Skip to main content
. 2019 Oct 18;8(10):511. doi: 10.3390/foods8100511

Table 1.

Evaluation of models obtained by orthogonal partial least squares (OPLS).

Sample Scaling A a N b R2X R2Y Q2Y Regression Line
y R2 RMSEE RMSEcv
Dark muscle 0 °C UV 1+0+0 12 0.442 0.742 0.668 0.983x + 0.683 0.755 2.920 3.101
Par 1+1+0 12 0.806 0.727 0.535 0.950x + 0.551 0.732 3.164 3.683
5 °C UV 1+1+0 12 0.616 0.952 0.865 1.008x + 0.114 0.954 0.680 1.111
Par 1+4+0 12 0.941 0.959 0.909 0.996x − 0.036 0.960 0.765 0.949
Ordinary muscle 0 °C UV 1+1+0 12 0.521 0.874 0.611 0.997x + 0.707 0.891 2.151 3.471
Par 1+2+0 12 0.722 0.898 0.701 0.999x + 0.016 0.898 2.052 2.865
5 °C UV 1+1+0 12 0.578 0.884 0.778 0.973x + 0.375 0.898 1.054 1.455
Par 1+5+0 12 0.981 0.995 0.955 1.002x − 0.050 0.995 0.294 0.659

aA = number of models. b N = number of samples used in producing models. UV = unit variance-scaling; Par = Pareto-scaling; RMSEE = root mean square errors of estimation; and RMSEcv: root mean square errors of cross-validation.