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Beat Knechtle 6,7,*

1 Institute of Materials Science, Faculty of Computer Science and Materials Science, University of Silesia,
75 Pułku Piechoty 1A, 41-500 Chorzów, Poland; andrzej.swinarew@us.edu.pl (A.S.S.);
jadwiga.gabor@us.edu.pl (J.G.); magdalena.popczyk@us.edu.pl (M.P.); klaudia.k.kubik@gmail.com (K.K.)

2 Institute for Engineering of Polymer Materials & Dyes, Paint & Plastics Department; Chorzowska 50a,
44-100 Gliwice, Poland; b.swinarew@impib.pl

3 Institute of Sport Science, Department of Exercise and Sport Performance, The Jerzy Kukuczka Academy of
Physical Education, 40-065 Katowice, Poland; a.stanula@awf.katowice.pl

4 Institute of Sport Science, Department of Team Sport Games, The Jerzy Kukuczka Academy of Physical
Education, 40-065 Katowice, Poland; z.waskiewicz@awf.katowice.pl

5 Department of Sports Medicine and Medical Rehabilitation, Sechenov University, Moscow 119991, Russia
6 Institute of Primary Care, University of Zurich, 8091 Zurich, Switzerland; thomas.rosemann@usz.ch
7 Medbase St. Gallen Am Vadianplatz, 9001 St. Gallen, Switzerland
* Correspondence: beat.knechtle@hispeed.ch; Tel.: +41-(0)7-1226-9300

Received: 4 July 2019; Accepted: 21 September 2019; Published: 24 September 2019
����������
�������

Abstract: In today’s analytical trends, there is an ever-increasing importance of polymeric materials
for low molecular weight compounds including amines and drugs because they can act as carriers or
capture amines or drugs. The use of this type of materials will allow the development of modern
materials for the chromatographic column beds and the substrates of selective sensors. Moreover,
these kinds of materials could be used as a drug carrier. Therefore, the aim of this study is presenting
the synthesis and complexing properties of star-shaped oxiranes as a new sensor for the selective
complexation of low molecular weight compounds. Propylene oxide and selected oxirane monomers
with carbazolyl in the substituent were selected as the monomers in this case and tetrahydrofuran as
its solvent. The obtained polymer structures were characterized using the MALDI-TOF. It was found
that in the initiation step potassium hydride deprotonates the monomer molecule and takes also
part in the nucleophilic substitution. The resulting polymeric material preferably cross-linked with
selected di-oxiranes (1,2,7,8-diepoksyoktan in respect ratio 3:1 according to active center) was then
used as a stationary phase in the column and thin layer chromatography for amine separation and
identification. Sorption ability of the resulting deposits was determined using a quartz microbalance
(QCMB). The study was carried out in stationary mode and flow cells to simulate actual operating
phase conditions. Based on changes in electrode vibration frequency, the maximum amount of
adsorbed analyte and the best conditions for its sorption were determined.

Keywords: complexing polyethers; drug-sensitive materials; acetylsalicylic acid; star-shaped polyethers

1. Introduction

A very large group of compounds used in the study are macrocyclic compounds, among others
synthetic macrocyclic polyethers. Synthetic macrocyclic polyethers have been known since 1937 when
Lüttringhaus [1] prepared oxo-crown ethers from 1,3-dihydroxybenzene. In 1967 Pedersen [2] found
that macrocyclic polyethers had a high affinity for alkali- and alkaline earth metal ions. That discovery
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involved the development of coordination chemistry of metal ions, which are strongly and selectively
complexed by selected cryptands or cryptands’ groups. The aim of research in this area is the selection
of compounds for the stationary phases in columns for UHPLC or TLC plates, the controlled transport
of ions or as materials for applications in oncology. The possibility of design compounds for use in the
construction of analytical tools for sport fair play control and molecular devices requires understanding
the relations between their structure and properties.

Complexing compounds are very popular because of the wide application range. They are used
among other things: in medicine as a capture and neutralize metal ions compounds [3–5], as catalysts
in polymerization reactions [6–13], as crown ether complex cation ionic liquids catalysts [14–16],
as activators [17,18], as protecting groups in organic synthesis [19], as chiral gels utilized as
memory-erasing recycle system or logic gates based on the stimuli-responsive gel–sol transition,
as chiral selectors to separate amino acid enantiomers in capillary electrophoresis analysis of amino
acid enantiomers [20–23], as effective sensors [24–29], as a component of ion-selective membrane
electrode [30,31], as extractants for various elements [32–36], and as hydraphiles—synthetic ionophores
designed to mimic some properties of protein channels that conduct cations such as sodium [37].

There has been a strong demand for the resolution of chiral lipophilic amines in the pharmaceutical
area. These receptors also allowed to reveal the mechanisms of influence amines in biological
systems [38]. Complexing agents have a great future, and further research in this area will lead to
significant improvements in the development of science.

The first analyzed compounds capable of binding metal ions and ammonium salts were crown
ethers. Further studies have been carried out on combining ethers with various types of substituents;
they have led to the creation of optically active molecules that allow separation of enantiomers. One
proved that the type of substituent (ring, open chain) affects the flexibility of the molecule. The use
of substituent in a ring, which is also a chiral barrier, increases the rigidity of the chiral cavity in the
crown ether and thereby enhances its ability to detect of enantiomers. The phenolic group containing
inner-ring hydroxyl group forms in the ether cavity able to combine neutral amines. Moreover, adding
an extra electron type substituent in the para position changes the acidity of the phenyl group [39].
Naemura et al. studying this effect have concluded that the ether complexation ability of neutral
amines and their stability strongly depend on the acidity, but if in the ether occur strongly acceptor or
donor groups, then there is the possibility of capturing of a wide range of neutral amines [39]. The aim
of this study was to determine complexation ability of acetylsalicylic acid, ethylenediamine, and aniline
by the polymers obtained, which in the future could contribute to their use in the previously mentioned
applications. These amines were chosen because they represent their class in a very good way and
their presence was possible to confirm by means of possessed analytical equipment. The analysis was
made using a quartz microbalance fixed and flow, using the 5 MHz crystals and 10 MHz. Because
synthesized materials are not from the group of conducting polymers to the quartz applied drops of
the polymer in a solvent and after evaporation of the solvent, the layer was analyzed. In the analyses,
the following solvents were used: tetrahydrofurane (THF), acetonitrile, phosphate buffer, pH 7.6,
demineralized water.

2. Materials and Methods

Studies of the reaction glycidol (96%; Fluka, CAS Number: 556-52-5) with potassium hydride
(30 wt % dispersion in mineral oil; Sigma-Aldrich, CAS Number: 7693-26-7) was carried out in the
THF (99,8%; Acros organic, CAS Number: 109-99-9) solution containing ether 18-crown-6 (18C6)
(Merck, CAS Number: 17455-13-9) with equimolar amounts of reactants at 20 ◦C. The reaction is
shown in Figure 1. The formation of potassium glycidolyl was confirmed by 1H and 13C NMR (Bruker
300 MHz, Katowice, Poland) (Figure 2). Moreover, the macromolecules obtained were approved by the
MALDI–ToF MS AXIMA Performance, Katowice, Poland) analysis (Figure 3). The following reaction
was assumed. Theoretical and calculated mass from the mass spectra were summarized in Table 1.
Glycidolyl molecule initiates the polymerization of potassium glycidoxide and joins a number of
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monomer units (propylene oxide, glycidol, monomer with carbazol groups), this time oxirane ring
starting chain remains intact. In the next stage alkoxylate active center reacts with the ring, which
leads to the formation of cyclic oligoether. At the same time, it creates a new alkoxylate center, which
begins the chain growth.

The formation of proper polymeric macromolecules on the cyclic core was confirmed using
MALDI ToF.

Branches are observed in case built into a subsequent inimer molecule in the chain following the
reaction (Figure 1). The number of branches is equal to the number of potassium glycidoxide units and
complexing agent to active centers ratio. One of the possible polymer branch structures formed in this
way is presented in Figure 4.
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Figure 2. 1H I 13C NMR spectra of obtained star-shaped macroinitiator with 6 arms in the presence of
crown ether 18-c-6.
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Figure 3. The MALDI-ToF analysis of obtained star-shaped structure on the cyclic macro-initiator with
6 alkoxide active centers.

Table 1. The correlation between the theoretical and calculated masses from the MALDI-ToF
spectra macromolecules.

Series Potassium Adduct * Number of Units m/z
Experimental

m/z
Theoretical

A Gx(PO)yHxK+

x = 6, y = 27 2050.34 2050.42
x = 6, y = 28 2108.28 2108.46
x = 6, y = 29 2166.26 2166.5
x = 6, y = 30 2224.22 2224.54
x = 6, y = 31 2282.15 2282.58

B Gx(PO)yHxK+

x = 7, y = 26 2067.1 2066.42
x = 7, y = 27 2124.54 2124.46
x = 7, y = 28 2183.06 2182.5
x = 7, y = 29 2241.16 2240.54
x = 7, y = 30 2299 2298.58

* G = 1,2-dioxypropane units; PO = propylene oxide units.Polymers 2019, 11, x FOR PEER REVIEW 6 of 17 
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The molecular mas of selected star-shaped polymers was approved with MALDI-ToF analysis
(Figure 5). The Mn of the polymer is equal to 9150 and the dispersity calculated by the use of SEC is
equal to 1.45.
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Figure 5. The MALDI-ToF mass analysis of AP1 Polymer.

The structures of the utilized polymers are shown on the Figures 6–9. Their characterization
was the subject of the separate paper, “Synthesis and spectral analysis of hyperbranched poly(ethers)
containing carbazole or hydrazone groups” [40]. For each sample geometric simulation was performed
using Cambridgesoft ChemOffice software. For AP I (Figure 6), S XVI (Figure 7), SXVII (Figure 8),
S XVIII (Figure 9) the simulation was performed for the structure with one side–arm to present clearly
location of the side chain.
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All measurements were performed on quartz microbalance type, Electrochemical Quartz Crystal
Microbalance EQCM 5710 with flow-through holder 5610 (Figure 10). Analytical parameters of used
QCMB are presented in Table 2.

The tests were carried out in a flow cell using a constant volume of solvent. The analyte in the
form of a solution in an identical solvent was injected at points marked with red arrows, and changes
in the natural frequency of the disk were observed in accordance with the Sauerbrey equation.

∆ f =
−2 f 2

0 ∆m

A
(
µQρQ

)1/2
(1)

∆f = frequency change of a quartz resonator (MHz)
∆m = mass change of a quartz resonator(g)
µQ = shear modulus of quartz (2.947 × 1011 dyn·cm−2)
ρQ = quartz density (2.648 g·cm−3)
A = acoustically active area of a quartz resonator (πr2 = 3.14 × 0.252 = 0.1963 cm2)
f 0 = resonant frequency of a quartz resonator (5 or 10 MHz for EQCM 5710)

The disk was placed so that the possible sedimentation of the analyte from the solvent would not
distort the result by gravitational subsidence on the disk. The location of the disk guaranteed that only
the absorbed analyte will be measured (its weight will be marked).
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Below is a schematic diagram of the cell as well as the measurement parameters, which presents
the most important technical data of the device used.
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Figure 10. The analytical cell with holder equipped with quartz resonator.

Table 2. Quartz crystal parameters.

Resonant Frequency, MHz 5 10

Surface Shape plano-convex plano-plano

Quartz Crystal Diameter, mm 14.0

Electrode Diameter, mm 5.0

Resonant Frequency Range, MHz 4.90 to 5.05 9.90 to 10.05

Sensitivity, ng/Hz cm2 17.7 4.2

Mass Resolution, ng 0.35 0.08

Detectability (at Signal/Noise = 3), ng 3.3 1.1

Maximum Mass Load, mg 140 50

Electrode Material Au, Ag, Pt, Pd or Ti; customized electrodes are also available (vacuum
deposited or cathodically sputtered)

Quartz Crystal Holder
Dip type; wetted parts are made of Kel-F® and PTFE with the Au plated
electrode contacts; diameter 25 mm; length 165 mm; different holders are

necessary for 5 MHz and 10 MHz quartz resonators

The used quartz microbalance is a simple quartz resonator working with shear vibrations.
Applying one or both transversely vibrating surfaces of the resonator to a certain loading mass reduces
resonant frequency (extension of the vibration period) of the Kanazawa and decreases the amplitude
of vibrations. In the case of analyzing the sensors, the amplitudes are very small—in the order of a
fraction of nm, and the frequencies range from several to several dozen MHz. The frequency and
amplitude of the microbalance can be measured electronically, but the frequency measurement is much
more precise. The frequency change is proportional to the change in mass.
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Quartz microbalances are used to measure the thickness of very thin layers of their mass and the
detection of chemical compounds in liquids and gases. The microbalance acts as a detector of chemical
compounds when the polyetherol layer, which is loading, is capable of selective sorption of particles
from the environment. The drop in the vibration frequency of the microbalance is then proportional to
the mass of the sorptionable particles.

The quartz microbalance enables particle detection at the ppm level depending on its center
frequency and the molecular weight of the particles. The mass values determined with QCMB may be
in the order of 0.1 ng = 10–10 g [41]. Sorption and particle desorption are in this case the law of Nernst
division, which means that this type of sensor can work in a reversible manner.

The construction and principle of operation of the above-mentioned equipment is described in
the manual, “Flow-through Quartz Crystal Holder type 5610 for Electrochemical Quartz Crystal
Microbalance type EQCM 5710 User Manual”, prepared by Włodzimierz Kutner, Agnieszka
Kochman [42].

3. Results and Discussion

Characterization of obtained polymeric materials was performed through a size exclusion
chromatography technique. Number-average and weight-average molar masses, Mn and Mw
respectively, and dispersity of polymers, Mw/Mn, were estimated by means of size exclusion
chromatography (SEC) on a Shimadzu Prominance UFLC instrument at 40 ◦C on Shodex 300 mm ×
8 mm OHpac column using tetrahydrofuran as a solvent. Polyethylene glycols (Fluka) were used
as calibration standards. MALDI-TOF spectra were recorded on a Shimadzu AXIMA Performance
instrument. Dithranol (Sigma-Aldrich) was used as a matrix without any cationating agent.

All the measurements for the adsorption analysis of novel designed and prepared polymeric
stationary phase for drug analysis were prepared on QMCB.

3.1. Polymer AP I

Test P001: medium was phosphate buffer pH 7.6; absorbed compound was acetyl salicylic acid
dissolved in a buffer. The final concentration of acid was directly 50 mM (Figure 11).
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Figure 11. Changes of frequency in time for AP I polymer; absorbed compound—acetyl salicylic acid
in a buffer.

Test P002: medium was phosphate buffer pH 7.6; absorbed compound was acetylsalicylic acid
dissolved in ethanol. The final concentration of acid was about 50 mM. In order to verify the reaction
of the polymer with ethanol, the last two instillations are only with ethanol. The study was conducted
at elevated temperatures 40 ◦C (Figure 12).
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Figure 12. Changes of frequency in time for AP I polymer; absorbed compound—acetylsalicylic acid
in ethanol.

Test P003: medium was phosphate buffer pH 7.6 with ethanol; absorbed compound was
ethylenediamine dissolved in ethanol. The final concentration of acid was about 50 mM. In order to
verify the reaction of the amine, polymer is added in two portions to ethylenediamine concentration of
approximately 50 nM. The study was conducted at elevated temperatures, 40 ◦C (Figure 13).
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3.2. Polymer XVI

Test P001: medium was acetonitrile; absorbed compound was acetylsalicylic acid dissolved in
acetonitrile. The final concentration of acid was about 200 mM (Figure 14).
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Test P002: medium was acetonitrile; absorbed compound was acetylsalicylic acid dissolved in
acetonitrile. The final concentration of acid was about 150 mM. The measurement was performed to
confirm the result of the first measurement (Figure 15).
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3.3. Polymer XVII

Test P001: medium was THF; absorbed compound was acetylsalicylic acid dissolved in acetonitrile
and aniline in THF. The final concentration of acid was about 265 mM (Figure 16) and final concentration
of aniline was about 180 mM (Figure 17).
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3.4. Polymer XVIII

Test P001: measurement was made on a flow microbalance; the medium was de-mineralized
water; absorbed compound was ethylenediamine dissolved in water. Concentration of analyte step by
step injected on the column in 5 stages refers 10 µM, 50 µM, 80 µM, 80 µM, and 80 µM, then the flow
was increased at a rate of 1.5 mL/h to 25 mL/h. Frequency measurement was carried out together with
the measurement of resistance (Figure 18).

Analyzing the obtained results, there is a quick and precise answer of the sensor to the presence of
detected substance, whether these polymer complexes are sensitive to any of the analyzed small molar
mass compounds. However, it was shown in previous papers that obtained polymeric sorbent in
ambient conditions is not neutral. Unfortunately, with prepared only thin films of the polymeric phase,
it is hard to obtain reproducible measurement results which prevent any misinterpretation. Small
but visible lack of reproducibility was probably caused by differences in the thickness and uniformity
of a polymer layer applied to the base surface. Thin films prepared by electrochemical deposition;
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spin-coating on organic, inorganic glass; and ITO will be the subject of a separate paper. The most
representative behavior for each of the components is presented for API, XVI, XVII, and XVIII.
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Sorbent API was very promising; unfortunately, without knowing the resistance, we cannot tell
what caused sudden increase in frequency. XVI did not show any characteristic behavior for the
complexing layer, but after dosing, decrease in frequency was observed (unfortunately the changes
were random). XVII did not show the slightest ability to absorb acetylsalicylic acid or aniline. To be sure,
we repeated the test with dynamic resistance measurement, and we did not see significant changes in
resistance, which would indicate that nothing happened with the polymer layer. Despite of that, the
frequency of quartz was still steadily increasing. Unexpectedly, sorbent XVIII gave the most promising
results. With increased concentration of the absorbed compound, the frequency decreased. However,
resistance increased, which gave us the information that the layer of polymer on the quartz is changing.
Unfortunately, one measurement does not give us certain information about what is happening on the
quartz surface.

4. Conclusions

Using the MALDI-ToF technique, the structure and molecular weight of the polymers obtained
were confirmed; in addition, the behavior was consistent with the theoretical assumptions. In spite
of the impossibility to apply the layer in an electrochemical manner, thin homogeneous layers were
obtained, which did not go beyond the scope of the resonator operation, as can be seen in the figures
shown. The applied layer was also sensitive to injections of small-molecule substances, which was
demonstrated in all of the above graphs as changes in the center frequency of the vibrating disk.
These results clearly indicate the sensitivity of the material to low molecular weight substances in
a suitable solvent. Due to the stability of the layer, we used only polar solvents such as acetonitrile
and buffer and were careful that the layer did not capture ions from the prepared buffers. In future
experiments, it is recommended that the polymer layer be applied using spinning or centrifugal coating
techniques, which can greatly unify the surface and allow for statistical analyses; it would also be
necessary to deposit the layer from disks after measurement and re-perform the analysis using the
time-of-flight detector to confirm the molecular weight change of the polymer by complexation of the
corresponding compounds.
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The polymers synthesized are perfect fitting to determine and complex small amines and low
molar mass drugs, due to having some complexing properties that can be very useful in drug separation
and identification, with high qualitative and quantitative sensitivity on molecular level. The number
of the experiments and the lack of reproducibility of measurements cannot clearly define the size and
performance capabilities of the supramolecular complexes; to determine this phenomena’s mechanism,
more measurements are required with bigger repeatability. Measurements without resistance do not
allow determining with certainty the absorption process during the experiment. Because mechanical
properties of the polymer layer are a question during measurement that lasts at least one hour, it may
be followed by swelling, stiffness, partial or complete washing out of layers from quartz. The main
obstacle to clear and reliable analysis of the results was the lack of ability to conduction through the
studied polymers. There was no possibility to apply the layer by electrochemical deposition. As a
result, we have no information about the thickness, quality, and durability of the layer.

Assuming that the initial measurements were intended to refer to both the technique and the
measuring equipment as well as to determine whether there are straight reactions between the layer of
polymer and small molecular drug, we can qualify results as positive.
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Abbreviations

THF tetrahydrofurane
macroinitiator cyclic oligo potassium glycidoxide

AP I
a polymer with photoluminescent properties, and a carbazol group terminated with
CH3 groups, soluble in nonpolar solvents (THF, hexane)

S XVI poliglycidol soluble in polar solvents (water, methanol), terminated with OH groups
S XVII poliglycidol soluble in polar solvents (water, methanol), terminated with OH groups

S XVII
poly (propylene oxide) soluble in nonpolar solvents (THF, hexane), terminated with
CH3 groups

S XIX
poly (propylene oxide) soluble in nonpolar solvents (THF, hexane), terminated with
CH3 groups
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