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Introduction

Patients with type 1 diabetes (T1D) have to face the problem 
of the optimal management of diabetes every day. In particu-
lar, hypoglycemia avoidance is one of the main barriers to 
the glucose control, so in the last years several alarm systems 
were designed to detect hypoglycemia risks and, eventually, 
prevent them.1-5

The so-called artificial pancreas (AP)6-8 accelerated the 
development of these alarm systems since the long trials in 
free-living conditions9-13 needed for AP testing, and requires 
safety or alarm systems to prevent hypoglycemia events or at 
least to detect them in advance.

The alarm systems can be divided in two categories on the 
basis of the method used for the alarm generation: low-
threshold detection and prediction. The first notifies the 
crossing of a critical blood glucose (BG) level,14 while the 

second tries to foresee the hypoglycemia risk to allow the 
user to act in advance in order to avoid this event.15-18 The 
latter typically requires the use of patient models to perform 
glucose trend predictions.

Different glucose-insulin models can be used in the alarm 
systems: for example, minimal, maximal, or black-box linear 
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Abstract
Background: The objective of this research is to show the effectiveness of individualized hypoglycemia predictive alerts 
(IHPAs) based on patient-tailored glucose-insulin models (PTMs) for different subjects. Interpatient variability calls for PTMs 
that have been identified from data collected in free-living conditions during a one-month trial.

Methods: A new impulse-response (IR) identification technique has been applied to free-living data in order to identify 
PTMs that are able to predict the future glucose trends and prevent hypoglycemia events. Impulse response has been applied 
to seven patients with type 1 diabetes (T1D) of the University of Amsterdam Medical Centre. Individualized hypoglycemia 
predictive alert has been designed for each patient thanks to the good prediction capabilities of PTMs.

Results: The PTMs performance is evaluated in terms of index of fitting (FIT), coefficient of determination, and Pearson’s 
correlation coefficient with a population FIT of 63.74%. The IHPAs are evaluated on seven patients with T1D with the aim 
of predicting in advance (between 45 and 10 minutes) the unavoidable hypoglycemia events; these systems show better 
performance in terms of sensitivity, precision, and accuracy with respect to previously published results.

Conclusion: The proposed work shows the successful results obtained applying the IR to an entire set of patients, participants 
of a one-month trial. Individualized hypoglycemia predictive alerts are evaluated in terms of hypoglycemia prevention: the 
use of a PTM allows to detect 84.67% of the hypoglycemia events occurred during a one-month trial on average with less 
than 0.4% of false alarms. The promising prediction capabilities of PTMs can be a key ingredient for new generations of 
individualized model predictive control for artificial pancreas.
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models. The first class is accepted both as clinical tool and as 
an approach to understand the composite effects of insulin on 
glucose tolerance19,20; the second is able to better represent 
the significant interpatient variability that characterizes T1D 
population, eg, the one included in the UVA/Padova simula-
tor21,22 equipped with 100 vectors of model parameters, 
called “virtual patients.” The third class includes models 
typically identified from real-life data.

Recently, new identification techniques have been investi-
gated23-33; for a comprehensive literature review, we refer the 
reader to Zarkogianni et al34 and Oviedo et al35 Promising 
results have been obtained on this topic by our group.36-41 The 
main goal of this paper is to use the algorithm described in 
Wang et al32 and Soru et al36 to identify individualized models 
from free-living data for seven patients studied at the 
University of Amsterdam Medical Centre (AMC) and to vali-
date individualized hypoglycemia predictive alerts (IHPAs) 
on a rather long period (one month)9 for all these patients.

It is worth noting that the identification of reliable models 
on real data is particularly difficult. In fact, free-living condi-
tions are much more challenging than the highly controlled 
experimental conditions of in-hospital studies, due to many 
confounding factors affecting BG in real life. Each patient 
can experience different problems during the trial and all 
possible factors of uncertainty have to be taken into account. 
Some examples are the physical exercise or differences in 
daily activities, human errors in patient-provided informa-
tion or technical issues affecting the AP prototype adopted 
during the trial. All these aspects require adaptations of the 
identification techniques, originally developed for in silico 
data to deal with them.

The identification technique adopted in this paper is the 
impulse-response (IR) identification technique introduced in 
Soru et al36 and extended in Toffanin et al40 to cope with free-
living data. Given the promising results obtained on a single 
patient,40 the technique has been applied here to seven 
patients with T1D studied at AMC to show its effectiveness 
in front of interpatient variability.

The performance achieved on real-life data by patient-
tailored glucose-insulin models (PTMs) are reported for each 
single patient and as mean of the entire cohort. The quality of 
an IHPA to detect in advance hypoglycemia phenomena 
based on PTMs is evaluated in terms of sensitivity, accuracy, 
and false positive rate. The new alarm system shows better 
results in hypoglycemia detection in terms of both true and 
false positive with respect to the previously published results.

Given the prediction capabilities of PTMs used in the IHPAs, 
they have the potential to be used to synthesize a new generation 
of individualized model predictive control (MPC) for AP.

Methods

In this section, the IR approach40 is summarized together 
with the technique used to develop the IHPAs based on 
PTMs.

Impulse Response Identification

Fluctuations in glucose concentration can mainly be attrib-
uted to insulin infusions, i t( ), and carbohydrate intake, 
m t( ) . Since these signals are continuous in time, the dynam-
ics of glucose concentration in response to insulin injections 
and ingested meals is captured by a continuous-time linear 
model with the following structure40:

CGM i ms G s I s G s M s( ) = ( ) ( ) + ( ) ( )

where CGM s( ), I s( ), and M s( )  are the Laplace transfor-
mations of the deviation of the glucose profile, the injected 
insulin, and the carbohydrate intake with respect to their 
basal values, respectively. The transfer functions G si ( )  and 
G sm ( )  describe the insulin-glucose and meal-glucose 
interactions, respectively. The major issue in identifying 
these transfer functions is the input identifiability. Since the 
insulin boluses are usually very close in time to the ingested 
meals, these inputs can be considered as simultaneous, and 
their effects of glucose concentration are superimposed. 
Since these two different inputs cannot be temporarily sepa-
rated without compromising the patient safety, identifying 
the single transfer function on a single individual can be 
problematic.

In order to overcome this limitation, the identification 
procedure is divided into two steps. In the first step, the aver-
age in silico patient (Av) of the UVA/Padova simulator22 is 
used to identify the transfer functions parameters by per-
forming experiments with a sufficient excitation to the over-
all system, and therefore, dangerous for a human subject. 
The first step provides the transfer functions G si ( )  and 
G sm ( )  estimated for the average patient. The goal of the 
second step is to adjust their parameters to patients based on 
their data.

Step 1: linear average model. The goal of step 1 is the identifi-
cation of the parameters of the transfer functions G si ( )  and 
G sm ( )  with the following structure:

G
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where the orders of G si ( ) and G sm ( )  are designed by trial 
and error. The parameter vector to be identified is defined as 
follows:
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The value of θ  is identified by using in silico data collected 
with impulse response experiments performed on the Av 
patient (θ Av ). The two components of θ Av  are identified by 
solving separately two optimization problems which provide 
an optimal value of θi  (θi

Av ) and of θm  (θmAv ).
The optimization problem is based on the minimization of 

the sum of squared residuals (SSR) formulated as follows:

θ θ θθ θ* argmin SSR argmin CGM= ( )( ) = ( ) − ( )t tCGM ,

where CGM t( ) contains the reference glucose measure-

ments and CGM t,θ( )  the estimated glucose according to 
the considered model.

A stability constraint is introduced in the optimization 
problem to guarantee non-negative values of the time con-
stants. The SSR function is nonlinear in the parameters, so a 
nonlinear least-squared method is applied. A critical point is 
the algorithm initialization since the initial conditions can 
highly affect the final result. In this paper, a reasonable ini-
tialization is required for the gains and the slow time con-
stants of the transfer functions, the other unknown parameters 
are initialized to 1.

The gains are set equal to the area under the curves (AUC) 
of the impulse response data, while the slow time constant 
(T1) is estimated from the final part of these data, 
t t t∈[ ]start end, .  In particular, in this time interval, the output 
of the model can be expressed as an impulse response of a 
first-order dynamic system as follows:

CGM et
T

t T( ) = −µ
1

1/

Applying a log transformation to the signals, the model can 
be rewritten as

Y V= +Φθ
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and V  is the measurement error vector.
The linear minimal mean squared error (MMSE) estima-

tor is used to identify the time constant T1:

θ θ θMMSE argmin= −( ) −( )θ Y Y
TΦ Φ

and the solution can be expressed in closed form without 
compromising stability constraints:

θMMSE = ( )−Φ Φ ΦT TY1 .

with T1 21= − /θMMSE.

Step 2: linear individualized model. The first step provides the 
model parameters that describe the glucose dynamic of the 
Av patient, which is the starting point for step 2. The second 
step exploits the patient data to personalize the identified Av 
model. This step is mainly based on the hypothesis that the 
acquired knowledge on glucose dynamic is mostly reliable. 
Specifically, the patient-tailored parameters are identified 
by minimizing the SSR with respect to the patient data.

A delay term (τI) is added in the glucose-insulin transfer 
function G si ( ) , since it is well-known that the insulin 
response is affected by absorption delays. Hence, the glu-
cose-insulin transfer function is reformulated as follows:

G s G ss
i
d

ie I( ) = ⋅ ( )−τ .

In this paper, the parameter τI  =15 minutes is set constant on 
the basis of the results obtained in Toffanin et al.40

In order to provide a reliable initial condition for the opti-
mization, the gains µi and µm are initialized using some avail-
able clinical parameters,40 such as correction factor (CF) and 
the carbohydrate-to-insulin ratio (CR), in particular:
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constants of the Av model:
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Then, the optimization problem is split in two parts to iden-
tify separately the effect of insulin and meals on glycemia. 
This choice is due to the higher variability of the insulin 
parameters with respect to meal ones. So, the parameter θi  
is estimated without involving θm  in the optimization prob-
lem, specifically by solving

θ θθi1
*

iargmin SSRi= ( )( )
with θ θi

init1
i
Cp=  and θ θm

init1
m
Cp= .
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Then, the estimatedθi1*  is exploited to initialize θi ,  ie, 
θ θi
init2

i
*= 1, and a second optimization problem is solved to 

obtain θi  and θm :

θ θθ2
* argmin SSR= ( )( )

with θ θ θ θi
init2

i1
*

m
init2

m
Cpand = = .

The optimal parameters of PTM will be θ θ θ2
*

i m= [ ].,

Discrete-time model. The continuous-time model identified in 
the previous section is discretized via zero-order hold method 
obtaining G zi ( )  and G zm ( )  with sample time Ts  = 1 
minute.

So, the final model has the following structure:

CGM i mz G z I z G z M z E z( ) = ( ) ( ) + ( ) ( ) + ( )

and involves a stochastic part that describes the residual error, 
E z( ). This error is modeled as an AR process of order n:

e k a e k a e k n kn( ) = −( ) +…+ −( ) + ( )1 1 ε

with ε k( )  being a zero-mean white noise with variance λ. 
The parameters a an1,...,  and λ  are estimated from the data 
by minimizing the one-step ahead prediction. The complex-
ity n  of the AR model is fixed to five by trial and error. If the 
glucose measurements sample time (TCGM) is greater than 
Ts ,  an interpolated version of the glucose data can be used in 
the procedure. Finally, the complete model can be resampled 
with Ts  = TCGM = 5 minutes.

Performance metrics for identification. The prediction perfor-
mance is assessed comparing the prediction of the future glu-
cose (CGM ) with the measurements collected during the 
trial. Various prediction horizons (PHs) are considered, and 
with CGM PH ( | )k k −  denoting the PH-steps ahead predic-
tion of a model, three performance indices have been consid-
ered: FIT, coefficient of determination (COD), and Pearson’s 
correlation coefficient (ρ).

The FIT is defined as

FIT PH
CGM PH CGM

CGM CGM
( ) = −

− − ( )
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with the mean of the glucose signal referred as CGM.
The COD is defined as
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Both FIT and COD are equal to 100% if and only if 
CGM CGM k k k N( ) = ( ) ∀ =1,..., , ie, the prediction is per-
fect, and smaller than 100% and possibly negative otherwise.

ρ  is defined as
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with CGM  being the sample mean of CGM.
All these metrics are functions of PH, so the primary out-

come to evaluate the quality of the models has been defined 
as the average value of each metric (FIT , COD , and ρ ) for 
the considered PHs. A secondary outcome is the average 
value of each metric (FIT, COD, and ρρ ) for every PH over 
the patient cohort.

For each index, the mean (±standard deviation, SD) 
for normally distributed data or the median [25th-75th 
percentiles] for the non-Gaussian case has been computed 
over the patient cohort as cumulative index of the entire 
population.

Individualized hypoglycemia predictive alert

In this section, we introduce the algorithm for predictive 
hypoglycemia alarms: the main goal is to forewarn the 
patient of these potentially dangerous events ahead in time in 
order to prevent them. The IHPA algorithm has been intro-
duced in Toffanin et al40 and its core is a PTM used for the 
glucose prediction.

The main steps performed by IHPA algorithm are reported 
here in order to understand this procedure in detail. At each 
sample time k*, IHPA uses the PTM to predict the trend of the 
future glycemia CGM k* +( )1 , . . ., CGM PW k* +( )  (ie, 
with PH PW= ) by assuming that no insulin is administrated, 
ie, setting i i i PW( ) ( ) ( )* * *k k k= + = = + =1 0 . The hypo-
glycemia alarm is issued if CGM  values are below the 
threshold Ghypo in the prediction window (PW) for at least 
Nsamp. The main idea is to issue an alarm only if the hypogly-
cemia event is unavoidable. In fact, it cannot be avoided only 
by suspending insulin, and the subject must take some rescue 
carbohydrates. This alarm system is designed to be used in 
conjunction with an AP, where the insulin suspension is auto-
matically performed by the system to optimize the glucose 
profile. So, the main purpose of this alarm is to notify when 
the AP cannot avoid the hypoglycemia by itself by only modi-
fying the insulin delivery. If data are missing in the previous 
hour for more than 20 minutes, insufficient data are available 
for a reliable prediction and the IHPA is preventively shut off.

The parameters that characterize the algorithm have been 
set in this work as follows: PW = 8 (ie, 40 minutes), Ghypo = 
70 mg/dL, and Nsamp = 2 (ie, 10 minutes).

Performance metrics for alarm system evaluation. In order to 
introduce the performance metrics, some indices have to be 
clearly defined:
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-  Hypoglycemia event (HE): It starts when the glycemia 
of the patient falls below the threshold Ghypo and it 
ends when the glycemia remains above the threshold 
for more than trec minutes

-  True positive (TP): It indicates that an HE really 
occurred at time kh and an alarm is activated by the 
algorithm in the detection window (DW) defined as 
[kh − DWs, kh − DWe] (see Figure 1(a)). Note that HE 
has to be notified at least DWe minutes before its 
occurrence and not too far in the past (too far defined 
by DWs), so that the alarm is clearly related to that 
event.

-  True negative (TN): It occurs at k*  if no alarm is 
issued and no HE occurred in the window [ k*, k*+ 
(DWs − DWe)] (see Figure 1(b)).

-  False positive (FP): It occurs when an alarm is acti-
vated at k* and no HE occurred in the window [k*, k* 
+ DWs] (see Figure 1(c)). An episode is not counted 
as a FP if a meal or a hypo treatment is administrated 
in the window [k*, k* + DWs]. In fact, the alarm has 
to inform the patient about an unavoidable hypogly-
cemia, where unavoidable means that without the 
administration of carbohydrate by the patient this HE 
cannot be avoided. If a carbohydrate treatment is 

administrated, the alarm is not easily assessable. 
Note also that “late” alarms, ie, alarms occurring 
after DWe, are not associated with a FP event even if 
they do not count as TP.

-  False negative (FN): It indicates that a HE occurred 
without an alarm issued in the DW interval. An exam-
ple is reported in Figure 1(d) where DW does not con-
tain any alarm. In fact, the alarm system turns on the 
alarm too late, just after DWe, resulting in a FN.

The parameters related to these definitions have been set 
in this work as follows36: trec = 20 minutes, DWs = 9 (ie, 45 
minutes), and DWe = 2 (ie, 10 minutes).

The performance metrics used to evaluate IHPA approach 
are as follows:

-  True positive rate (TPR), or sensitivity, and true nega-
tive rate (TNR), or specificity, to measure the propor-
tion of positives and negatives that are correctly 
identified, respectively; these indices can be computed 
as follows:

TPR=
TP

TP + FN
, TNR=

TN

TN + FP

Figure 1. Example of true positive (a), true negative (b), false positive (c), and false negative (d) of prediction by individualized 
hypoglycemia predictive alert. In each panel, the continuous glucose monitoring (CGM) measured before the considered time instant 
k*  (magenta), the future real CGM measurements (dashed pink) and the glucose prediction obtained via the patient-tailored glucose-
insulin models used in the individualized hypoglycemia predictive alert (dashed blue) are shown. At each sample time, the individualized 
hypoglycemia predictive alert state is reported (gray/red square); if present, hypoglycemia events with their detection windows are 
shown.
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Table 2. Predictive Performance of Patient-Tailored Models 
Identified for the Entire Population Across the Prediction 
Horizon.

PH FIT COD ρ

 1 96.83 (±0.84) 99.91 [99.86, 99.94] 1 [1,1]
 2 92.47 (±1.69) 99.41 (±0.27) 1 [1,1]
 3 86.84 (±2.93) 98.19 (±0.8) 0.99 [0.99, 0.99]
 4 80.34 (±4.45) 95.97 (±1.81) 0.98 (±0.01)
 5 73.45 (±6.21) 92.62 (±3.45) 0.96 (±0.02)
 6 66.53 (±8.14) 88.23 (±5.79) 0.94 (±0.03)
 7 59.79 (±10.21) 82.94 (±8.89) 0.92 (±0.04)
 8 53.35 (±12.36) 76.93 (±12.71) 0.89 (±0.06)
 9 47.24 (±14.52) 70.36 (±17.18) 0.86 (±0.07)
10 41.43 (±16.63) 63.32 (±22.19) 0.83 (±0.08)
11 35.92 (±18.65) 55.96 (±27.6) 0.8 (±0.1)
12 30.72 (±20.56) 48.38 (±33.29) 0.76 (±0.11)

Abbreviation: PH, prediction horizon.
The indices normally distributed are reported in terms of mean ± 
standard deviation and the others as median [25th-75th percentiles].

-  Predictive value (PPV), or precision, and negative pre-
dictive value (NPV) to measure the proportion of posi-
tives and negatives that are correctly identified over all 
the positive or negative predictions:

PPV=
TP

TP + FP
, NPV=

TN

TN + FN

-  False positive rate (FPR) and false negative rate (FNR) 
to measure the proportion of positives and negatives 
that are wrongly identified, respectively:

FPR
FP

TN FP
FNR

FN

TP FN
=

+
=

+
,

-  Accuracy (ACC) to measure the proportion of classifi-
cations, both positive and negative, that are correctly 
identified:

ACC
TP TN

TP FP TN FN
=

+
+ + +

-  False omission rate (FOR) to measure the proportion 
of negatives wrongly predicted over all the negatives:

FOR
FN

TN FN
=

+

-  F1 score (F1) to measure the harmonic average of the 
precision and sensitivity, F1 score reaches its best value 
at 1 (perfect precision and sensitivity) and worst at 0:

F1=
+

2 * TPR * PPV

TPR PPV

For each index, the mean (±SD) for normally distributed 
data or the median [25th-75th percentiles] for the non-nor-
mally distributed data has been computed over the patient 
cohort as cumulative index of the entire population.

It should be noted that in our population, the time spent in 
hypoglycemia was 1.9% ± 1.1% (mean ± SD)9 and this 
poses well-known problems on the interpretation of the met-
rics reported above. In fact, in this condition, TN is very 
large with any reasonable alarm system, and it saturates the 
metrics influenced by this quantity, eg, TNR will be close to 
100%, thus making these metrics less informative than in the 
case of balanced datasets. For instance, in an unbalanced 
dataset, like the one considered here, any degenerate alarm/
classification algorithm that detects always the most com-
mon class (not hypoglycemia in our case) scores a very high 
accuracy without a real good performance.

In view of this, in this work, we will focus on sensitivity 
(TPR) and precision (PPV), not depending on TN, even if all 
the performance metrics reported before are computed for 
completeness.

Results and Discussion

We identified a PTM for each AMC patient. The perfor-
mance metrics of these models are evaluated on the entire 
trial excluding the training set intervals used for the identifi-
cation. The results reported in Table 1 involves the average 
values of the different metrics (FIT, COD, and ρ) computed 
by considering the prediction horizons (PH) varying from 1 
to 12 (ie, from 5 to 60 minutes).

From the results, it is possible to note that FIT  computed 
on the entire population remains above 60% (63.74%) with a 
COD  of 81.02%. The results are in line with those in 
Toffanin et al.40 One patient (Patient #6) performed worse 
than the others. However, considering the large changes of 
the patients’ habits and the time-varying nature of the system 
under study, all the results seem acceptable.

Table 1. Predictive Performance of Patient-Tailored Models 
Identified for Seven Patients.

Patient FIT COD ρ

Patient #1 58.72 76.95 0.89
Patient #2 60.56 79.55 0.9
Patient #3 74.42 91.35 0.96
Patient #4 67.92 86.23 0.93
Patient #5 70.77 88.18 0.94
Patient #6 45.68 58.49 0.83
Patient #7 68.12 86.37 0.93
Population 
mean (±SD)

63.74 (±9.67) 81.02 (±11.11) 0.91 (±0.04)

Abbreviation: SD, standard deviation.
All indices are normally distributed, so mean ± standard deviation is 
reported for the entire population.
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The results reported in Table 2 involve the population val-
ues of different metrics (FIT, COD , and ρρ ) computed by 
considering each single PH varying from 1 to 12 over the 
patient cohort.

The performance decreases with the increase of the PH as 
expected. Note that these models have been identified to 
design IHPA systems that uses predictions till 45 minutes (PH 
= 9), so it is important that the performance indices related to 
this interval remain above 45% for the FIT and 70% in terms 
of COD. However, seen the application considered in this 
work, the performance indices of more interest are the ones 
related to the hypoglycemia prediction reported in Table 3.

The patients experienced about 20 HE on average. The 
performance indices of IHPAs on each patient and on the 
entire the population are reported in Table 3. The results 
include the sensitivity (TPR) of the predictor of 84.67% and 
precision (PPV) of 41.41% with FPR of 0.328% and FNR of 
15.33%. F1 reaches 52.82% on average for all seven patients. 
Regarding the performance metrics affected by the unbal-
anced nature of the dataset, the specificity (TNR), accuracy 
(ACC), NPV (all >96%), and FOR (<0.042%) indicate 
alarms activated mostly when needed.

Conclusion

In this study, the technique described in Soru et al36 and 
extended in Toffanin et al40 to deal with free-living data col-
lected without ad hoc clinical protocols has been used to 
identify patient-tailored models for seven AMC patients. The 
data used in this work were collected during a long (1 month) 
AP trial in free-living conditions9 involving three clinical 
centers. Even if the number of the considered subjects is lim-
ited, the importance of the results obtained in this work is 
enforced by the large changes of the patient habits and the 
time-varying nature of the system under study, together with 
the long duration of the observed period. Patient-tailored 
glucose-insulin models show good predictive performance 

on the considered test set in terms of glucose prediction in 
free-living conditions with an average FIT of 63.74% on the 
entire considered population.

The PTMs obtained with this technique have been used to 
develop an individualized alarm system for each patient. The 
IHPAs based on PTMs showed a sensitivity (TPR) of 84.67% 
with FPR of 0.328% on the entire cohort of patients: on aver-
age, about 85% of the hypoglycemia events occurred during 
the trial have been detected in time to allow a rescue action 
with a negligible (<0.4%) number of false alarms.

Future works will be focused on the synthesis of individu-
alized MPC algorithms based on these PTMs, but the testing 
of these controllers requires suitable clinical trials.
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