l.,
 

20
11

)
E

ar
ly

 - 
M

id
-l

if
e,

 
ob

es
e

(5
4±

9)
1,

35
2

L
on

gi
tu

di
na

l 
co

ho
rt

, 
pr

os
pe

ct
iv

e 
st

ud
y

B
M

I,
 W

C
, 

W
H

R

gl
ob

al
 c

og
ni

tiv
e 

fu
nc

tio
n/

ex
ec

ut
iv

e 
fu

nc
tio

n 
(N

eu
ro

ps
yc

ho
lo

gi
ca

l t
es

t 
ba

tte
ry

);
 w

or
ki

ng
 v

is
ua

l 
m

em
or

y(
de

la
ye

d 
re

ca
ll 

co
m

po
ne

nt
 o

f 
th

e 
V

is
ua

l R
ep

ro
du

ct
io

ns
 te

st
, L

og
ic

al
 

M
em

or
y 

su
bt

es
t f

ro
m

 th
e 

W
ec

hs
le

r 
M

em
or

y 
Sc

al
e)

; v
is

ua
l a

tte
nt

io
n/

co
gn

iti
ve

 f
le

xi
bi

lit
y;

 (
V

is
ua

l 
R

ep
ro

du
ct

io
ns

 te
st

, T
M

T
B

 a
nd

 A
)

[−
]:

ex
ec

ut
iv

e 
fu

nc
tio

n 
an

d 
m

id
-l

if
e 

ob
es

ity

H
yp

er
te

ns
io

n,
 d

ia
be

te
s,

 
hy

pe
rc

ho
le

st
er

ol
em

ia
 

(n
o)

(S
ab

ia
 e

t a
l.,

 
20

09
)

M
id

-l
if

e,
 h

ea
lth

y 
un

de
rw

ei
gh

t 
ov

er
w

ei
gh

t, 
ob

es
e

(6
0.

8±
5.

9)
5,

13
1

C
ro

ss
-s

ec
tio

na
l 

an
d 

lo
ng

itu
di

na
l, 

pr
os

pe
ct

iv
e 

co
ho

rt
 s

tu
dy

B
M

I

gl
ob

al
 c

og
ni

tio
n 

(3
0-

ite
m

 M
M

SE
);

 
m

em
or

y 
(2

0-
w

or
d 

fr
ee

 r
ec

al
l t

es
t)

; 
re

as
on

in
g 

(A
lic

e 
H

ei
m

 4
-I

);
 v

er
ba

l 
fl

ue
nc

y 
te

st

[−
]:

 c
og

ni
tiv

e 
pe

rf
or

m
an

ce
 o

ve
r 

tim
e 

an
d 

ov
er

w
ei

gh
t 

or
 o

be
si

ty
[−

]:
M

M
SE

, m
em

or
y,

 
ex

ec
ut

iv
e 

fu
nc

tio
n 

ov
er

 ti
m

e 
an

d 
ob

es
ity

 
or

 u
nd

er
w

ei
gh

t

di
ab

et
es

, h
yp

er
te

ns
io

n,
 

ch
ol

es
te

ro
l, 

co
ro

na
ry

 
he

ar
t d

is
ea

se
, s

tr
ok

e,
 

gl
uc

os
e 

to
le

ra
nc

e 
te

st
(y

es
)

(H
an

 e
t a

l.,
 

20
09

)
M

id
- L

at
e 

lif
e,

 
ob

es
e

63
-8

9 
ye

ar
s

(7
0±

5.
05

)
2,

76
7

L
on

gi
tu

di
na

l, 
cr

os
s-

se
ct

io
na

l, 
pr

os
pe

ct
iv

e

B
M

I,
 W

C
, 

W
H

R
, 

PB
F

G
lo

ba
l c

og
ni

tiv
e 

fu
nc

tio
n 

(N
A

: 
C

E
R

A
D

-K
)

[−
] 

gl
ob

al
 c

og
ni

tiv
e 

fu
nc

tio
n

H
yp

er
te

ns
io

n,
 d

ia
be

te
s,

 
hi

gh
 c

ho
le

st
er

ol
 (

ye
s)

(B
en

ito
-L

eo
n 

et
 

al
., 

20
13

)
M

id
 - 

L
at

e 
lif

e,
 

ob
es

e
(7

4.
9±

5.
5)

1,
94

9

C
ro

ss
 s

ec
tio

na
l 

co
ho

rt
, 

pr
os

pe
ct

iv
e 

st
ud

y

B
M

I

gl
ob

al
 c

og
ni

tio
n 

(3
7-

ite
m

 v
er

si
on

 o
f 

M
M

SE
),

 a
tte

nt
io

n 
(e

as
ie

r 
fo

rm
 o

f 
T

M
TA

),
 v

er
ba

l l
ea

rn
in

g 
an

d 
m

em
or

y(
N

am
in

g 
Te

st
);

 im
m

ed
ia

te
 

m
em

or
y(

im
m

ed
ia

te
 f

re
e 

re
ca

ll)
; v

er
ba

l 
an

d 
w

or
ki

ng
 m

em
or

y(
de

la
ye

d 
re

ca
ll,

 
st

or
y 

re
ca

ll,
 im

m
ed

ia
te

 lo
gi

ca
l m

em
or

y,
 

de
la

ye
d 

lo
gi

ca
l m

em
or

y)
; v

er
ba

l f
lu

en
cy

 
(W

or
d 

A
cc

en
tu

at
io

n 
Te

st
, V

er
ba

l 
fl

ue
nc

y)

[−
]:

 g
lo

ba
l c

og
ni

tio
n,

 
at

te
nt

io
n,

 v
er

ba
l 

fl
ue

nc
y,

 m
em

or
y 

an
d 

ov
er

w
ei

gh
t/o

be
si

ty

di
ab

et
es

, h
yp

er
te

ns
io

n,
 

hi
gh

 c
ho

le
st

er
ol

, 
de

m
en

tia
 (

ye
s)

St
ud

ie
s 

in
 ta

bl
e 

co
m

e 
fr

om
 p

re
vi

ou
s 

re
vi

ew
s 

Sm
ith

 e
t a

l.,
 2

01
1;

 B
en

ito
-L

eo
n 

et
 a

l 2
01

3;
 B

is
ch

of
 e

t a
l.,

 2
01

5;
 W

an
g 

et
 a

l.,
 2

01
6;

 D
ye

 e
t a

l.,
 2

01
7.

 A
H

4-
I,

 A
lic

e 
H

ei
m

 4
-I

; I
M

C
, B

le
ss

ed
 I

nf
or

m
at

io
n-

M
em

or
y-

C
on

ce
nt

ra
tio

n 
te

st
; M

M
SE

, M
in

i-
M

en
ta

l S
ta

te
 E

xa
m

; n
eu

ro
ps

yc
ho

lo
gi

ca
l a

ss
es

sm
en

t C
E

R
A

D
-K

, C
on

so
rt

iu
m

 to
 E

st
ab

lis
h 

a 
R

eg
is

tr
y 

fo
r 

A
lz

he
im

er
’s

 D
is

ea
se

, K
or

ea
n;

 R
-S

A
T,

 r
ev

is
ed

-s
tr

at
eg

y 
ap

pl
ic

at
io

n 
te

st
; T

M
T,

 T
ra

il 
m

ak
in

g 
te

st
; W

A
IS

-R
, W

ec
hs

le
r 

A
du

lt 
In

te
lli

ge
nc

e 
Sc

al
e 

R
ev

is
ed

; W
IS

C
, W

ec
hs

le
r 

In
te

lli
ge

nc
e 

Sc
al

e 
fo

r 
C

hi
ld

re
n;

 H
V

O
T,

 H
oo

pe
r 

V
is

ua
l O

rg
an

iz
at

io
n 

Te
st

 B
M

I,
 b

od
y 

m
as

s 
in

de
x;

 W
C

, w
ai

st
 c

ir
cu

m
fe

re
nc

e;
 W

H
R

, w
ai

st
-t

o-
hi

p 
ra

tio
; Ø

 in
di

ca
te

s 
nu

ll 
fi

nd
in

gs
. (

−
) 

in
di

ca
te

s 
in

ve
rs

e 
co

rr
el

at
io

n 
be

tw
ee

n 
w

ei
gh

t a
nd

 s
pe

af
ic

 a
re

a 
of

 c
og

ni
tiv

e 
fu

nc
tio

ni
ng

. (
+

) 
in

di
ca

te
s 

po
si

tiv
e 

co
rr

el
at

io
n 

be
tw

ee
n 

w
ei

gh
t a

nd
 a

re
a 

of
 c

og
ni

tiv
e 

fu
nc

tio
ni

ng
.

Neurobiol Dis. Author manuscript; available in PMC 2020 December 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Buie et al. Page 42

Ta
b

le
 2

.

A
ni

m
al

 m
od

el
s 

of
 o

be
si

ty
-i

nd
uc

ed
 c

og
ni

tiv
e 

im
pa

ir
m

en
t.

A
ut

ho
r

A
ni

m
al

 
B

ac
kg

ro
un

d
A

ge
 O

f 
H

ig
h-

F
at

 F
ee

di
ng

 S
pe

ci
fi

c 
H

F
D

B
eh

av
io

ra
l T

as
k 

A
nd

 
P

he
no

ty
pe

R
is

k 
F

ac
to

rs
 

C
on

si
de

re
d

F
in

di
ng

s 
(A

bb
re

vi
at

ed
)

(M
A

R
T

IN
S 

E
T

 A
L

., 
20

17
)

C
57

B
L

6×
12

9S
V

Fr
om

 2
–1

4 
m

on
th

s 
of

 a
ge

C
D

 -
 5

8G
7,

 T
es

t D
ie

ts
H

FD
-5

8G
9,

 T
es

t D
ie

ts
;

60
%

 c
al

or
ie

s 
fr

om
 la

rd

N
ov

el
 S

m
el

l r
ec

og
ni

tio
n 

te
st

Y
-M

az
e 

sp
on

ta
ne

ou
s 

al
te

rn
at

io
n

Si
gn

if
ic

an
t i

m
pa

ir
m

en
t a

t 1
4 

m
on

th
s 

in
 Y

-m
az

e 
pe

rf
or

m
an

ce
 in

 
H

FD
 g

ro
up

In
su

lin
 c

on
ce

nt
ra

tio
ns

Fe
w

er
 h

ip
po

ca
m

pa
l s

yn
ap

se
s 

at
 8

 m
on

th
s 

in
 H

FD
 g

ro
up

(G
L

A
D

D
IN

G
 E

T
 A

L
., 

20
18

)
C

57
B

L
/6

J
Fr

om
 4

-1
6 

m
on

th
s 

of
 a

ge
C

D
 -

 S
pe

ci
al

ty
 F

ee
ds

;
7%

 f
at

 w
/w

H
FD

 -
 S

pe
ci

al
ty

 F
ee

ds
;

21
 %

 f
at

 w
/w

 f
ro

m
 s

af
fl

ow
er

 o
il 

an
d 

cl
ar

if
ie

d 
bu

tte
r/

gh
ee

M
or

ri
s 

W
at

er
 M

az
e

Y
-M

az
e

L
es

s 
tim

e 
in

 th
e 

ta
rg

et
 q

ua
dr

an
t 

in
 M

W
M

 a
nd

 f
ew

er
 n

ov
el

 a
rm

 
en

tr
ie

s 
in

 Y
-m

az
e 

in
 H

FD
 g

ro
up

In
su

lin
 s

en
si

tiv
ity

, 
G

lu
co

se
 to

le
ra

nc
e,

 
L

ep
tin

, h
ip

po
ca

m
pa

l 
in

fl
am

m
at

io
n

In
tr

ah
ip

po
ca

m
pa

l i
ns

ul
in

 
in

fu
si

on
 a

lle
vi

at
ed

 b
eh

av
io

ra
l 

de
fi

ci
ts

 in
 H

FD
 g

ro
up

(V
IN

U
E

SA
 E

T
 A

L
., 

20
18

)
C

57
B

L
/6

J
Fr

om
 3

-9
 w

ee
ks

 o
f 

ag
e

C
D

 -
 G

ep
sa

 F
ee

ds
;

2.
5 

kc
al

/g
 e

ne
rg

y/
pe

lle
t, 

3.
6%

 f
at

H
FD

 -
 G

ep
sa

 F
ee

ds
;

3.
9 

kc
al

/g
 e

ne
rg

y 
/ p

el
le

t, 
21

.6
%

 f
at

: 
m

on
ou

ns
at

ur
at

ed
 f

at
ty

 a
ci

ds
 (

44
.7

%
),

 
sa

tu
ra

te
d 

fa
tty

 a
ci

ds
 (

29
.8

%
) 

an
d 

po
ly

un
sa

tu
ra

te
d 

fa
tty

 a
ci

ds
 (

20
.9

%
)

E
le

va
te

d 
Pl

us
 M

az
e,

 N
ov

el
 

O
bj

ec
t L

oc
at

io
n 

R
ec

og
ni

tio
n 

te
st

Im
pa

ir
ed

 n
ov

el
 o

bj
ec

t l
oc

at
io

n 
re

co
gn

iti
on

, n
o 

si
gn

if
ic

an
t 

di
ff

er
en

ce
 in

 E
PM

 p
er

fo
rm

an
ce

 
in

 H
FD

 g
ro

up

Pa
nc

re
at

ic
 in

su
lin

, 
in

fl
am

m
at

io
n,

 D
G

 
ne

ur
og

en
ic

 c
ap

ac
ity

In
fl

am
m

at
io

n 
ch

an
ge

s 
in

 th
e 

hi
pp

oc
am

pu
s,

 d
ec

re
as

ed
 D

G
 

ca
pa

ci
ty

, d
en

dr
iti

c 
sp

in
e 

m
or

ph
ol

og
y 

al
te

ra
tio

ns
 in

 
H

FD
 g

ro
up

(S
O

N
A

 E
T

 A
L

., 
20

18
)

C
57

B
L

/6
J

Fr
om

 4
-2

0 
w

ee
ks

 o
f 

ag
e

C
D

 –
 D

12
45

0 
R

es
ea

rc
h 

D
ie

ts
;

10
 k

ca
l %

 f
at

H
FD

 –
 D

12
49

2 
R

es
ea

rc
h 

D
ie

ts
;

60
 k

ca
l %

 f
at

 f
ro

m
 la

rd

Tw
o-

w
ay

 a
ct

iv
e 

av
oi

da
nc

e,
 Y

-
m

az
e 

te
st

, p
as

si
ve

 a
vo

id
an

ce
, 

O
bj

ec
t R

ec
og

ni
tio

n
Im

pa
ir

ed
 p

er
fo

rm
an

ce
 in

 n
ov

el
 

re
co

gn
iti

on
, Y

-m
az

e,
 a

nd
 

av
oi

da
nc

e 
te

st
s 

in
 H

FD
 g

ro
up

G
lu

co
se

 to
le

ra
nc

e
D

ec
re

as
e 

in
 e

xp
re

ss
io

n 
of

 
bo

th
 B

D
N

F 
an

d 
G

R
P4

0 
in

 
H

FD
 g

ro
up

(L
A

B
O

U
E

SS
E

 E
T

 A
L

., 
20

18
)

C
57

B
L

/6
N

Fr
om

 4
-1

2 
w

ee
ks

 o
f 

ag
e

C
D

-S
SN

IF
F 

D
ie

ts
;

10
 k

ca
l %

 f
at

H
FD

 -
 S

SN
IF

F 
D

ie
ts

;
60

 k
ca

l %
 f

at
 f

ro
m

 la
rd

Y
-m

az
e

Im
pa

ir
ed

 Y
-m

az
e 

fu
nc

tio
n 

in
 

H
FD

 g
ro

up

N
on

e
R

ed
uc

ed
 m

iR
N

A
 a

ss
oc

ia
te

d 
w

ith
 a

xo
n 

gu
id

an
ce

 a
nd

 
co

gn
iti

on
, d

ow
n 

re
gu

la
tio

n 
of

 
ax

on
 g

ui
da

nc
e 

ge
ne

s 
in

 H
FD

 
gr

ou
p

(S
PI

N
E

L
L

I 
E

T
 A

L
., 

20
17

)
C

57
B

L
/6

Fr
om

 4
-1

0 
w

ee
ks

 o
f 

ag
e

C
D

 –
 M

uc
ed

ol
a,

 I
ta

ly
; u

nr
ep

or
te

d
H

FD
 -

 M
uc

ed
ol

a,
 I

ta
ly

; u
nr

ep
or

te
d

M
W

M
Im

pa
ir

ed
 M

W
M

 p
er

fo
rm

an
ce

 in
 

H
FD

 g
ro

up

H
ip

po
ca

m
pa

l i
ns

ul
in

 
re

si
st

an
ce

Im
pa

ir
ed

 s
yn

ap
tic

 p
la

st
ic

ity
 

an
d 

in
su

lin
 r

es
is

ta
nc

e 
in

 H
FD

 
gr

ou
p

(K
A

SP
E

R
 E

T
 A

L
., 

20
18

)
C

57
B

1/
6J

Fr
om

 1
2-

22
 w

ee
ks

 o
f 

ag
e

C
D

 -
 T

ek
la

d 
79

12
;

17
 k

ca
l %

 f
at

H
FD

 -
 D

12
49

2 
R

es
ea

rc
h 

D
ie

ts
;

60
 k

ca
l %

 f
at

 f
ro

m
 la

rd

M
W

M
Im

pa
ir

ed
 M

W
M

 p
er

fo
rm

an
ce

 in
 

H
FD

 g
ro

up

Pe
ri

ph
er

al
 in

su
lin

 
re

si
st

an
ce

N
on

e

(A
L

M
E

ID
A

-S
U

H
E

T
T

 E
T

 
A

L
., 

20
17

)
C

57
B

L
/6

J
Fr

om
 5

 to
 2

1 
w

ee
ks

 o
f 

ag
e

C
D

 –
 H

ar
la

n 
Te

kl
ad

 G
lo

ba
l d

ie
t 2

01
8

H
FD

-T
D

.0
64

14
, H

ar
la

n 
L

ab
or

at
or

ie
s;

 6
0 

kc
al

 
%

 f
at

 f
ro

m
 la

rd

O
pe

n 
fi

el
d,

 e
le

va
te

d 
ze

ro
 m

az
e,

 
Y

-m
az

e,
 f

or
ce

d 
sw

im
 te

st
In

cr
ea

se
d 

an
xi

et
y 

be
ha

vi
or

 in
 

op
en

 f
ie

ld
 a

nd
 e

le
va

te
d 

ze
ro

 
m

az
e,

 im
pa

ir
ed

 c
og

ni
tiv

e 

G
lu

co
se

 to
le

ra
nc

e,
 

IL
-1

B
 in

 h
ip

po
ca

m
pu

s,
 

am
yg

da
la

, f
ro

nt
al

 
co

rt
ex

, a
nd

 
hy

po
th

al
am

us

In
cr

ea
se

d 
IL

-1
B

 in
 

hi
pp

oc
am

pu
s 

an
d 

am
yg

da
la

 
in

 H
FD

 g
ro

up

Neurobiol Dis. Author manuscript; available in PMC 2020 December 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Buie et al. Page 43

A
ut

ho
r

A
ni

m
al

 
B

ac
kg

ro
un

d
A

ge
 O

f 
H

ig
h-

F
at

 F
ee

di
ng

 S
pe

ci
fi

c 
H

F
D

B
eh

av
io

ra
l T

as
k 

A
nd

 
P

he
no

ty
pe

R
is

k 
F

ac
to

rs
 

C
on

si
de

re
d

F
in

di
ng

s 
(A

bb
re

vi
at

ed
)

pe
rf

or
m

an
ce

 in
 y

-m
az

e,
 in

cr
ea

se
d 

de
pr

es
si

ve
 b

eh
av

io
r 

in
 f

or
ce

d 
sw

im
 in

 H
FD

 g
ro

up

(K
A

D
IS

H
 E

T
 A

L
., 

20
16

)
C

57
B

I/
6

Fr
om

 2
-8

 m
on

th
s 

of
 a

ge
C

D
 –

 N
IH

.3
1 

di
et

, H
ar

la
n 

Te
kl

an
H

FD
 -

 T
D

.1
20

08
4,

 H
ar

la
n 

Te
kl

an
;

41
 k

ca
l %

 f
at

, s
ou

rc
e 

un
lis

te
d,

H
ig

h-
pr

ot
ei

n 
di

et
-T

D
.1

20
08

3
H

ig
h-

ca
rb

oh
yd

ra
te

 d
ie

t-
 T

D
.1

20
08

2

O
pe

n 
fi

el
d,

 z
er

o 
m

az
e,

 s
oc

ia
l 

re
co

gn
iti

on
, w

at
er

 m
az

e*
 n

ot
 

M
W

M
Im

pa
ir

ed
 s

oc
ia

l r
ec

og
ni

tio
n 

an
d 

w
at

er
 m

az
e 

pe
rf

or
m

an
ce

 in
 H

FD
 

gr
ou

p

B
od

y 
co

m
po

si
tio

n,
 

hi
pp

oc
am

pa
l 

in
fl

am
m

at
io

n

In
cr

ea
se

d 
bo

dy
 f

at
 p

er
ce

nt
ag

e 
an

d 
to

ta
l w

ei
gh

t i
n 

H
FD

 
gr

ou
p.

 N
o 

ch
an

ge
 in

 
hi

pp
oc

am
pa

l i
nf

la
m

m
at

io
n

(S
IM

S-
R

O
B

IN
SO

N
 E

T
 A

L
., 

20
16

)
C

57
B

L
/6

J
Fr

om
 4

-1
2 

w
ee

ks
 o

f 
ag

e 
fo

r 
di

et
ar

y 
re

ve
rs

al
 

an
d 

4-
20

 w
ee

ks
 o

f 
ag

e 
fo

r 
H

FD
 g

ro
up

C
D

 –
 D

12
45

0B
, R

es
ea

rc
h 

D
ie

ts
;

10
 k

ca
l %

 f
ro

m
 f

at
H

FD
 –

 D
05

09
07

01
, R

es
ea

rc
h 

D
ie

ts
; 5

4%
 

kc
al

 %
 f

at
 f

ro
m

 la
rd

N
O

R
, M

W
M

Im
pa

ir
ed

 N
O

R
 a

nd
 M

W
M

 a
ft

er
 

16
 w

ee
ks

 H
FD

 g
ro

up
, r

ec
ov

er
ed

 
in

 th
e 

di
et

ar
y 

re
ve

rs
al

 g
ro

up

G
lu

co
se

 T
ol

er
an

ce
, 

hi
pp

oc
am

pa
l i

ns
ul

in
 

si
gn

al
in

g

Im
pa

ir
ed

 h
ip

po
ca

m
pa

l i
ns

ul
in

 
si

gn
al

in
g 

in
 H

FD
 g

ro
up

, 
re

co
ve

re
d 

in
 th

e 
di

et
ar

y 
re

ve
rs

al
 g

ro
up

(M
C

L
E

A
N

 E
T

 A
L

., 
20

18
)

C
57

B
I/

6J
Fr

om
 1

2-
14

 w
ee

ks
 o

f 
ag

e
C

D
 -

 D
12

45
0B

, R
es

ea
rc

h 
D

ie
ts

;
10

 k
ca

l %
 f

ro
m

 f
at

H
FD

 –
 D

12
49

2 
R

es
ea

rc
h 

D
ie

ts
;

60
 k

ca
l %

 f
at

 f
ro

m
 la

rd

N
O

R
, o

bj
ec

t c
on

te
xt

 ta
sk

Im
pa

ir
ed

 N
O

R
 a

nd
 o

bj
ec

t c
on

te
xt

 
ta

sk

G
lu

co
se

 T
ol

er
an

ce
Im

pa
ir

ed
 g

lu
co

se
 to

le
ra

nc
e 

in
 

H
FD

 m
ic

e,
 r

ev
er

se
d 

in
 d

ie
ta

ry
 

re
ve

rs
al

 g
ro

up

(S
O

O
N

T
O

R
N

N
IY

O
M

K
IJ

 E
T

 
A

L
., 

20
16

)
C

57
B

L
/6

Fr
om

 5
-1

0 
an

d 
15

-2
0 

m
on

th
s 

of
 a

ge
C

D
 -

 8
60

4 
Te

kl
ad

; H
ar

la
n 

L
ab

or
at

or
ie

s
H

FD
 –

 D
12

49
2 

R
es

ea
rc

h 
D

ie
ts

;
60

 k
ca

l %
 f

at
 f

ro
m

 la
rd

N
ov

el
 p

la
ce

 r
ec

og
ni

tio
n 

ta
sk

L
iv

er
 a

nd
 h

ip
po

ca
m

pa
l 

gl
ut

am
in

e 
sy

nt
ha

se
 

im
m

un
or

ea
ct

iv
ity

H
ig

he
r 

gl
ut

am
in

e 
sy

nt
ha

se
 

ac
tiv

ity
 in

 li
ve

r 
of

 H
FD

 m
ic

e,
 

hi
gh

er
 g

lu
ta

m
in

e 
sy

nt
ha

se
 

ac
tiv

ity
 in

 th
e 

hi
pp

oc
am

pu
s 

of
 a

ge
d 

H
FD

 m
ic

e.

(U
N

D
E

R
W

O
O

D
 A

N
D

 
T

H
O

M
PS

O
N

, 2
01

6)
L

on
g 

E
va

ns
Fr

om
 3

-1
8 

w
ee

ks
 o

f 
ag

e
C

D
 –

 O
pe

n 
So

ur
ce

 D
ie

ts
; 1

4 
kc

al
 %

 f
at

H
FD

 –
O

pe
n 

So
ur

ce
 D

ie
ts

; 5
8 

kc
al

 %
 f

at
, 

au
gm

en
te

d 
w

ith
 c

oc
on

ut
 o

il 
an

d 
ca

se
in

 
pr

ot
ei

n

Sp
at

ia
l O

bj
ec

t R
ec

og
ni

tio
n

Im
pa

ir
ed

 s
pa

tia
l m

em
or

y 
in

 b
ot

h 
se

xe
s 

in
 H

FD
 g

ro
up

s

B
lo

od
 g

lu
co

se
, 

G
lu

co
se

-t
ol

er
an

ce
 

te
st

in
g,

 in
su

lin
 

to
le

ra
nc

e 
te

st
in

g,
pl

as
m

a 
co

rt
ic

os
te

ro
ne

, 
le

pt
in

, a
nd

 e
st

ra
di

ol

M
al

es
 b

ec
am

e 
ob

es
e 

(n
ot

 
fe

m
al

es
)o

n 
H

FD
. H

FD
 

au
gm

en
te

d 
co

rt
ic

os
te

ro
ne

. 
H

FD
 in

du
ce

d 
ch

an
ge

s 
to

 
in

su
lin

 a
nd

 g
lu

co
se

 to
le

ra
nc

e 
in

 m
al

es
.

(W
A

N
G

 E
T

 A
L

., 
20

16
)

Sp
ra

gu
e-

D
aw

le
y

Fr
om

 4
-2

0 
w

ee
ks

 o
f 

ag
e

C
D

 –
 8

06
2,

 C
he

ng
du

 D
os

sy
 B

io
lo

gi
ca

l 
Te

ch
no

lo
gy

 C
o.

 L
td

.
H

FD
 –

C
he

ng
du

 D
os

sy
 B

io
lo

gi
ca

l 
Te

ch
no

lo
gy

 C
o.

 L
td

.; 
40

 k
ca

l %
 f

at
 (

un
lis

te
d 

so
ur

ce
)

M
W

M
, O

bj
ec

t r
ec

og
ni

tio
n 

ta
sk

, 
op

en
 f

ie
ld

Im
pa

ir
ed

 o
bj

ec
t r

ec
og

ni
tio

n,
 

im
pa

ir
ed

 r
ef

er
en

ce
 a

nd
 w

or
ki

ng
 

m
em

or
y(

M
W

M
) 

in
 th

e 
H

FD
 

gr
ou

p

L
ip

id
 le

ve
ls

 (
T

C
, L

D
L

, 
T

G
, H

D
L

)
T

C
, L

D
L

, T
G

 w
er

e 
si

gn
if

ic
an

tly
 in

cr
ea

se
d 

in
 th

e 
H

FD
 g

ro
up

(F
U

 E
T

 A
L

., 
20

17
)

Sp
ra

gu
e 

D
aw

le
y

Fr
om

 2
-1

0 
m

on
th

s 
of

 a
ge

C
D

 -
 p

ro
te

in
 2

8 
kc

al
 %

, c
ar

bo
hy

dr
at

e 
60

 k
ca

l 
%

, a
nd

 f
at

 1
2 

kc
al

 %
)

H
FD

 –
 D

12
49

2 
R

es
ea

rc
h 

D
ie

ts
;

60
 k

ca
l %

 f
at

 f
ro

m
 la

rd

Sp
on

ta
ne

ou
s 

al
te

rn
at

io
n 

be
ha

vi
or

, 
N

ov
el

 O
bj

ec
t R

ec
og

ni
tio

n
In

cr
ea

se
d 

sp
on

ta
ne

ou
s 

al
te

rn
at

io
n,

 im
pa

ir
ed

 N
O

R
 f

or
 th

e 
H

FD
 g

ro
up

.

G
lu

co
se

 T
ol

er
an

ce
, 

eu
gl

yc
em

ic
-

hy
pe

ri
ns

ul
in

em
ic

 
cl

am
pi

ng
, H

ea
rt

 r
at

e,
 

bl
oo

d 
pr

es
su

re
, 

hi
pp

oc
am

pa
l 

m
ic

ro
va

sc
ul

ar
 

pe
rf

us
io

n

Im
pa

ir
ed

 m
ic

ro
va

sc
ul

ar
 

pe
rf

us
io

n 
in

 h
ip

po
ca

m
pu

s,
 

im
pa

ir
ed

 in
su

lin
 s

ig
na

lin
g 

in
 

H
FD

 g
ro

up

Neurobiol Dis. Author manuscript; available in PMC 2020 December 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Buie et al. Page 44
A

B
R

E
V

IA
T

IO
N

S:
 B

R
A

IN
 D

E
R

IV
E

D
 N

E
U

R
O

T
R

O
PH

IC
 F

A
C

T
O

R
 (

B
D

N
F)

; C
O

N
T

R
O

L
 D

IE
T

 (
C

D
);

 F
R

E
E

 F
A

T
T

Y
 A

C
ID

 R
E

C
E

PT
O

R
 1

 (
G

PR
40

);
 H

IG
H

 D
E

N
SI

T
Y

 L
IP

O
PR

O
T

E
IN

 (
H

D
L

);
 H

IG
H

-F
A

T
 

D
IE

T
 (

H
FD

);
 I

N
T

E
R

L
E

U
K

IN
 (

IL
);

 L
O

W
 D

E
N

SI
T

Y
 L

IP
O

PR
O

T
E

IN
 (

L
D

L
) 

M
O

R
IS

 W
A

T
E

R
 M

A
Z

E
 (

M
W

M
);

 N
O

V
E

L
 O

B
JE

C
T

 R
E

C
O

G
N

IT
IO

N
 (

N
O

R
);

 T
O

TA
L

 C
H

O
L

E
ST

E
R

O
L

 (
T

C
);

 
T

R
IG

LY
C

E
R

ID
E

S 
(T

G
)

Neurobiol Dis. Author manuscript; available in PMC 2020 December 01.


	Abstract
	Introduction
	The link between obesity and cognitive impairment
	Clinical Studies
	Preclinical Studies

	Molecular mechanisms contributing to obesity-induced cognitive impairment
	Systemic Inflammation
	Interleukin-6 (IL-6)
	TNF-α

	Hyperinsulinemia
	Gut Microbiome

	Therapeutic strategies
	Dietary Interventions
	Bariatric Surgery
	Exercise

	Conclusions and perspectives
	References
	Figure 1.
	Table 1.
	Table 2.

