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Introduction

Type 1 diabetes (T1D) is an autoimmune condition result-
ing in absolute insulin deficiency and a life-long need for 
exogenous insulin.1 Glycemic control in T1D remains a 
challenge, despite the availability of modern insulin ana-
logs,2 and advanced technology such as insulin pumps, 
continuous glucose monitoring (CGM)3 and artificial pan-
creas (AP) systems that automatically titrate insulin doses.4

Artificial pancreas systems have become a focus of signifi-
cant research and industrial development.4,5 During the past 
decade, studies have advanced from short-term, inpatient 
investigations using algorithm-driven manual control6 to 
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Abstract
Background: Maintaining glycemic equilibrium can be challenging for people living with type 1 diabetes (T1D) as many 
factors (eg, length, type, duration, insulin on board, stress, and training) will impact the metabolic changes triggered by 
physical activity potentially leading to both hypoglycemia and hyperglycemia. Therefore, and despite the noted health benefits, 
many individuals with T1D do not exercise as much as their healthy peers. While technology advances have improved glucose 
control during and immediately after exercise, it remains one of the key limitations of artificial pancreas (AP) systems, largely 
because stopping insulin at the onset of exercise may not be enough to prevent impending, exercise-induced hypoglycemia.

Methods: A hybrid AP algorithm with subject-specific exercise behavior recognition and anticipatory action is designed 
to prevent hypoglycemic events during and after moderate-intensity exercise. Our approach relies on a number of key 
innovations, namely, an activity informed premeal bolus calculator, personalized exercise pattern recognition, and a multistage 
model predictive control (MS-MPC) strategy that can transition between reactive and anticipatory modes. This AP design 
was evaluated on 100 in silico subjects from the most up-to-date FDA-accepted UVA/Padova metabolic simulator, emulating 
an outpatient clinical trial setting. Results with a baseline controller, a regular MPC (rMPC), are also included for comparison 
purposes.

Results: In silico experiments reveal that the proposed MS-MPC strategy markedly reduces the number of exercise-related 
hypoglycemic events (8 vs 68).

Conclusion: An anticipatory mode for insulin administration of a monohormonal AP controller reduces the occurrence of 
hypoglycemia during moderate-intensity exercise.
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long-term clinical trials in free-living conditions.7 Most AP 
studies show a significant reduction in glucose variability, par-
ticularly overnight, and lower risk of hypoglycemia. In 
September 2016, the US Food and Drug Administration (FDA) 
approved the first hybrid, closed-loop control system, the 
Medtronic 670G. This AP is capable of automatically adjusting 
the insulin basal rate, but still faces many issues, such as time 
spent in closed loop (72%-75%),8,9 low time-in-range (~65%) 
in comparison to other proposed systems, and its hybrid design: 
user input for major disturbances like meals and exercise.8,10

In spite of significant effort from the scientific commu-
nity, meals and exercise remain the most challenging hurdles 
to overcome before a fully automated AP can be developed. 
Physical activity is particularly challenging to account for, as 
its effects on glucose are based on intensity, duration, and 
patient-specific physiology.11,12 For example, moderate-
intensity exercise is known to cause a decrease in glucose 
levels as opposed to high-intensity and anaerobic exercise 
which may cause an increase in glucose levels, and hence, an 
increased insulin requirement.12 The current treatment guides 
suggest basal insulin reduction for pump users and/or carbo-
hydrate supplementation prior to moderate exercise.13 A 
recent study showed that in order to prevent exercise-related 
hypoglycemia, basal insulin needs to be reduced ~90 to 120 
minutes before activity began.12,14 However, these approaches 
should be taken cautiously, since carbohydrate overcon-
sumption and aggressive reduction of basal insulin levels 
may also lead to hyperglycemia during and after exercise.15

Studies addressing different AP designs to improve glyce-
mic control during and after exercise bouts are increasingly 
prevalent in the literature.16-23 In these studies, the incorpora-
tion of additional sensors (eg, HR and accelerometry) for 
exercise detection and the use of different control strategies 
were assessed during moderate-intensity exercise (eg, one-
hour brisk walk, bicycling, and soccer).

The proposed multistage model predictive controller 
(MS-MPC) differs from the previous exercise-oriented AP 
designs through three major improvements: (i) the incor-
poration of subject-specific exercise behavior into the con-
troller design which can be updated periodically, (ii) 
anticipatory and reactive modes that compensate for 
expected and ongoing exercise, and (iii) an adaptive detun-
ing strategy that modulates the controller’s aggressiveness 
before and after a meal. Additionally, the controller lever-
ages the Unified Safety System (USS Virginia), a safety 
supervision module to limit basal injections based on the 
perceived risk for hypoglycemia.24 The safety and perfor-
mance of the MS-MPC and a regular MPC (baseline con-
troller—rMPC) are evaluated on 100 in silico subjects 
from the most up-to-date FDA-accepted UVA/Padova sim-
ulator in a specific outpatient clinical trial design, includ-
ing intra- and interpatient variations. Here, the primary 
outcome is the comparison between the number of hypo-
glycemic treatments.

Methods

Prediction Model

In this work, both the baseline rMPC and the proposed 
MS-MPC make predictions using a personalized version of 
the Subcutaneous Oral Glucose Minimal Model (SOGMM).25 
Model equations are as follows:
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where G  is the plasma glucose concentration output (mg/
dL), X is the proportion of insulin in the remote compartment 
(L/min), Q1  and Q2  are the glucose masses in the stomach 
and the gut (mg), respectively, Isc1  and Isc2  are the amounts 
of nonmonomeric and monomeric insulin in the subcutane-
ous space (mU), respectively, Ip  is the amount of plasma 
insulin (mU), w  represents the effect of exercise on blood 
glucose levels (mg/dL/min), m  is the input rate of mixed-
meal carbohydrate absorption (mg/min), and u  is the exog-
enous insulin input (mU/min). Parameters of model equations 
(1-7) are described in Table 1. As observed, some can be 
fixed using a priori information, eg, BW  is easily measured, 
f  is set to 0.9,26 Gb  can be estimated from the patient’s 

most recent glycated hemoglobin25

 Gb HbA1c= ⋅ −28 7 46 7. .  (8)

and Ib  can be computed from the basal infusion rate u u= b  
as

 I
u

k V
b

b

cl IBW
=  (9)

In this work, synthetic glucose measurements for model 
identification were generated from the FDA-accepted UVA/
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Padova simulator.27,28 To this end, for each of the 100 in silico 
adults, 10 days of data collection considering intrapatient and 
interday variability were simulated with three meals per day. 
Since in the simulator each subject is equipped with a particu-
lar G

b
, Equation (8) was not used in this in silico study.

A subset of parameters was selected, θ = { }S S V kdg I I, , , , 
based on the previous work by the authors.29 An example of 
the identification results is depicted in Figure 1. The perfor-
mance of each model after identification was assessed by 
means of the root mean square error (RMSE) criterion:

 RMSE =
−y y

N



 (10)

where ⋅ indicates the two-norm, and N , y, and y  are the 
number of data points, the CGM measurements, and model 
output, respectively. In this case, N was set to 288 as daily 
profiles with a sampling time of five minutes were identified. 
Average RMSE results considering all 1000 model identifi-
cations (10 identifications per each of the 100 virtual sub-
jects) is 14 5 6 6. .±  mg/dL. Identified parameters for the 
population, ie, value (std), are given in Table 2. In order to 
define the prediction model used by the MPC controllers, 
mean values of the 10 sets of daily parameters related to each 
virtual subject were finally considered.

Hybrid Multistage AP With Exercise Behavior 
Recognition

Multistage model predictive control was introduced by Lucia 
et al30,31 as a way to make the MPC strategy robust for cases 

where the prediction model is uncertain but less conservative 
than classic approaches. This approach assumes a tree of 
semi-independent disturbance realizations which are only 
related in the initial condition by means of the so-called non-
anticipativity constraint. Such a formulation makes it possible 
to include further insight of what may happen in the future. In 
this sense, future control actions can be adapted according to 
hypothetical future realizations of the uncertainty.

In our case, we assume the effect of moderate-intensity 
exercise bouts on glucose dynamics as the main source of 
uncertainty in the prediction model. Since the user is not 
expected to exercise at the exact same time or for the same 
duration, different exercise realizations arise. Instead of opti-
mizing the insulin infusion for a given exercise condition, a 
specific number of Nen  of disturbance realizations are consid-
ered. Although a higher Nen  may lead to better disturbance 
characterization, a high number of considered disturbances 
may pose a large computational burden. Because this control 
scheme will be embedded on a smartphone in future clinical 
trials, an appropriate tradeoff between performance and low 
Nen  must be a design consideration.31 In the following sec-
tions, we explain the main components of our control system.

Subject-Specific Exercise Behavior

Exercise input w . The UVA/Padova simulator is equipped 
with an exercise model that describes widely acknowledged 
short- and long-term exercise-related alterations in insulin-
independent glucose uptake (U

ii
), endogenous glucose pro-

duction (EGP), and insulin sensitivity (S
I
).12,32-35 While the 

increase in U
ii
 was modeled as a pulse-wise signal that is 

only active during exercise,12 changes in S
I
 and EGP were 

defined to increase during exercise and slowly decay to their 
baselines in hours following. Data from four randomized 
cross-over clinical studies (NCT01418703, NCT01390259, 
2009-A00421-56, and 2010-A00538-31) were considered 
for model tuning to statistically describe the immediate 
increase observed in all U

ii
, EGP, and S

I
. On the other hand, 

the glucose clamp procedure described in McMahon et al36 
was simulated to represent the long-term effect of exercise 
on glycemia and adjust the time constants associated with the 
posterior decays in S

I
 and EGP. For each in silico adult of the 

simulator, the glucose infusion rates (GIRs) needed to main-
tain the glucose level at its basal value during a 45-minute 
bout of moderate exercise and in the hours following was 
commanded by a discrete proportional-derivative controller. 
The biphasic behavior of GIR detected in McMahon et al36 
was successfully recreated by adjusting the decay of both S

I
 

and EGP after exercise, and accommodating the increase in 
S

I
 that occurs several hours later and then decays slowly to its 

baseline.
To consider this effect in the MPC predictions, SOGMM 

was augmented by including the additional input w. To this 
end, the mean GIR for a 45-minute bout of moderate exercise 
across all subjects (GIR)  was computed, and the following 

Table 1. Model Parameters of the Subcutaneous Oral Glucose 
Minimal Model.

Symbol Meaning Units

S
g

Fractional glucose effectiveness L/min
V

g
Distribution volume of glucose kg/dL

k
abs

Rate constant—oral glucose 
consumption

L/min

kτ Time constant related with 
oral glucose absorption

L/min

p
2

Rate constant of the remote 
insulin compartment

L/min

f Fraction of intestinal 
absorption

-

V
I

Distribution volume of insulin L/kg
k

cl
Rate constant of subcutaneous 

insulin transport
L/min

k
d

Rate constant of subcutaneous 
insulin transport

L/min

S
I

Insulin sensitivity L/min/mU/L
BW Body weight kg
G

b
Basal glucose concentration mg/dL

I
b

Basal insulin concentration mU/L
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discrete-time linear time-invariant (LTI) system with a sam-
pling time ts = 5  minutes was identified using the adaptive 
subspace Gauss-Newton search (91.9% fitting):
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The identified parameters are b11 0 7153= . , b12 0 0004= . , 
b21

30 1457 10= × −. , b22
30 5580 10= × −. , b23

30 1336 10= × −.  
a11 0 8440= − . , a21 2 8317= − . , a22 2 6729= . , and a

23
= 

–0.8410. Note that E z( )  is defined as the combination of 
two transfer functions, E zf ( )  and E zs ( ), that describe the 
immediate glucose requirement associated with exercise as 
well as the delayed glucose uptake associated with the physi-
cal activity, respectively. In this way, given a d-minute exer-
cise signal, πd k,  is defined as follows:

 πd k
kt t t d

,
,

=
∈ +[ ]






1

0

if 

otherwise

ex ex  (12)

with tex  the exercise start time. Assuming linearity, the dis-
turbance signal wd k, (mg/dL/min) can be found through the 
discrete convolution of πd k,  and the impulse response, hk  
(mg/kg/min), of E z( ):

 w h Vd k

n

d k k n g, , /= −
=−

−∑
∞

∞

π  (13)

where Vg  is the distribution volume of glucose (dL/kg). 
Results of this procedure are depicted in Figure 2. Since no 
individualization of w  is performed in this work, Vg  was 
fixed to 1.6 dL/kg as reported in Patek et al.25

Extracting subject-specific exercise behavior. To represent data 
that would be collected leading up to a clinical admission, 
we simulated 30 days for each of the in silico subjects 
involved in our protocol. On one-half the 30 simulated 
days, the subjects exercised for about 45 minutes in between 
4 and 7 pm, under moderate-intensity exercise training. The 
exercise bout was represented with a rectangular signal, 
πd k, , equal to 1 during exercise and corresponding to the 
length of the activity. This was then convolved with the 
response of the previously described LTI system, hk, repre-
senting the dynamics of glucose uptake related to moder-
ate-intensity exercise. Exercise disturbance signals were 
calculated for each day of data collection through the afore-
mentioned process.

A total of 24-hour exercise-related disturbance signals 
were then clustered into five distinct groups (to meet the 
tradeoff of number of parallel controllers and performance) 
using the k-medoids algorithm with a squared Euclidean dis-
tance measure. Although not described here in full due to 
space constraints, the decision to choose five clusters was 
based on an experiment where approximately 30 days of 
exercise data from different patients were clustered using 
different cluster sizes. The average silhouette score was cal-
culated from each of these configurations and five clusters 
provided the highest silhouette score on average for the sub-
jects in the training data. The clustered signals were then 
averaged across each sampling period to create a 24-hour 

Table 2. Average Estimates from In Silico Data for the Selected 
Parameters of the Subcutaneous Oral Glucose Minimal Model.

Parameter Mean (SD) Units

S
g

0 0265 0 0092. .( ) L/min
V

I
0 0442 0 0250. .( ) L/kg

k
d

0 1460 0 0980. .( ) L/min
S

I
1 6784 10 1 4305 104 4. .× ×( )− − L/min/mU/L

Figure 1. Example of identification results for one of the in silico adults. The solid blue line represents the daily glucose profile 
generated using the UVA/Padova simulator and the dashed blue line is the glucose predicted by the identified model. The orange line 
indicates the insulin boluses and basal pattern.
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profile trace for each grouping. The proportion of days of the 
month that fell into each cluster was considered its relative 
probability for each subject

 
Pr i

n

n

i

j

c
j

( ) =
=∑ 1

 (14)

where Pr i( )  is the probability of cluster i , ni  is the number 
of days in cluster i , and c  is the number of total clusters (in 
this case 5).

Figure 3 shows an example clustering for an in silico sub-
ject. For simplicity in this particular implementation, five 
profiles for each subject were generated. Two profiles had 
average traces equal to 0 (Pr .i( ) = 0 2) and the other three 

represented the glucose uptake from exercise bouts per-
formed randomly between 4 and 7 pm.

Multistage Model Predictive Control

The core of the AP system is represented by the MS-MPC 
whose mathematical problem is defined as follows:

 min ms

 uk
i

k
i,ν
φ  (15)

 s.t. I wx Ax B u B wk j k
i

k j k
i

k j k
i

k j k
i

+ + + + += + +1| | | |  (16)

 y Cxk
i

k
i=  (17)

Figure 2. Above: Mean GIR  across all subjects, GIR , (purple) obtained with the UVA/Padova simulator vs the response of E z( )  
(orange) when it is excited with πk ,45  (green). Below: Impulse response of E z( ), hk.

Figure 3. Clustered glucose uptake signals for 30 days of a representative subject’s exercise data. Red lines show profile (average) 
trace. Black lines show each trace represented in the cluster. Probability of each cluster occurring shown above each respective subplot.
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 u u u i Nk j k
i

min max en≤ ≤ ∀ = …+ | , , ,1  (18)

 ∆ ∆ ∆u u u i Nk j k
i

min max en≤ ≤ ∀ = …+ | , , ,1  (19)

 y yk j
i

k j
i

min − ≤+ +η  (20)

 ηk j
i
+ ≥ 0  (21)

 u u i lk
i

k
l= ≠with  (22)

where � �u u u uk
i

k k k N
i= [ ]+ + −1 1c  and η∼i

k 
= η

k 
η

k+1
 … 

ηk+Np–1 
are, respectively, the control policy and the policy of 

slack variables related to the soft constraint (20) optimized at 
the i th MPC with control and prediction horizons Nc  and 
Np, respectively, and i N= …1 2, , , en. Bearing the above in 
mind, our AP should solve the mathematical problem (15)-
(22) at every sampling time. As a result, we obtain Nen  con-
trol policies uk

i  i N= …( )1, , en , but only uk , which is 
common in all the problems as per constraint (22), is sent to 
the insulin pump for actual infusion, following the receding 
horizon principle from MPC.

In the above formulation, Equation (16) corresponds to 
the linear state-space representation of the i th prediction 
model with xk

i n∈  being the system state, uk
i m∈  the 

control policy, and wk
i d∈  a specific realization of the 

effect of exercise on glucose dynamics, with n m= =7 1, ,  
and d =1  in our case. The quadruplet A B B C, , ,I w and( )  are 
found after discretizing ts minutes=( )5  the matrices of the 
continuous-time linear approximation of Equations (1) to (7) 
defined by
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where xss  denotes the steady state found by solving the sys-
tem (1) to (7), considering x y1 120= =sp mg/dL, u u u= =ss b  
and w = 0, with ub  being the subject-specific basal infusion. 
Note that model (16) does not account for the meal for predic-
tion purposes since this disturbance is assumed to be mostly 
covered by the premeal bolus. Moreover, the model predic-
tion for every scenario is the same except for the disturbance 
realization; Equation (17) is the output equation at the i th 
scenario; Equations (18) and (19) ensure both insulin infusion 
and the difference between two consecutive insulin infusions 
along the control horizon to be in the intervals u umin max,[ ]  
and ∆ ∆u umin max,[ ] , respectively; Equations (20) and (21) 
are together a soft constraint over the output’s lower bound; 

Equation (22) is the nonanticipativity constraint and prevents 
the controller to take actions on hypothetical noncausal sce-
narios. The cost function for this optimization problem is 
defined as

 φ
η λ ∆
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en

= ( ) ⋅
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+ +=

+ + + +

+ + +

∑12
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1 1

1 1 1i
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where ⋅
W  denotes the weighted norm of vector, Pr i( )  

denotes the probability of occurrence of scenario i N= …1, , en  
λ1  and κ1  are scalar weights, and Q  is a matrix weighting 

the confidence on model predictions. The term κ1 1ηk j k
i
+ + |  

is a cost to prevent the controller to take actions leading to 
low glucose levels. In this design, we use a modified version 
of the asymmetric, time-varying, exponential reference  
signal.37 The equation describing the time-varying reference 
is given by

 r y y y y

y y
k j k

k
t t

k

k

k j k

+ +

− −( )
= −( ) ⋅ ≥

≤







+ +
+

1

1

0
|

/ ,

,

sp sp

sp

e rτ
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with j N∈ …[ ]1, , p , τ r+  the time constant modulating the ref-
erence decay toward the set point, and tk  the discrete time.

Each model prediction uses xk k | , the estimate of xk , as the 
initial condition computed by means of a hybrid implemen-
tation of the Kalman filter.38,39 Our implementation includes 
an observable and nonobservable (open-loop) submodels.

In order to improve the AP’s safety, we propose a detuning 
strategy for Q  described as follows. As seen in the cost func-
tion (24), Q  weights the difference of the model prediction 
with respect to the evolution of the controller’s reference. 
Since our controller is not fully automated and requires meal 
announcements, a detuning strategy of Q  is implemented to 
avoid a possible overreaction to meal-induced glycemic 
excursions, which may cause postprandial hypoglycemia. 
Such a detuning strategy depends on the insulin on board 
( IOB ) estimate relative to its basal value as follows:

 Q

Q

m Q

Q

IOB

if IOB

IOB if IOB TDI

if IOB TDI

( ) =
<

⋅ + ∈[ ]
>

 0

0

0

0

0, /

//

α
β α







 (26)

with m
Q

=
⋅ −( ) ⋅
⋅

α β

β

1 0

TDI
, where TDI  denotes the subject-

specific total daily insulin requirement, Q0  is the default 
value of Q  at the basal IOB, and α  and β  are tuning param-
eters. The higher α  and β , the less responsive the controller 
is at mealtimes. In this work, Q0, α, and β  were set to 10, 
20, and 1000, respectively.

By default, the AP operates in anticipative mode and 
progressively reduces the insulin infusion during times 
where there is a high probability of exercise. If exercise is 
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detected, the system transitions to reactive mode, meaning 
that instead of having Nen  parallel controllers with corre-
sponding disturbance realizations, the controller relies on a 
single controller acting under the assumption that exercise 
is being performed. This allows the controller to adjust to a 
specific exercise bout and mitigates hypoglycemia in cases 
where exercise is not expected. In the clinical trial, exercise 
detection is based on HR and step count signals retrieved in 
real-time from an activity tracker (Sony SmartBand2, 
Tokyo). This detection system is not discussed here due to 
space limitations.

Exercise-Informed Premeal Bolus

An exercise-informed premeal bolus calculator was devel-
oped to adjust the patient’s insulin bolus based on the antici-
pated increase in glucose uptake during the hours following 
exercise. In section C, we explain the generation of the signal 
wd k, , which is the anticipated change in the glucose uptake 
over time following a performed exercise lasting d -min. 
From this signal, we obtain ∆GUDIA  the additional glucose 
uptake that is anticipated to occur during the time that the 
meal bolus will be active (ie, duration of insulin action—
DIA). ∆GUDIA  is calculated as the corresponding area under 
the ∆GIR  curve and translated into grams as follows:

 ∆GU
BW

DIA

DIA

= −
=

+

∑
k t

t
d k gw V,
1000

 (27)

Mealtime insulin is computed based on the carbohydrate 
intake, BG  value at the time of the meal, IOB, and ∆GUDIA  
The exercise informed bolus is obtained by correcting the 
standard bolus to account for the anticipated change in the 
glucose uptake resulting from the exercise performed prior to 
the bolus as follows:

 
EX

CHO Intake

CR

BG BG

CF

IOB
GU

CR

B
target

DIA

,k
k k

k

= +
−

− −
∆

 (28)

where CHO Intakek  is the amount of ingested carbohydrates 
at time k , BGtarget sp= y , CR  and CF  are the subject’s 

current carbohydrate ratio and correction factors, respectively, 
BG  is the sensor reading at the time of the meal, and IOB  is 
the current insulin on board from basal and correction insulin 
injections. We obtain the BG  correction component of the 
bolus by dividing ∆GUDIA  by CR  and subtract it from the 
total bolus calculated.

Unlike the basal insulin controller actions, no anticipatory 
action is taken in meal bolus calculations. Bolus adjustments 
are made only based on the disturbance signal from the pre-
viously observed exercise. In the specific clinical trial design 
that this manuscript features, a mealtime bolus is adminis-
tered at the end of the first increased glucose uptake phase, 
and therefore, no significant meal bolus reduction is applied.

Numerical Simulations

The presented results were obtained using the most up-to-
date version of the FDA accepted UVA/Padova simulator.27 
All 100 virtual adults were used for this evaluation. Dawn 
phenomena and intra- and interday insulin sensitivity varia-
tions were included in the experimental setup. Simulation 
protocol was designed to mimic the 36-hour in vivo clinical 
trial where the feasibility of the proposed control strategy 
will be tested (see Figure 4).

Closed-loop simulations started at 11.00 am. At each five-
minute interval, the proposed control strategy computed a 
new basal insulin dose and transmitted it to the insulin pump. 
Following the principles of hybrid closed-loop control, a 
manual meal bolus was administered at mealtimes using a 
patient-specific premeal bolus calculator. Here, it is worth 
mentioning that although each in silico subject has a basal 
insulin profile that changes throughout the day, a single nom-
inal basal rate was used for each subject. Since the proposed 
control strategy works as a basal modulator and it will be 
operating over a basal insulin rate that does not minimize 
glucose oscillations caused by insulin sensitivity and dawn 
phenomena, this should increase the amount of basal rate 
changes that the controller must make.

On day 1, the subjects received a lunch and dinner at 1:00 
and 7:30 pm containing 50 and 50 ± 10 g of CHO, respec-
tively. At around 5:30 pm, they underwent a 45-minute long 
moderate exercise challenge. On day 2, the subjects received 
two meals while they were under observation at 7:00 am  

Figure 4. Timeline of the in silico protocol.
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Figure 5. Individual closed-loop response with the proposed multistage model predictive control (green) and regular model predictive 
control (red). The filled light blue and pink regions represent the 70 to 180 mg/dL range and the exercise period, respectively.

(50 g) and 1:00 pm (50 ± 10 g). The simulation was con-
cluded at 7:00 pm before dinner.

Results

The above protocol was used as a testbed to assess the safety 
and efficacy of the MS-MPC strategy in preventing hypogly-
cemic events and regulating glucose levels. The performance 
and safety of the proposed controller is compared to a base-
line controller, the rMPC, published elsewhere.40 The tuning 
parameters for both controllers are presented in Table 3.

Figure 5 shows an individual closed-loop response under 
both MS-MPC and rMPC. As illustrated, the anticipatory 
response of the MS-MPC avoids the hypoglycemic event 
during exercise by progressively reducing the insulin infu-
sion rate when exercise is likely to happen. Note that although 
the rMPC reacts to the effect of exercise on the glucose level 
by almost switching off the insulin pump, that action is still 
futile,41 and the subject required a hypo treatment.

The average closed-loop responses obtained with both 
the proposed MS-MPC and rMPC are compared in Figure 6 
and the average results are summarized in Table 4. Safety 
and effectiveness endpoints based on consensus outcome 
metrics for glucose controllers’ performances42 are com-
puted for the duration of the in silico protocol. Time within 
the target range of 70 to 180 mg/dL exceeds 80%, and the 
primary safety parameter, the low blood glucose index 

(LBGI), indicates minimal risk of hypoglycemia (LBGI < 
1.1).43 As expected, the MS-MPC demonstrates better per-
formance for hypoglycemia protection during and after 
exercise than the rMPC with less time spent in hypoglyce-
mia. In this regard, 58 subjects received at least one hypo 
treatment during the exercise period and 10 subjects received 
two under rMPC, while only eight received the treatment 
when using the MS-MPC. In addition, exercise was sus-
pended 44 times with the rMPC and four with the MS-MPC. 
Differences between the number of exercise suspensions 
and hypo treatments are because, in some cases, rescue 
carbs were administered at the end of the exercise period. It 
is worth remarking that although higher average glucose 
concentration is obtained with the MS-MPC controller, the 
high blood glucose index (HBGI) still indicates low risk of 
hyperglycemia (HBGI < 4.5).43 In the future, however, 
mechanisms to transition the underinsulinization state to a 
state of normal infusion rate will be explored to avoid post-
prandial glycemic excursions.

Discussion

Meaningful studies and position papers have shown the impor-
tance of manipulating insulin infusion proactively to prevent 
hypoglycemic events during and after moderate-intensity 
exercise.11-13 In this contribution, we have demonstrated prom-
ising mechanisms to (i) gather user-specific exercise behavior, 

Table 3. Tuning Parameters for the Regular Model Predictive Control and Multistage Model Predictive Control.

Parameter rMPC MS-MPC Parameter rMPC MS-MPC

Nen N.A. 5 τ r
+ 25 min 25 min

Np 24 24 umin −ub −ub

Nc 18 18 ∆umax 50 50
λ1 1750 / ub 1750 / ub ymin 70 70
κ1 100 100  

Abbreviations: r-MPC, regular model predictive control; MS-MPC, multistage model predictive control.
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(ii) provide this useful insight to a predictive controller able to 
reduce insulin infusion in a prospective way, and (iii) transi-
tion between anticipative and reactive modes according to the 

certainty on the occurrence of exercise. The main objective of 
this AP strategy is to reduce the risk of hypoglycemia during 
and after exercise. In this regard, in silico results suggest that 

Figure 6. Closed-loop responses for all the in silico adults with the proposed multistage model predictive control (green) and regular 
model predictive control (red). The thick lines are the median values, and the boundaries of the filled areas are the 25th and 75th 
percentiles. The filled light blue and pink regions represent the 70 to 180 mg/dL range and the exercise period, respectively.

Table 4. Average Closed-loop Results for all the In Silico Adults With the Multistage Model Predictive Control and Regular Model 
Predictive Control Strategies.

MS-MPC rMPC

 Mean Median IQR Mean Median IQR

Overall  
Average blood glucose (mg/dL) 144.7 142.5 16.6 136.6 135.3 19.0
Max blood glucose (mg/dL) 239.9 235.5 42.3 206.4 205.5 50.1
Min blood glucose (mg/dL) 80.7 82.4 22.0 68.2 65.8 13.6
% time > 250 mg/dL 1.66 0.00 2.34 0.52 0.00 0.00
% time > 180 mg/dL 18.56 16.10 15.71 13.66 11.69 20.26
% time in [70-180] mg/dL 81.16 83.90 16.49 85.56 87.92 20.26
% time in [70-140] mg/dL 54.62 54.55 21.56 60.38 58.70 22.99
% time < 70 mg/dL 0.28 0.00 0.52 0.77 0.78 1.04
% time < 54 mg/dL 0.00 0.00 0.00 0.00 0.00 0.00
LBGI 0.19 0.18 0.20 0.36 0.35 0.21
HBGI 3.90 3.44 2.84 2.94 2.68 2.63
Total daily insulin (U/d) 36.0 34.0 10.8 37.4 35.0 11.6
# hypo treats during exercise  8 68
Exercise  
Average blood glucose (mg/dL) 119.7 117.8 27.7 96.3 92.5 18.6
Max blood glucose (mg/dL) 137.0 131.8 29.8 122.3 115.0 27.5
Min blood glucose (mg/dL) 104.5 105.0 29.8 72.9 67.7 21.6
% time > 250 mg/dL 0.00 0.00 0.00 0.00 0.00 0.00
% time > 180 mg/dL 2.6 0.0 0.0 0.5 0.0 0.0
% time in [70-180] mg/dL 96.2 100 0.0 86.7 84.6 23.1
% time in [70-140] mg/dL 80.5 100 30.8 81.5 76.9 30.8
% time < 70 mg/dL 1.2 0.0 0.0 12.8 15.4 23.1
% time < 54 mg/dL 0.0 0.0 0.0 0.8 0.0 0.0

Abbreviations: r-MPC, regular model predictive control; MS-MPC, multistage model predictive control.
# hypo treats during exercise indicates the number of hypo treatments (15 g CHO, fast absorption) given to the entire in silico cohort during the 
exercise period.
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the proposed closed-loop system decreases both the time in 
hypoglycemia and the number of hypo treatments, without 
increasing the risk of hyperglycemia beyond safe levels. Hypo 
treatments were included in these simulations to recreate the 
future in vivo evaluation of this AP strategy, where the safety 
of the participant is our main priority. The performance of the 
MS-MPC in preventing exercise-related hypoglycemia against 
the rMPC is highlighted when hypo treatments are removed 
from the simulations (% time < 70 mg/dL during exercise 
[median (interquartile range, IQR)]: MS-MPC, 0.0 (0.0)%; 
rMPC, 15.4 (38.5)%).

Despite benefits, as illustrated in Figure 6, higher glucose 
peaks are detected after the meal that follows when exercise 
is likely to occur. This is mainly due to the underinsuliniza-
tion state reached to avoid the hypoglycemia during exercise. 
We acknowledge that this is a limitation of the proposed sys-
tem. A possible solution is to allow the controller to respond 
more aggressively and/or progressively transition to a nor-
mal insulin state before meal consumption. In that case, post-
prandial glucose excursions will be further mitigated, but 
this comes at the expense of increasing the risk of late hypo-
glycemia due to the delayed glucose uptake associated with 
exercise and the sustained duration of action of the current 
insulin analogs. Insulins with faster-on and -off pharmacody-
namics would be beneficial in this scenario where anticipa-
tory reduction of insulin levels is necessary and later increase 
in the risk of hypoglycemia is expected. Finally, it is worth 
considering that in these simulations we are assigning to 
each subject three exercise-related signatures randomly dis-
tributed between 4 and 7 pm and equally probable. Therefore, 
the controller has to perform a pump-suspension for almost 
the complete time window. If more specific probabilities are 
assigned to each signature, then the glucose rebound after 
exercise will be attenuated.

Conclusion

This contribution proposes a novel (hybrid) AP system based 
on MS-MPC for hypoglycemia prevention during and after 
moderate-intensity exercise bouts. To test the safety and reli-
ability of our AP system, we created an in silico replica of an 
upcoming outpatient clinical trial in our FDA-accepted UVA/
Padova metabolic simulator including both inter- and intra-
patient variability. Results demonstrated that our controller is 
safe and effective in preventing exercise-related hypoglyce-
mia in the proposed scenario.
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