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Abstract

Principal component analysis (PCA) is fundamental to statistical machine learning. It extracts 

latent principal factors that contribute to the most variation of the data. When data are stored 

across multiple machines, however, communication cost can prohibit the computation of PCA in a 

central location and distributed algorithms for PCA are thus needed. This paper proposes and 

studies a distributed PCA algorithm: each node machine computes the top K eigenvectors and 

transmits them to the central server; the central server then aggregates the information from all the 

node machines and conducts a PCA based on the aggregated information. We investigate the bias 

and variance for the resulting distributed estimator of the top K eigenvectors. In particular, we 

show that for distributions with symmetric innovation, the empirical top eigenspaces are unbiased 

and hence the distributed PCA is “unbiased”. We derive the rate of convergence for distributed 

PCA estimators, which depends explicitly on the effective rank of covariance, eigen-gap, and the 

number of machines. We show that when the number of machines is not unreasonably large, the 

distributed PCA performs as well as the whole sample PCA, even without full access of whole 

data. The theoretical results are verified by an extensive simulation study. We also extend our 

analysis to the heterogeneous case where the population covariance matrices are different across 

local machines but share similar top eigen-structures.
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1 Introduction

Principal component analysis (PCA) (Pearson, 1901; Hotelling, 1933) is one of the most 

fundamental tools in statistical machine learning. The past century has witnessed great 

efforts on establishing consistency and asymptotic distribution of empirical eigenvalues and 

eigenvectors. The early classical work of Anderson (1963) studied the asymptotic normality 

of eigenvalues and eigenvectors of sample covariances from multivariate Gaussian 

distribution with dimension d fixed and sample size n going to infinity. Recent focus moves 

on to the high-dimensional regimes, i.e., both n and d go to infinity. A partial list of such 

literatures are Johnstone (2001); Baik et al. (2005); Paul (2007); Johnstone and Lu (2009); 

Jung and Marron (2009); Onatski (2012); Shen et al. (2016); Wang and Fan (2017). As 

demonstrated by these papers, asymptotic behaviors of empirical eigenvalues and 
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eigenvectors depend on the scaling of n, d and also the spikiness of the covariance. When n 
≪ d, the empirical leading eigenvector v1 is inconsistent in estimating the true top 

eigenvector v1 unless the top eigenvalue λ1 diverges fast. This phenomenon inspires another 

line of research on sparse PCA where certain sparsity on top eigenvectors is imposed to 

overcome the noise accumulation due to high dimensionality; see e.g., Johnstone and Lu 

(2009); Vu et al. (2013); Shen et al. (2013); Cai et al. (2013). Besides the asymptotic study, 

there are also non-asymptotic results on PCA, for example, Nadler (2008) and Reiss and 

Wahl (2016).

With rapid developments of information and technology, massive datasets are now 

ubiquitous. Statistical analysis such as regression or PCA on such enormous data is 

unprecedentedly desirable. However, large datasets are usually scattered across distant 

places such that to fuse or aggregate them is extremely difficult due to communication cost, 

privacy, data security and ownerships, among others. Consider giant IT companies that 

collect data simultaneously from places all around the world. Constraints on communication 

budget and network bandwidth make it nearly impossible to aggregate and maintain global 

data in a single data center. Another example is that health records are scattered across many 

hospitals or countries. It is hard to process the data in a central location due to privacy and 

ownership concerns. To resolve these issues, efforts have been made to exploiting distributed 

computing architectures and developing distributed estimators or testing statistics based on 

data scattered around different locations. A typical distributed statistical method first 

calculates local statistics based on each sub-dataset and then combines all the subsample-

based statistics to produce an aggregated statistic. Such distributed methods fully adapt to 

the parallel data collection procedures and thus significantly reduce the communication cost. 

Many distributed regression methods follow this fashion (Zhang et al., 2013; Chen and Xie, 

2014; Battey et al., 2015; Lee et al., 2017; Blanchard and Mucke, 2017; Guo et al., 2017). 

The last two papers study distributed kernel regression with spectral regularization using 

eigen-decomposition of Gram matrices, which is relevant to but different from our 

distributed PCA.

Among all the efforts towards creating accurate and efficient distributed statistical methods, 

there has been rapid advancement on distributed PCA over the past two decades. Unlike the 

traditional PCA where we have the complete data matrix X ∈ ℝN × d with d features of N 
samples at one place, the distributed PCA needs to handle data that are partitioned and 

stored across multiple servers. There are two data partition regimes: “horizontal” and 

“vertical”. In the horizontal partition regime, each server contains all the features of a subset 

of subjects, while in the vertical partition regime, each server has a subset of features of all 

the subjects. To conduct distributed PCA in the horizontal regime, Qu et al. (2002) proposes 

that each server computes several top eigenvalues and eigenvectors on its local data and then 

sends them to the central server that aggregates the information together. Yet there is no 

theoretical guarantee on the approximation error of the proposed algorithm. Liang et al. 

(2014), Kannan et al. (2014) and Boutsidis et al. (2016) aim to find a good rank-K 
approximation of X of X. To assess the approximation quality, they compare X − X F

against minrank(B)≤K B − X F and study the excess risk. For the distributed PCA in the 
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vertical data partition regime, there is also a great amount of literature, for example, 

Kargupta et al. (2001), Li et al. (2011), Bertrand and Moonen (2014), Schizas and Aduroja 

(2015), etc. This line of research is often motivated from sensor networks and signal 

processing where the vertically partitioned data are common. Our work focuses on the 

horizontal partition regime, i.e., we have partitions over the samples rather than the features.

Despite these achievements, very few papers establish rigorous statistical error analysis of 

the proposed distributed PCA methods. To our best knowledge, the only works that provide 

statistical analysis so far are El Karoui and d’Aspremont (2010) and Chen et al. (2016). To 

estimate the leading singular vectors of a large target matrix, both papers propose to 

aggregate singular vectors of multiple random approximations of the original matrix. El 

Karoui and d’Aspremont (2010) adopts sparse approximation of the matrix by sampling the 

entries, while Chen et al. (2016) uses Gaussian random sketches. The works are related to 

ours, since we can perceive sub-datasets in the distributed PCA problem as random 

approximations. However, our analysis is more general, since it does not rely on any matrix 

incoherence assumption as required by El Karoui and d’Aspremont (2010) and it explicitly 

characterizes how the probability distribution affects the final statistical error in finite 

sample error bounds. Besides, our aggregation algorithm is much simpler than the one in 

Chen et al. (2016). The manuscript Garber et al. (2017) came out after we submitted the first 

draft of our work. The authors focused on estimation of the first principal component rather 

than the multi-dimensional eigenspaces, based on very different approaches.

We propose a distributed algorithm with only one-shot communication to solve for the top K 
eigenvectors of the population covariance matrix ∑ when samples are scattered across m 
servers. We first calculate for each subset of data 𝓁 its top K eigenvectors 

VK
(𝓁) = v1

(𝓁), ⋯, vK
(𝓁)

𝓁 = 1
m

 of the sample covariance matrix there, then compute the average 

of projection matrices of the eigenspaces Σ∼ = (1/m) Σ
i = 1

m
VK

(𝓁)VK
(𝓁)T, and finally take the top K 

eigenvectors of Σ∼ as the final estimator V∼K = v1
(𝓁), ⋯, vK

(𝓁) . The communication cost of this 

method is of order O(mKd). We establish rigorous non-asymptotic analysis of the statistical 

error VK VK
T − VKVK

T
F

, and show that as long as we have a sufficiently large number of 

samples in each server, VK enjoys the same statistical error rate as the standard PCA over the 

full sample. The eigenvalues of Σ are easily estimated once we get good estimators of the 

eigenvectors, using another round of communication.

The rest of the paper is organized as follows. In Section 2, we introduce the problem setup of 

the distributed PCA. In Section 3, we elucidate our distributed algorithm for estimating the 

top K eigenvectors. Section 4 develops the statistical error rates of the aggregated estimator. 

The results are extended to heterogeneous samples in Section 5. Finally in Section 6 we 

present extensive simulation results to validate our theories.
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2 Problem setup

We first collect all the notations that will be used. By convention we use regular letters for 

scalars and bold letters for both matrices and vectors. We denote the set {1, 2, 3,..., d} by [d] 

for convenience. For two scalar sequences {an}n ≥ 1 and {bn}n ≥ 1, we say an ≳ bn an ≲ bn  if 

there exists a universal constant C > 0 such that an ≥ Cbn an ≤ Cbn , and an ≍ bn if both an ≳ 

bn and an ≲ bn hold. For a random variable X ∈ ℝ, we define X
ψ2

= supp ≥ 1 𝔼 | X|p
1
p / p

and define X
ψ1

= supp ≥ 1 𝔼 | X|p
1
p / p. Please refer to Vershynin (2012) for equivalent 

definitions of ψ2-norm and ψ1-norm. For two random variables X and Y, we use X =d Y to 

denote that X and Y have identical distributions. Define ei to be the unit vector whose 

components are all zero except that the i-th component equals 1. For q ≥ r, 𝒪q × r denotes the 

space of q × r matrices with orthonormal columns. For a matrix A ∈ ℝn × d, we use A F, 

A * and A 2 to denote the Frobenius norm, nuclear norm and spectral norm of A, 

respectively. Col(A) represents the linear space spanned by column vectors of A. We denote 

the Moore-Penrose pseudo inverse of a matrix A ∈ ℝd × d by A†. For a symmetric matrix A, 

we use λj(A) to refer to its j-th largest eigenvalue.

Suppose we have N i.i.d random samples Xi i = 1
N ⊆ ℝd with 𝔼X1 = 0 and covariance matrix 

𝔼 X1X1
T = Σ. By spectral decomposition, Σ = V Λ VT, where Λ = diag(λ1, λ2…, λd) with 

λ1 ≥ λ2 ≥ … ≥ λd and V = (v1, …, vd) ∈ 𝒪d×d. For a given K ∈ [d], let VK = v1, ⋯, vK . Our 

goal is to estimate Col(VK), i.e., the linear space spanned by the top K eigenvectors of Σ. To 

ensure the identifiability of Col(VK), we assume Δ: = λK − λK + 1 > 0 and define κ: = λ1/Δ to 

be the condition number. Let r = r(Σ) := Tr(Σ)/λ1 be the effected rank of Σ.

The standard way of estimating Col(VK) is to use the top K eigenspace of the sample 

covariance Σ = 1
N ∑i = 1

N XiXi
T. Let Σ = V Λ VT be spectral decomposition of Σ, where 

Λ = diag λ1, ⋯, λd  with λ1 ≥ ⋯ ≥ λd and V = v1, ⋯, vd . We use the empirical top K 

engenspace Col(VK), where VK = v1, ⋯, vK , to estimate the eigenspace Col(VK). To 

measure the statistical error, we adopt ρ VK, VK : = VKVK
T − VKVK

T
F

, which is the 

Frobenius norm of the difference between projection matrices of two spaces and is a well-

defined distance between linear subspaces. In fact, ρ VK, VK  is equivalent to the so-called 

sin Θ distance. Denote the singular values of VK
T VK by σi i = 1

K  in descending order. Recall 

that Θ VK, VK = diag θ1, ⋯, θK , the principal angles between Col(VK) and Col VK , are 

defined as diag cos−1σ1, ⋯, cos−1σK . Then we define sin Θ VK, VK  to be 

diag sinθ1, ⋯, sinθK . Note that
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ρ2 VK, VK = VKVK
T

F
2 + VKVK

T

F

2
− 2Tr VKVK

T VKVK
T

= 2K − 2 VK
T

VK F

2

= 2 ∑
i = 1

K
1 − σi

2 = 2 ∑
i = 1

K
sin2θi = 2 sin Θ VK, VK F

2 . (2.1)

Therefore, ρ VK, VK  and sin Θ VK, VK F
 are equivalent.

Now consider the estimation of top K eigenspace under the distributed data setting, where 

our N = m · n samples are scattered across m machines with each machine storing n 
samples*. Application of standard PCA here requires data or covariance aggregation, thus 

leads to huge communication cost for high-dimensional big data. In addition, for the areas 

such as genetic, biomedical studies and customer services, it is hard to communicate raw 

data because of privacy and ownership concerns. To address these problems, we need to 

avoid naive data aggregation and design a communication-efficient and privacy-preserving 

distributed algorithm for PCA. In addition, this new algorithm should be statistically 

accurate in the sense that it enjoys the same statistical error rate as the full sample PCA.

Throughout the paper, we assume that all the random samples Xi i = 1
N  are i.i.d sub-

Gaussian. We adopt the definition of sub-Gaussian random vectors in Koltchinskii and 

Lounici (2017) and Reiss and Wahl (2016) as specified below, where M is assumed to be a 

constant. It is not hard to show that the following definition is equivalent to the definition 

Σ1/2 †X ψ2
≤ M used in Vershynin (2012), Wang and Fan (2017), and many other authors.

Definition 2.1. We say the random vector X ∈ ℝd is sub-Gaussian if there exists M > 0 such 

that uTX ψ2
≤ M 𝔼 uTX 2

, ∀u ∈ ℝd.

We emphasize here that the global i.i.d assumption on Xi i = 1
N  can be further relaxed. In 

fact, our statistical analysis only requires the following three conditions: (i) within each 

server 𝓁, data are i.i.d.; (ii) across different servers, data are independent; (iii) the covariance 

matrices of the data in each server Σ(𝓁)
𝓁 = 1
m

 share similar top K eigenspaces. We will 

further study this heterogeneous regime in Section 5. To avoid future confusion, unless 

specified, we always assume i.i.d. data across servers.

*Note that here for simplicity we assume the subsample sizes are homogeneous. We can easily extend our analysis to the case of 
heterogeneous sub-sample sizes with similar theoretical results.
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3 Methodology

We now introduce our distributed PCA algorithm. For 𝓁 ∈ [m], let Xi
(𝓁)

i = 1
n

 denote the 

samples stored on the 𝓁-th machine. We specify the distributed in Algorithm 1.

Algorithm 1

Distributed PCA

1
On each server, compute locally the K leading eigenvectors VK

(𝓁) = v1
(𝓁), ⋯, vK

(𝓁) ∈ ℝd × K
 of the 

sample covariance matrix Σ(𝓁) = (1/n)Xi
(𝓁)Xi

(𝓁)T
. Send VK

(𝓁)
 to the central processor.

2
On the central processor, compute Σ = (1/m)∑𝓁 = 1

m VK
(𝓁)VK

(𝓁)T
, and its K leading eigenvectors 

V j j = 1
K

. Output: VK = v1, ⋯, vK ∈ ℝd × K
.

In other words, each server frst calculates the top K eigenvectors of the local sample 

covariance matrix, and then transmits these eigenvectors VK
(𝓁)

𝓁 = 1
m

 to a central server, 

where the estimators get aggregated. This procedure has similar spirit as distributed 

estimation based on one-shot averaging in Zhang et al. (2013), Battey et al. (2015), Lee et al. 

(2017), among others. To see this, we recall the SDP formulation of the eigenvalue problem. 

Let VK = v1, ⋯, vK  contain the K leading eigenvectors of Σ = 1
m ∑𝓁 = 1

m Σ(𝓁). Lemma 5 in 

Section 8.2.2 asserts that PK = VKVK
T  solves the SDP:

min
P ∈ Sd × d

− Tr PT Σ

s.t Tr(P) ≤ K, P 2 ≤ 1, P ≽ 0. (3.1)

Here Sd×d refers to the set of d × d symmetric matrices. In the traditional setting, we have 

access to all the data, and PK is a natural estimator for VKVK
T . In the distributed setting, each 

machine can only access Σ(𝓁). Consequently, it solves a local version of (3.1):

min
P ∈ Sd × d

− Tr PT Σ(𝓁)

s.t Tr(P) ≤ K, P 2 ≤ 1, P ≽ 0. (3.2)
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The optimal solution is PK
(𝓁) = VK

(𝓁)VK
(𝓁)T. Since the loss function in (3.1) is the average of 

local loss functions in (3.2), we can intuitively average the optimal solutions PK
(𝓁) to 

approximate PK. However, the average 1
m ∑𝓁 = 1

m PK
(𝓁) may no longer be a rank-K projection 

matrix. Hence a rounding step is needed, extracting the leading eigenvectors of that average 

to get a projection matrix.

Here is another way of understanding the aggregation procedure. Given a collection of 

estimators VK
(𝓁)

𝓁 = 1
m

⊆ 𝒪d × K and the loss ρ( ⋅ , ⋅ ), we want to find the center U ∈ 𝒪d × K

that minimizes the sum of squared losses ∑𝓁 = 1
m ρ2 U, VK

(𝓁) . Lemma 6 in Section 8.2.2 

indicates that U = VK is an optimal solution. Therefore, our distributed PCA estimator VK is 

a generalized “center” of individual estimators.

It is worth noting that in this algorithm, we do not really need to compute Σ(𝓁)
𝓁 = 1
m

 and Σ .

VK
(𝓁)

𝓁 = 1
m

 and VK can be derived from top-K SVD of data matrices. This is far more 

expeditious than the entire SVD and highly scalable, by using, for example, the power 

method (Golub and Van Loan, 2012). As regard to the estimation of the top eigenvalues of Σ, 

we can send the aggregated eigenvectors v j j = 1
K

 back to the m servers, where each one 

computes λ j
(𝓁)

j = 1
K = v j

T Σ(𝓁) v j j = 1
K

. Then the central server collect all the eigenvalues 

and deliver the average eigenvalues λ j j = 1
K = 1

m ∑𝓁 = 1
m λ j

(𝓁)
j = 1
K

 as the estimators of all 

eigenvalues.

As we can see, the communication cost of the proposed distributed PCA algorithm is of 

order O(mKd). In contrast, to share all the data or entire covariance, the communication cost 

will be of order O(md min(n, d)). Since in most cases K = o(min(n, d)), our distributed PCA 

requires much less communication cost than naive data aggregation.

4 Statistical error analysis

Algorithm 1 delivers VK to estimate the top K eigenspace of Σ. In this section we analyze 

the statistical error of VK, i.e., ρ(VK, VK). The main message is that VK enjoys the same 

statistical error rate as the full sample counterpart VK as long as the subsample size n is 

sufficiently large.

We first conduct a bias and variance decomposition of ρ(VK, VK), which serves as the key 

step in establishing our theoretical results. Recall that Σ = (1/m)∑𝓁 = 1
m VK

(𝓁)VK
(𝓁)T and VK

consists of the top K eigenvectors of Σ . Define Σ* : = 𝔼 VK
(𝓁)VK

(𝓁)T  and denote its top K 

eigenvectors by VK* = v1*, ⋯, vK* ∈ ℝd × K . When the number of machines goes to infinity, Σ
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converges to Σ*, and naturally we expect Col VK  to converge to Col VK*  as well. This line 

of thinking inspires us to decompose the statistical error ρ(VK, VK) into the following bias 

and sample variance terms:

ρ VK, VK ≤ ρ VK, VK*
sample variance term

+ ρ VK*, VK
bias term

.
(4.1)

The first term is stochastic and the second term is deterministic. Here we elucidate on why 

we call ρ VK, VK*  the sample variance term and ρ VK* , VK  the bias term respectively.

1. Sample variance term ρ VK, VK* :

By Davis-Kahan’s Theorem (Theorem 2 in Yu et al. (2015)) and (2.1), we have

ρ VK, VK* ≲
Σ − Σ* F

λK Σ* − λK + 1 Σ* . (4.2)

As we can see, ρ VK, VK*  depends on how the average Σ = 1
m ∑𝓁 = 1

m VK
(𝓁)VK

(𝓁)T

concentrates to its mean Σ*. This explains why we call ρ VK, VK*  the sample 

variance term. We will show in the sequel that for sub-Gaussian random samples, 

VK
(𝓁)VK

(𝓁)T −Σ*
F 𝓁 = 1

m
and Σ − Σ* F are sub-exponential random variables 

and under appropriate regularity assumptions,

∥ Σ − Σ* ∥F ψ1
≲ 1

m
∥VK

(1)VK
(1)T − Σ* ∥F ψ1

. (4.3)

If we regard ψ1-norm as a proxy for standard deviation, this result is a 

counterpart to the formula for the standard deviation of the sample mean under 

the context of matrix concentration. By (4.3), the average of projection matrices 

Σ enjoys a similar square-root convergence, so does ρ VK, VK* .

2. Bias term ρ VK* , VK :

The error ρ VK* , VK  is deterministic and independent of how many machines we 

have, and is therefore called the bias term. We will show this bias term is exactly 

zero when the random sample has a symmetric innovation (to be defined later). 

In general, we will show that the bias term is negligible in comparison with the 

sample variance term when the number of nodes m is not unreasonably large.

In the following subsections, we will analyze the sample variance term and bias 

term respectively and then combine these results to obtain the convergence rate 

for ρ VK, VK .
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4.1 Analysis of the sample variance term

To analyze ρ VK, VK* , as shown by (4.2), we need to derive the order of the numerator 

Σ − Σ* F and denominator λK Σ* − λK + 1 Σ* . We first focus on the matrix 

concentration term Σ − Σ* F = 1
m Σ𝓁 = 1

m
VK

(𝓁)VK
(𝓁)T − Σ*

F
. Note that Σ − Σ* is an 

average of m centered random matrices. To establish the correspondent concentration 

inequality, we first investigate each individual term in the average, i.e., 

VK
(𝓁)VK

(𝓁)T − Σ* for 𝓁 ∈ [m] . In the following lemma, we show that when random samples are 

sub-Gaussian, VK
(𝓁)VK

(𝓁)T − Σ*
F

 is sub-exponential and we can give an explicit upper 

bound of its ψ1 − norm.

Lemma 1. Suppose that on the 𝓁-th server we have n i.i.d. sub-Gaussian random samples 

Xi i = 1
n in ℝd with covariance matrix Σ. There exists a constant C > 0 such that when n ≥ r,

∥VK
(𝓁)VK

(𝓁)T − Σ* ∥F ψ1
≤ Cκ Kr

n .

Note that here we use the Frobenius norm to measure the distance between two matrices. 

Therefore, it is equivalent to treat VK
(𝓁)VK

(𝓁)T
𝓁 = 1
K

and Σ* as d2—dimensional vectors and 

apply the concentration inequality for random vectors to bound Σ − Σ* F . As we will 

demonstrate in the proof of Theorem 1, ∥ Σ − Σ* ∥F ψ1
≲ 1

m ∥VK
(l)VK

(l)T − Σ* ∥F ψ1
.

With regard to λK Σ* − λK + 1 Σ* , when the individual node has enough samples, VK
(𝓁)

and VK will be close to each other and so will Σ* = 𝔼 VK
(𝓁)VK

(𝓁)T  and VKVK
T . Given 

λK VKVK
T = 1 and λK + 1 VKVK

T = 0, we accordingly expect λK Σ*  and λK + 1 Σ*  be 

separated by a positive constant as well.

All the arguments above lead to the following theorem on ρ VK, VK* .

Theorem 1. Suppose X1, ⋯, XN are i.i.d. sub-Gaussian random vectors in ℝd with covariance 

matrix Σ and they are scattered across m machines. If n ≥ r and Σ* − VKVK
T

2 ≤ 1/4, then

ρ VK, VK* ψ1
≤ Cκ Kr

N ,

Where C is some universal constant.
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4.2 Analysis of the bias term

In this section, we study the bias term ρ VK* , VK  in (4.1). We first focus on a special case 

where the bias term is exactly zero. For a random vector X with covariance Σ = V Λ VT, let 

Z = Λ
− 1

2 VTX . We say X has symmetric innovation if Z =d Id − 2e je j
T Z, ∀ j ∈ [d] . In other 

words, flipping the sign of one component of Z will not change the distribution of Z. Note 

that if Z has density, this is equivalent to say that its density function has the form 

p z1 , z2 , ⋯, zd . All elliptical distributions centered at the origin belong to this family. In 

addition, if Z has symmetric and independent entries, X has also symmetric innovation. It 

turns out that when the random samples have symmetric innovation, Σ* : = 𝔼 VK
(𝓁)VK

(𝓁)T  and 

Σ share exactly the same set of eigenvectors. When we were finishing the paper, we noticed 

that Chen et al. (2016) had independently established a similar result for the Gaussian case.

Definition 4.1. Let V be a K-dimensional linear subspace of ℝd . For a subspace estimator 

represented by V ∈ 𝒪d × K, we say it is unbiased for V if and only if the top K eigenspace of 

𝔼 VVT is 𝒱 .

If VK
(𝓁) is unbiased for Col(VK), then ρ VK* , VK = 0 and we will only have the sample 

variance term in (4.1). In that case, aggregating VK
(𝓁)

𝓁 = 1
m

 reduces variance and yields a 

better estimator VK . Theorem 2 shows that this is the case so long as the distribution has 

symmetric innovation and the sample size is large enough.

Theorem 2. Suppose on the 𝓁-th server we have n i.i.d. random samples Xi i = 1
n  with 

covariance Σ. If Xi i = 1
n  have symmetric innovation, then VTΣ*V is diagonal, i.e., Σ* and Σ 

share the same set of eigenvectors. Furthermore, if Σ* − VKVK
T

2 < 1/2, then VK
(𝓁)

𝓁 = 1
m

are unbiased for Col(VK) and ρ VK* , VK = 0.

It is worth pointing out that distributed PCA is closely related to aggregation of random 

sketches of a matrix (Halko et al., 2011; Tropp et al., 2016). To approximate the subspace 

spanned by the K leading left singular vectors of a large matrix A ∈ ℝ
d1 × d2, we could 

construct a suitable random matrix Y ∈ ℝ
d2 × n

 with n ≥ K, and use the left singular subspace 

of AY ∈ ℝ
d1 × n

 as an estimator. AY is called a random sketch of A. It has been shown that to 

obtain reasonable statistical accuracy, n can be much smaller than min(d1, d2) as long as A is 

approximately low rank. Hence it is much cheaper to compute SVD on AY than on A. When 

we want to aggregate a number of such subspace estimators, a smart choice of the random 

matrix ensemble for Y is always preferable. It follows from Theorem 2 that if we let Y have 

i.i.d. columns from a distribution with symmetric innovation (e.g., Gaussian distribution or 
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independent entries), then the subspace estimators are unbiased, which facilitates 

aggregation.

Here we explain why we need the condition Σ* − VKVK
T

2 < 1/2 to achieve zero bias. First 

of all, the condition is similar to a bound on the “variance” of the random matrix VK
(𝓁) whose 

covariance Σ* is under investigation. As demonstrated above, with the symmetric 

innovation, Σ* has the same set of eigenvectors as Σ, but we still cannot guarantee that the 

top K eigenvectors of Σ* match with those of Σ. For example, the (K + 1)-th eigenvector of 

Σ might be the K-th eigenvector of Σ*. In order to ensure the top K eigenspace of Σ* is 

exactly the same as that of Σ, we require VK
(𝓁) to not deviate too far from VK so that Σ* is 

close enough to VKVK
T . Both Theorems 1 and 2 require control of Σ* − VKVK

T
2, which will 

be studied shortly.

For general distributions, the bias term is not necessarily zero. However, it turns out that 

when the subsample size is large enough, the bias term ρ VK* , VK  is of high-order compared 

with the statistical error of VK
(𝓁) on the individual subsample. By the decomposition (4.1) and 

Theorem 1, we can therefore expect the aggregated estimator VK to enjoy sharper statistical 

error rate than PCA on the individual subsample. In other words, the aggregation does 

improve the statistical efficiency. A similar phenomenon also appears in statistical error 

analysis of the average of the debiased Lasso estimators in Battey et al. (2015) and Lee et al. 

(2017). Recall that in sparse linear regression, the Lasso estimator β satisfies that 

β − β* 2 = OP( slogd /n), where β* is the true regression vector, s is the number of nonzero 

coefficients of β* and d is the dimension. The debiasing step reduces the bias of β to the 

order OP(s log d/n), which is negligible when m is not too large, compared with the 

statistical error of β and thus enables the average of the debiased Lasso estimators to 

enhance the statistical efficiency.

Below we present Lemma 2, a high-order Davis-Kahan theorem that explicitly characterizes 

the linear term and high-order error on top K eigenspace due to matrix perturbation. This is a 

genuine generalization of the former high-order perturbation theorems on a single 

eigenvector, e.g., Lemma 1 in Kneip and Utikal (2001) and Theorem 2 in El Karoui and 

d’Aspremont (2010). An elegant result on eigenspace perturbation is Lemma 2 in Koltchin- 

skii and Lounici (2016). Our error bound uses Frobenius norm while theirs uses spectral 

norm. Besides, when the top K eigenspace is of interest, the upper bound in Lemma 2 in 

Koltchinskii and Lounici (2016) contains an extra factor 1 + λ1 − λK /Δ . Hence we have 

better dependence on problem parameters. Other related works in the literature consider 

asymptotic expansions of perturbation (Kato, 1966; Vaccaro, 1994; Xu, 2002), and singular 

space of a matrix contaminated by Gaussian noise (Wang, 2015). Our result is both non-

asymptotic and deterministic. It serves as the core of bias analysis.
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Lemma 2. Let A, A ∈ ℝd × d be symmetric matrices with eigenvalues 

λ1 ≥ ⋯ ≥ λd, and λ1 ≥ ⋯ ≥ λd, respectively. Let u j j = 1
d , u j j = 1

d
 be two orthonormal 

bases of ℝd such that Au j = λ ju jandAu j = λ ju j for all j ∈ [d] Fix s ∈ 0, 1, ⋯, d − K  and 

assume that 

Δ = min λs − λs + 1, λs + K − λs + K + 1 > 0, where λ0 = + ∞ and λd + 1 = − ∞ . Define U

= us + 1, ⋯, us + K , U = us + 1, ⋯, us + K . Define E = A − A, S = s + 1, ⋯, s + K , G j

= ∑i ∉ S λi − λs + j
−1uiui

T for j ∈ [K], and

f :ℝd × K ℝd × K, w1, ⋯, wK −G1w1, ⋯, − GKwK .

When ε = E 2/Δ ≤ 1/10, we have

UUT − UUT − f (EU)UT + U f (EU)T F ≤ 24 Kε2 .

Similar to Taylor expansion, the difference is decomposed into the linear leading term and 

residual of higher order with respect to the perturbation. Here we only present a version that 

is directly applicable to bias analysis. Stronger results are summarized in Lemma 8 in 

Section 8.2.2, which may be of independent interest in perturbation analysis of spectral 

projectors.

Now we apply Lemma 2 to the context of principal eigenspace estimation. Let 

A = Σ, A = Σ(1) and S = [K] . It thus follows that U = VK, U = VK
(1) and E = Σ(1) − Σ . From the 

second inequality in Lemma 2 we can conclude that the bias term ρ VK* , VK  is a high-order 

term compared with the linear leading term. More specifically, the Davis-Kahan theorem 

helps us control the bias as follows:

ρ VK* , VK ≲ Σ* − VKVK
T

F
= 𝔼[VK

(1)VK
(1)T − VKVK

T ]
F

.

By the facts that 𝔼(E) = 0 and f is linear, we have

ρ VK* , VK = 𝔼 VK
(1)VK

(1)T − VKVK
T + f EVK VK

T + VK f EVK
T

F
.

By Jensen’s inequality, the right hand side above is further bounded by

𝔼 VK
(1)VK

(1)T − VKVK
T + f EVK VK

T + VK f EVK
T

F
. (4.4)

When n is large enough, the typical size of ε = E 2/ Δ is small, and Lemma 1 controls it 

tail and all of the moments. Together with Lemma 2, this fact implies that (4.4) has roughly 
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the same order as K ⋅ 𝔼ε2, which should be much smaller than the typical size of Kε, i.e. 

the upper bound for ρ VK
(1), VK  given by Davis-Kahan theorem. The following theorem 

makes our hand-waving analysis rigorous.

Theorem 3. There are constants C1 and C2 such that when n ≥ r,

ρ VK* , VK ≤ C1 Σ* − VKVK
T

F
≤ C2κ2 Kr /n .

As a by-product, we get Σ* − VKVK
T

2 ≲ κ2 Kr /n . Hence when n ≥ Cκ2 Kr for some large 

enough C, the assumptions in Theorems 1 and 2 on Σ* − VKVK
T

2 are guaranteed to hold.

4.3 Properties of distributed PCA

We now combine the results we obtained in the previous two subsections to derive the 

statistical error rate of VK . We first present a theorem under the setting of global i.i.d. data 

and discuss its optimality.

Theorem 4. Suppose we have N i.i.d. sub-Gaussian random samples with covariance Σ. 

They are scattered across m servers, each of which stores n samples. There exist constants C, 

C1, C2, C3 and C4 such that the followings hold when n ≥ Cκ2 Kr .

1. Symmetric innovation:

ρ VK, VK ψ1
≤ C1κ Kr

N . (4.5)

2. General distribution:

ρ VK, VK ψ1
≤ C1κ Kr

N + C2κ2 Kr
n . (4.6)

Furthermore, if we further assume m ≤ C3n/ κ2r ,

ρ VK, VK ψ1
≤ C4κ Kr

N . (4.7)

As we can see, with appropriate scaling conditions on n, m and d, VK can achieve the 

statistical error rate of order κ Kr /N . The result is applicable to the whole sample or 

traditional PCA, in which m = 1. Hence the distributed PCA and the traditional PCA share 

the same error bound as long as the technical conditions are satisfied.

In the second part of Theorem 4, the purpose of setting restrictions on n and m is to ensure 

that the distributed PCA algorithm delivers the same statistical rate as the centralized PCA 
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which uses all the data. In the boundary case where n ≍ κ2 Kr, the bias of the local empirical 

eigenspace is of constant order. Since our aggregation cannot kill bias, there is no hope to 

achieve the centralized rate unless the number of machines is of constant order so that the 

centralized PCA has constant error too. Besides, our result says that when n is large, we can 

tolerate more data splits (larger m) for achieving the centralized statistical rate.

We now illustrate our result through a simple spiked covariance model introduced by 

Johnstone (2001). Assume that Λ = diag(λ, 1, ⋯, 1
d − 1

), where λ > 1, and we are interested in the 

first eigenvector of Σ. Note that K = 1, r = Tr (Σ)/ Σ 2 = (λ + d − 1)/λ ≍ d /λ when 

λ = O(d), and κ = λ/(λ − 1) ≍ 1. It is easy to see from (4.5) or (4.7) that

ρ V1, V1 ψ1
≲ κ r

N ≲ d
Nλ .

Without loss of generality, we could always assume that the direction of V1 is chosen such 

that V1
TV1 ≥ 0, i.e. V1 is aligned with V1. Note that

ρ2 V1, V1 = V1V1
T − V1V1

T
F
2 = 2 1 − V1

TV1 1 + V1
TV1 ≥ 2 1 − V1

TV1 = V1 − V1 2
2 .

Hence

𝔼 V1 − V1 2
2 ≲ ρ V1, V1 ψ1

2 ≲ d
Nλ . (4.8)

We now compare this rate with the previous results under the spiked model. In Paul and 

Johnstone (2012), the authors derived the 𝓁2 risk of the empirical eigenvectors when random 

samples are Gaussian. It is not hard to derive from Theorem 1 therein that given N i.i.d d-

dimensional Gaussian samples, when N, d and λ go to infinity,

𝔼 V1 − V1 2
2 ≍ d

Nλ ,

Where V1 is the empirical leading eigenvector with V1
TV1 ≥ 0. We see from (4.8) that the 

aggregated estimator V1 performs as well as the full sample estimator V1 in terms of the 

mean squared error. See Wang and Fan (2017) for generalization of the results for spiked 

covariance.

In addition, our result is consistent with the minimax lower bound developed in Cai et al. 

(2013). For λ > 0 and fixed c ≥ 1, define

Θ = Σ is symmetric and Σ ≽ 0:λ + 1 ≤ λK ≤ λ1 ≤ cλ + 1, λ j = 1 for K + 1 ≤ j ≤ d .
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Assume that K ≤ d /2 and 1 ≲ d /λ ≲ N . Theorem 8 in Cai et al. (2013) shows that under the 

Gaussian distribution with Σ ∈ Θ , the minimax lower bound of 𝔼ρ2 V, VK  satisfies

inf
V

sup
Σ ∈ Θ

𝔼ρ2 V, VK ≳ min K, (d − K), K(λ + 1)(d − K)
Nλ2 ≳ Kd

Nλ . (4.9)

Based on r = Tr ( Σ )/ Σ 2 ≤ (cKλ + d)/(cλ + 1) ≲ Kd /λ and κ ≤ c ≲ 1, our (4.5) gives an 

upper bound

𝔼ρ2 V1, V1 ≲ κ2Kr
n ≲ Kd

Nλ ,

which matches the lower bound in (4.9).

Although the upper bound κ Kr /N established in Theorem 4 is optimal in the minimax sense 

as discussed above, the non-minimax risk of empirical eigenvectors can be improved when 

the condition number k is large. See Vu et al. (2013), Koltchinskii and Lounici (2016) and 

Reiss and Wahl (2016) for sharper results. We use (4.5) as a benchmark rate for the 

centralized PCA only for the sake of simplicity.

Notice that in Theorem 4, the prerequisite for VK to enjoy the sharp statistical error rate is a 

lower bound on the subsample size n, i.e.,

n ≳ k2 Kr . (4.10)

As in the remarks after Lemma 2, this is the condition we used to ensure closeness between 

Σ* and VKVK
T . It is natural to ask whether this required sample complexity is sharp, or in 

other words, is it possible for VK to achieve the same statistical error rate with a smaller 

sample size on each machine? The answer is no. The following theorem presents a 

distribution family under which Col VK  is even perpendicular to Col VK  with high 

probability when n is smaller than the threshold given in (4.10). This means that having a 

smaller sample size on each machine is too uninformative such that the aggregation step 

completely fails in improving estimation consistency.

Theorem 5. Consider a Bernoulli random variable W with P(W = 0) = P(W = 1) = 1/2, a 

Rademacher random variable P(Y = 1) = P(Y = −1) = 1/2, and a random vector Z ∈ ℝd − 1

that is uniformly distributed over the (d − 1)-dimensional unit sphere. For λ ≥ 2, we say a 

random vector X ∈ ℝd follows the distribution 𝒟(λ) if

X =d
1 W = 0 2λY

1 W = 1 2(d − 1)Z
.
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Now suppose we have Xi i = 1
N as Ni . i . d . random samples of X. They are stored across m 

servers, each of which has n samples. When 32logd ≤ n ≤ (d − 1)/(3λ), we have

P V1 ⊥ V1 ≥ 1 − d−1, if m ≤ d3

1 − e−d /2, if m > d3 .

It is easy to verify that 𝒟(λ) is symmetric, sub-Gaussian and satisfies 

𝔼X = 0 and 𝔼 XXT = diag (λ, 1, ⋯, 1) . Besides, κ = λ/(λ − 1) ≍ 1 and r = (λ + d − 1)/λ = d /λ + 1
− λ−1 ≍ d /λ when 2 ≤ λ ≲ d .

According to (4.10), we require n > d /λ to achieve the rate as demonstrated in (4.5). 

Theorem 5 shows that if we have fewer samples than this threshold, the aggregated estimator 

V1 will be perpendicular to the true top eigenvector V1 with high probability. Therefore, our 

lower bound for the subsample size n is sharp.

5 Extension to heterogeneous samples

We now relax global i.i.d. assumptions in the previous section to the setting of 

heterogeneous covariance structures across servers. Suppose data on the server 𝓁 has 

covariance matrix Σ(𝓁), whose top K eigenvalues and eigenvectors are denoted by 

λk
(𝓁)

k = 1
K and VK

(𝓁) = v1
(𝓁), ⋯, vK

(𝓁)  respectively. We will study two specific cases of 

heterogeneous covariances: one requires all covariances to share exactly the same principal 

eigenspaces, while the other considers the heterogeneous factor models with common factor 

eigen-structures.

5.1 Common principal eigenspaces

We assume that Σ(𝓁)
𝓁 = 1
m

 share the same top K eigenspace, i.e. there exists some 

VK ∈ 𝒪d × K such that VK
(𝓁)VK

(𝓁)T = VKVK
T  for all 𝓁 ∈ [m] . The following theorem can be 

viewed as a generalization of Theorem 4.

Theorem 6. Suppose we have in total N sub-Gaussian samples scattered across m servers, 

each of which stores n i.i.d. samples with covariance Σ(𝓁) . Assume that Σ(𝓁)
𝓁 = 1
m

 share 

the same top K eigenspace. For each 

𝓁 ∈ [m], let S𝓁 = κ𝓁
Kre
N and B𝓁 =

κ𝓁
2 Kr𝓁

n , where r𝓁: = Tr Σ(𝓁) /λ1
(𝓁) and κ𝓁: = λ1

(𝓁)

/ λK
(𝓁) − λK + 1

(𝓁) .

1. Symmetric innovation: There exist some positive constants C and C1 such that
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ρ VK, VK ψ1
≤ C1

1
m ∑

𝓁 = 1

m
S𝓁

2 (5.1)

so long as n ≥ C Kmax𝓁 ∈ [m] κ𝓁
2r𝓁 .

2. General distribution: There exist positive constant C2 and C3 such that when 
n ≥ max𝓁 ∈ [m]r𝓁,

ρ VK, VK ψ1
≤ C2

1
m ∑

𝓁 = 1

m
S𝓁

2 +
C3
m ∑

𝓁 = 1

m
B(𝓁) . (5.2)

5.2 Heterogeneous factor models

Suppose on the server 𝓁, the data conform to a factor model as below.

Xi
(𝓁) = B(𝓁)fi

(𝓁) + ui
(𝓁), i ∈ [n],

Where B(𝓁) ∈ ℝd × K is the loading matrix, fi
(𝓁) ∈ ℝK is the factor that satisfies Cov fi

(𝓁) = I

and ui
(𝓁) ∈ ℝd is the residual vector. It is not hard to see that 

Σ(𝓁) = Cov Xi
(𝓁) = B(𝓁)B(𝓁)T + Σu

(𝓁) , where Σu
(𝓁) is the covariance matrix of ui

(𝓁) .

Let B(𝓁)B(𝓁)T = VK
(𝓁)ΛK

(𝓁)VK
(𝓁)T be the spectral decomposition of B(𝓁)B(𝓁)T . We assume that 

there exists a projection matrix PK = VKVK
T , where VK ∈ 𝒪d × K, such that VK

(𝓁)VK
(𝓁)T = PK for 

all 𝓁 ∈ [m] In other words, B(𝓁)B(𝓁)T
𝓁 = 1
m

 share the same top K eigenspace. Given the 

context of factor models, this implies that the factors have similar impact on the variation of 

the data across servers. Our goal now is to recover Col(VK) by the distributed PCA 

approach, namely Algorithm 1.

Recall that Σ(𝓁) = 1
nΣl = 1

n Xi
(𝓁)Xi

(𝓁)T is the sample covariance matrix on the 𝓁-th machine, and 

VK
(𝓁) = v1

(𝓁), ⋯, vK
(𝓁) ∈ 𝒪d × K stores K leading eigenvectors of Σ(𝓁) . Define 

Σ = 1
m Σl = 1

m VK
(𝓁)VK

(𝓁)T, and let VK ∈ 𝒪d × K be the top K eigenvectors of Σ . Below we 

present a theorem that characterizes the statistical performance of the distributed PCA under 

the heterogeneous factor models.

Theorem 7. For each 𝓁 ∈ [m], let S𝓁 = κ𝓁
Kr𝓁

N and B𝓁 =
κ𝓁
2 Kr𝓁

n . There exist some positive 

constants C1, C2 and C3 such that when n n ≥ max𝓁 ∈ [m]r𝓁,

Fan et al. Page 17

Ann Stat. Author manuscript; available in PMC 2020 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



ρ VK, VK ψ1
≤ C1

1
m ∑

𝓁 = 1

m
S𝓁

2 +
C2
m ∑

𝓁 = 1

m
B𝓁 + C3

K
m ∑

𝓁 = 1

m Σu
(𝓁)

2
λK ΛK

(𝓁) . (5.3)

The first two terms in the RHS of (5.3) are similar to those in (5.2), while the third term 

characterizes the effect of heterogeneity in statistical efficiency of VK . When Σu
(𝓁)

2 is 

small compared with λK ΛK
(𝓁)  as in spiky factor models, Σu

(𝓁) can hardly distort the 

eigenspace Col VK  and thus has little influence on the final statistical error of VK .

6 Simulation study

In this section, we conduct Monte Carlo simulations to validate the statistical error rate of 

VK that is established in the previous section. We also compare the statistical accuracy of VK

and its full sample counterpart VK, that is, the empirical top K eigenspace based on the full 

sample covariance. The main message is that our proposed distributed estimator performs 

equally well as the full sample estimator VK when the subsample size n is large enough.

6.1 Verification of the statistical error rate

Consider xi i = 1
N  i.i.d. following N (0, Σ), where Σ = diag(λ, λ/2, λ/4, 1, ⋯, 1) . Here the 

number of spiky eigenvalues K = 3 and VK = (e1, e2, e3). We generate m subsamples, each 

of which has n samples, and run our proposed distributed PCA algorithm (Algorithm 1) to 

calculate VK . Since the centered multivariate Gaussian distribution is symmetric, according 

to Theorem 4, when λ = O(d) we have

ρ VK, VK ψ1
= O

C1 Σ 2
λK − λK + 1

Kr( Σ )
N = O d

mnδ , (6.1)

Where δ: = λK − λK + 1 = λ/4 − 1. Now we provide numerical verification of the order of the 

number of servers m, the eigengap δ, the subsample size n and dimension d in the statistical 

error.

Figure 1 presents four plots that demonstrate how ρ VK, VK  changes as d, m, n and δ 

increases respectively. Each data point on the plots is based on 100 independent Monte Carlo 

simulations. Figure 1(a) demonstrates how ρ VK, VK  increases with respect to the increasing 

dimension d when λ = 50 and n = 2000. Each line on the plot represents a fixed number of 

machines m. Figure 1(b) shows the decay rate of ρ VK, VK  as the number of servers m 

increases when λ = 50 and n = 2000. Different lines on the plot correspond to different 

dimensions d. Figure 1(c) demonstrates how ρ VK, VK  decays as the subsample size n 

increases when = 50 and m = 50. Figure 1(d) shows the relationship between ρ VK, VK  and 
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the eigengap δ when d = 800 and n = 2000. The results from Figures 1(a)-1(d) show that 

ρ VK, VK  is proportion to d
1
2 , m

− 1
2 , n

− 1
2 and δ

− 1
2  respectively when the other three 

parameters are fixed. These empirical results are all consistent with (6.1).

Figure 1 demonstrates the marginal relationship between ρ VK, VK  and the four parameters 

m, n, d and δ. Now we study their joint relationship. Inspired by (6.1), we consider a 

multiple regression model as follows:

log ρ VK, VK = β0 + β1log(d) + β2log(m) + β3log(n) + β4log(δ) + ε, (6.2)

where ε is the error term. We collect all the data points d, m, n, δ, ρ VK, VK  from four plots 

in Figure 1 to fit the regression model (6.2). The fitting result is that 

β1 = 0.5043, β2 = − 0.4995, β3 = − 0.5011 and β4 = − 0.5120 with the multiple R2 = 0.99997.

These estimates are quite consistent with the theoretical results in (6.1). Moreover, Figure 2 

plots all the observed values of log ρ VK, VK  against its fitted values by the linear model 

(6.2). We can see that the observed and fitted values perfectly match. It indicates that the 

multiple regression model (6.2) well explains the joint relationship between the statistical 

error and the four parameters m, n, d and δ.

6.2 The effects of splitting

In this section we investigate how the number of data splits m affects the statistical 

performance of VK when the total sample size N is fixed. Since N = mn, it is easy to see that 

the larger m is, the smaller n will be, and hence the less computational load there will be on 

each individual server. In this way, to reduce the time consumption of the distributed 

algorithm, we prefer more splits of the data. However, per the assumptions of Theorem 4, 

the subsample size n should be large enough to achieve the optimal statistical performance 

of VK This motivates us to numerically illustrate how ρ VK, VK  changes as m increases 

with N fixed.

We adopt the same data generation process as described in the beginning of Section 6.1 with 

λ = 50 and N = 6000. We split the data into m subsamples where m is chosen to be all the 

factors of N that are less than or equal to 300. Figure 3 plots with respect to the number of 

machines m. Each point on the plot is based on 100 simulations. Each line corresponds to a 

different dimension d.

The results show that when the number of machines is not unreasonably large, or 

equivalently the number of subsample size n is not small, the statistical error does not 

depend on the number of machines when N is fixed. This is consistent with (6.1) where the 

statistical error rate only depends on the total sample size N = mn. When the number of 

machines m is large (log m ≥ 5), or the subsample size n is small, we observe slightly 

growing statistical error of the distributed PCA. This is aligned with the required lower 

bound of n in Theorem 4 to achieve the optimal statistical performance of VK . Note that 
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even when m = 300 (log(m) ≈ 5.7) and n = 20, our distributed PCA performs very well. This 

demonstrates that distributed PCA is statistically efficient as long as m is within a reasonable 

range.

6.3 Comparison between distributed and full sample PCA

In this subsection, we compare the statistical performance of the following three methods:

1. Distributed PCA (DP)

2. Full sample PCA (FP), i.e., the PCA based on the all the samples

3. Distributed PCA with communication of five additional largest eigenvectors 

(DP5).

Here we explain more on the third method DP5. The difference between DP5 and DP is that 

on each server, DP5 calculates VK + 5
(𝓁) , the top K + 5 eigenvectors of Σ(𝓁) and send them to 

the central server, and the central server computes the top K eigenvectors of 

(1/m) Σl = 1
m VK + 5

(𝓁) VK + 5
(𝓁)T  as the final output. Intuitively, DP5 communicates more 

information of the covariance structure and is designed to guide the spill-over effects of the 

eigenspace spanned by the top K eigenvalues. In Figure 4, we compare the performance of 

all the three methods under various scenarios.

From Figures 4(a)-4(d), we can see that all the three methods have similar finite sample 

performance. This means that it suffices to communicate K eigenvectors to enjoy the same 

statistical accuracy as the full sample PCA. For more challenging situations with large p/

(mnδ) ratios, small improvements using FP are visible.

7. Discussion

Our theoretical results are established under sub-Gaussian assumptions of the data. We 

believe that similar results will hold under distributions with heavier tails than sub-Gaussian 

tails, or more specifically, with only bounded fourth moment. Typical examples are Student 

t-distributions with more than four degrees of freedom, Pareto distribution, etc. The only 

difference is that with heavy-tailed distribution, if the local estimators are still the top 

eigenspaces of the sample covariance matrix, we will not be able to derive exponential 

deviation bounds. To establish statistical rate with exponential deviation, special treatments 

of data, including shrinkage (Fan et al., 2016; Minsker, 2016; Wei and Minsker, 2017), are 

needed, and the bias induced by such treatments should be carefully controlled. This will be 

an interesting future problem to study.

8 Proofs and technical lemmas

8.1 Proof of main results

8.1.1 Proof of Lemma 1—Proof. It follows from concentration of sample covariance 

matrix (Lemma 3) that Σ(1) − Σ 2 ψ1
≲ λ1 r /n . By the variant of Davis-Kahan theorem 

in Yu et al. (2015),
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ρ VK
(1), VK = VK

(1)VK
(1)T − VKVK

T
F

= 2sin Θ VK
(1), VK ≲ K Σ(1) − Σ 2/Δ .

Hence

ρ VK
(1), VK ψ1

≲ K Σ(1) − Σ
2 ψ1

/Δ ≲ κ Kr /n .

By Jensen’s inequality,

Σ* − VKVK
T

F
= 𝔼 VK

(1)VK
(1)T − VKVK

T
F

≤ 𝔼 VK
(1)VK

(1)T − VKVK
T

F
= 𝔼ρ VK

(1), VK ≤

ρ VK
(1), VK ψ1

.

Therefore,

‖VK
(1)VK

(1)T − Σ* ‖F
ψ1

≤ ‖VK
(1)VK

(1)T − VKVK
T ‖F

ψ1

+ ‖Σ* − VKVK
T ‖

F
≤ 2 ρ VK

(1), VK ψ1
≲ κ Kr

n .

□

8.1.2 Proof of Theorem 1—Proof. When Σ* − VKVK
T

2 < 1/4, the Weyl’s inequality 

forces λK Σ* > 3
4 and λK + 1 Σ* < 1

4 . The Theorem 2 in Yu et al. (2015) yields

ρ VK, VK* = 2sin Θ VK, VK* ≲
Σ − Σ* F

λK Σ* − λK + 1 Σ* ≲ Σ − Σ* F . (8.1)

When n ≥ r, Lemma 4 and Lemma 1 imply that

‖ Σ − Σ* ‖F
ψ1

= ‖ 1
m ∑

𝓁 = 1

m
VK

(𝓁)VK
(𝓁)T − Σ*‖

F ψ1

≲ 1
m

‖VK
(1)VK

(1)T − Σ*‖
F1 ψ1

≲ κ Kr
N .

Combining the two inequalities above finishes the proof. □

8.1.3 Proof of Theorem 2—Proof. Choose j ∈ [d] and let 

D j = I − 2e je j
T . Let Σ = VΛVT be the spectral decomposition of Σ. Assume that λ  is an 

eigenvalue of the sample covariance Σ = (1/n) Σ
i = 1

n
XiXi

T and v ∈ 𝕊d − 1 is the correspondent 

eigenvector that satisfies Σ v = λv.
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Define Zi = Λ
− 1

2VTXi and S = (1/n) Σ
i = 1

n
ZiZi

T. Note that Σ = VΛ
1
2S Λ

1
2 VT . Consider the 

matrix Σ = V Λ
1
2 D jSD j Λ

1
2 VT . By the sign symmetry, Σ and Σ are identically distributed. 

It is not hard to verify that Σ also has an eigenvalue λ  with the correspondent eigenvector 

being VD jV
Tv . Denote the top K eigenvectors of Σ by VK = v1, ⋯, vK  and the top K 

eigenvectors of Σ by VK . Therefore we have

VT𝔼 VKVK
T V = VT𝔼 VKVK

T V = VTVD jV
T𝔼 VKVK

T VD jV
TV = D jV

T𝔼 VKVK
T VD j .

Since the equation above holds for all j ∈ [d], we can reach the conclusion that VT𝔼 VKVK
T V

is diagonal, i.e, Σ∗ 𝔼 VKVK
T ) and Σ share the same set of eigenvectors.

Suppose that Σ* − VKVK
T

2 < 1/2. As demonstrated above, for any k ∈ [K], the kth column 

of VK, which we denote by vk, should be an eigenvector of Σ*. Note that

Σ* vk 2 = Σ* − VKVK
T + VKVK

T vk 2 ≥ 1 − Σ* − VKVK
T

2 > 1 − 1
2 = 1

2 .

With regard to Σ*, the correspondent eigenvalue of vk must be greater than 1/2. Denote any 

eigenvector of Σ that is not in vk k = 1
K  by u, then analogously,

Σ* u 2 = Σ* − VKVK
T + VKVK

T u 2 ≤ Σ* − VKVK
T

2 < 1
2 .

For Σ*, the correspondent eigenvalue of u is smaller than 1/2. Therefore, the top K 
eigenspace of Σ* is exactly Col VK , and ρ VK* , VK = 0. □

8.1.4 Proof of Lemma 2—Proof. Note that f ( ⋅ ) F ≤ Δ−1 ⋅ F and

f (EU) F ≤ Δ−1 EU F ≤ Δ−1 K EU 2 ≤ Δ−1 K E 2 = Kε .

Hence Lemma 2 is a direct corollary of Lemma 8. □

8.1.5 Proof of Theorem 3—Proof. Define 

E = Σ(1) − Σ, P = VKVK
T , P = VK

(1)VK
(1)T, Q = f EVK VK

T + VK f EVK
T, W = P − P − Q and ε =

E 2/Δ . From 𝔼ℚ = 0

and
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P − P − Q = W = W1 ε ≤ 1/10 + (W + Q)1 ε > 1/10 − Q1 ε > 1/10 = W1 ε ≤ 1/10 + (P − P
)1 ε > 1/10 − Q1 ε > 1/10 ,

we derive that

𝔼P − P = 𝔼 W1 ε ≤ 1/10 + 𝔼 (P − P)1 ε > 1/10 − 𝔼 Q1 ε > 1/10 , 𝔼P
− P

F
≤ 𝔼 W

F
1 ε ≤ 1/10 + 𝔼 P − P

F
1 ε > 1/10 + 𝔼 Q

F
1 ε > 1/10 .

(8.2)

We are going to bound the three terms separately. On the one hand, Lemma 2 implies that 

W F ≤ 24 Kε2 when ε ≤ 1/10. Hence

𝔼 W
F

1 ε ≤ 1/10 ≤ 𝔼 24 Kε21 ε ≤ 1/10 ≲ K𝔼ε2 . (8.3)

On the other hand, the Davis-Kahan theorem shows that P − P F ≲ Kε . Besides, it is 

easily seen that Q
F

≲ f EVK F
≤ K E

2
/Δ = Kε . Hence

𝔼 P − P
F

1 ε > 1/10 + 𝔼 Q
F

1 ε > 1/10 ≲ K𝔼 ε1 ε > 1/10
≤ 10 K𝔼 ε21 ε > 1/10 ≲ K𝔼ε2 .

(8.4)

By (8.2),(8.3), (8.4) and Lemma 3 we have

𝔼P − P
F

≲ K𝔼ε2 = KΔ−2𝔼 E
2

2
≲ KΔ−2 E

2 ψ1

2
≲ κ2 Kr

n . (8.5)

□

8.1.6 Proof of Theorem 4—Proof. According to Theorem 3, there exists a constant C 

such that Σ* − VKVK
T

2 ≤ 1/4 as long as n ≥ Cκ2 Kr ≥ r . Then Theorem 1 implies that 

ρ VK, VK* ψ1
≤ C1κ Kr

N  for some constant C1.

When random samples have symmetric innovation, we have ρ VK* , VK = 0 and

ρ VK, VK ψ1
= ρ VK, VK* ψ1

≤ C1κ Kr
N .

For general distribution, Theorem 3 implies that ρ VK* , VK ≤ C2κ2 Kr /n for some constant 

C2 and
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ρ VK, VK ψ1
≤ ρ VK, VK* ψ1

+ ρ VK*, VK ≤ C1κ Kr
N + C2κ2 Kr

n . (8.6)

When m < C3n/(K2r) for some constant C3, we have

κ Kr
N = κ2Kr

nm ≥ κ2Kr

n ⋅ C3n/ κ2r
= 1

C3
⋅ κ2 Kr

n ,

and (8.6) forces

ρ VK, VK ψ1
≤ C1 + C2 C3 κ Kr

N .

□

8.1.7 Proof of Theorem 5—Proof. We first focus on the first subsample Xi
(1)

i = 1
n

 and 

the associated top eigenvector V1
(1) . For ease of notation, we temporarily drop the 

superscript. Let 

S = Σi = 1
n W i and ΣZ = d − 1

n Σi = 1
n 1 W − 1 ZiZi

T . From Σ =
2λ
n (n − S) 01 × (d − 1)

0(d − 1) × 1 2 ΣZ

we know that ΣZ 2 > (λ/n)(n − S) and ΣZ 2 < (λ/n)(n − S)

 lead to 

V1 ⊥ V1 and V1/ /V1 i . e . V1 = ± V1 , respectively. Besides, ΣZ 2 is a continuous random 

variable. Hence ℙ V1 ⊥ V1 + ℙ V1/ /V1) = 1. Note that

Tr ΣZ = d − 1
n ∑

i = 1

n
1

Wi = 1
= (d − 1)S

n , ΣZ 2 ≥
Tr ΣZ

rank ΣZ
≥

Tr ΣZ
min n, d − 1 ≥ (d − 1)S

n2 .

Then

ℙ V1/ /V1 ≤ ℙ ΣZ 2 ≤ λ
n (n − S) ≤ ℙ (d − 1)S

n2 ≤ λ
n (n − S) = ℙ S

n ≤ 1
1 + d − 1

nλ

≤ ℙ S
n ≤ 1

4

= ℙ S
n − 1

2 ≤ − 1
4 ≤ e−n/8 .

Above we used the assumption d ≥ 3nλ + 1 and Hoeffding’s inequality. Now we finish the 

analysis of V1
(1) and collect back the superscript.
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From now on we define S = Σl = 1
m 1

V1
(𝓁)/ /V1

⋅ For V1
(𝓁), let a𝓁 be its first entry and b𝓁 be 

the vector of its last (d — 1) entries. The dichotomy ℙ V1
(𝓁)/ /V1 + ℙ V1

(𝓁) ⊥ V1 = 1

mentioned above forces 

a𝓁 = 1
V1

(𝓁)/V1
, b𝓁 2 = 1

V1
(𝓁) ⊥ V1

, V1
(𝓁)V1

(𝓁)T =
1

V1
(𝓁)/V1

01 × (d − 1)

0(d − 1) × 1 b𝓁b𝓁
T

, and

Σ = 1
m ∑

𝓁 = 1

m
V1

(𝓁)V1
(𝓁)T =

1
mS 01 × (d − 1)

0(d − 1) × 1
1
m ∑

𝓁 = 1

m
b𝓁b𝓁

T
.

Note that n ≥ 32 log d forces n ≥ 32logd forces ℙ V1
(𝓁)/ /V1 ≤ e−n/8 ≤ d−4 .

Case 1: m ≤ d3

In this case, ℙ(S = 0) = 1 − ℙ V1
(1)/ /V1

m
≥ 1 − mℙ V1

(1)/ /V1 ≥ 1 − d−1 . When S = 0, we 

have b𝓁 2 = 1 for all 𝓁 ∈ [m] and (1/m) Σl = 1
m b𝓁b𝓁

T
2 > 0, leading to V1 ⊥ V1 .

Case 2: m > d3

On the one hand, by Hoeffding’s inequality we obtain

ℙ S
m ≥ 1

d ≤ ℙ 1
m (S − 𝔼S) ≥ 1

2d ≤ e
−2m 1

2d
2

= e
− m

2d2
< e−d /2 .

On the other hand, note that

1
m ∑

k = 1

m
b𝓁b𝓁𝓁

T

2
≥

Tr 1
m ∑k = 1

m b𝓁b𝓁
T

d − 1 =

1
m ∑k = 1

m b𝓁 2
2

d − 1 = 1
d − 1 1 − S

m .

Hence

ℙ V1 ⊥ V1 ≥ ℙ 1
m ∑

k = 1

m
b𝓁b𝓁

T

2
> S

m ≥ ℙ 1
d − 1 1 − S

m > S
m = ℙ S

m < 1
d ≥ 1 − e−d /2 .

□

8.1.8 Proof of Theorem 6—Proof. With slight abuse of notations, here we define 

Σ𝓁* = 𝔼 VK
(𝓁)VK

(𝓁)T , Σ* = 1
m Σ𝓁 = 1

m Σ𝓁*, and VK* ∈ ℝd × K to be the top K eigenvectors of Σ*.
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First we consider the general case. Note that λK VKVK
T = 1 and λK VKVK

T = 0. By the Davis-

Kahan theorem, we have

ρ VK, VK ≲ Σ − VKVK
T

F
≤ Σ − Σ* F + Σ* − VKVK

T
F

. (8.7)

Note that Σ* = 1
m Σ𝓁 = 1

m Σ𝓁* . The first term in (8.7) is the norm of independent sums

Σ − Σ* F = 1
m Σ𝓁 = 1

m
VK

(𝓁)VK
(𝓁)T − Σ𝓁* F

It follows from Lemma 1 that VK
(𝓁)VK

(𝓁)T − Σ𝓁* F ψ1
≲ κ𝓁

Kr𝓁
n = mS𝓁, from which 

Lemma 4 leads to

Σ − Σ*
F ψ1

≲ 1
m ∑

𝓁 = 1

m
mS𝓁

2 = 1
m ∑

𝓁 = 1

m
S𝓁

2 . (8.8)

The second term in (8.7) is bounded by

Σ* − VKVK
T

F
= 1

m ∑
𝓁 = 1

m
Σ𝓁* − VKVK

T

F
≤ 1

m ∑
𝓁 = 1

m
Σ𝓁* − VKVK

T
F

.

Theorem 3 implies that when n ≥ r𝓁,

Σ𝓁* − VKVK
T

F
≲ κ𝓁

2 Kr𝓁/n = B𝓁 . (8.9)

Hence

Σ* − VKVK
T

F
≲ 1

m ∑
𝓁 = 1

m
B𝓁 . (8.10)

The claim under general case follows from (8.7), (8.8) and (8.10).

Now we come to the symmetric case. If Σ𝓁* − VKVK
T

2 < 1/2 for all 𝓁 ∈ [m], then Theorem 2 

implies that the top K eigenspace of Σ𝓁* is Col VK . Therefore, the top K eigenspace of Σ* 

is still Col(VK) and ρ VK, VK* = 0.
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When n ≥ C Kmax𝓁 ∈ [m] κ𝓁
2r𝓁  for large C, (8.9) ensures 

max𝓁 ∈ [m] Σ𝓁* − VKVK
T

2 ≤ 1/4, Σ* − VKVK
T

2 ≤ 1/4 and ρ VK, VK* = 0. Weyl’s inequality 

forces λK Σ* ≥ 3/4 and λK + 1 Σ* ≤ 1/4. By the Davis-Kahan theorem and (8.8),

ρ VK, VK ψ1
= ρ VK, VK* ψ1

Σ − Σ* F ∥ψ1
≲ 1

m ∑
𝓁 = 1

m
S𝓁

2 .

□

8.1.9 Proof of Theorem 7—Proof. We define 

Σ𝓁* = 𝔼 VK
(𝓁)VK

(𝓁)T and Σ* = 1
m Σ𝓁 = 1

m Σ𝓁* . Let VK* , VK
(𝓁) ∈ 𝒪d × K be the top K eigenvectors 

of Σ* and Σ* and Σ(𝓁) , respectively. By the Davis-Kahan theorem,

ρ VK, VK ≲ Σ − VKVK
T

F
≤ Σ − Σ* F + Σ* − VKVK

T
F

. (8.11)

The first term in (8.11) is controlled in exactly the same way as (8.8). The second term is 

further decomposed as

Σ* − VKVK
T

F
= 1

m ∑
𝓁 = 1

m
Σ𝓁* − VKVK

T

F
≤ 1

m ∑
𝓁 = 1

m
Σ𝓁* − VK

(𝓁)VK
(𝓁)T

F

+ 1
m ∑

𝓁 = 1

m
VK

(𝓁)VK
(𝓁)T − VKVK

T

F
.

(8.12)

Similar to (8.9) and (8.10), with n ≥ r𝓁 we have Σ𝓁* − VK
(𝓁)VK

(𝓁)T
F

≲ B𝓁 and

1
m ∑

𝓁 = 1

m
Σ𝓁* − VK

(𝓁)VK
(𝓁)T

F
≤ 1

m ∑
𝓁 = 1

m
Σ𝓁* − VK

(𝓁)VK
(𝓁)T

F
≲ 1

m ∑
𝓁 = 1

m
B𝓁 . (8.13)

For the last part in (8.12), note that VK
(𝓁) and VK and VK contain eigenvectors of 

Σ(𝓁) and B(𝓁)B(𝓁)T . Hence the Davis-Kahan theorem forces

VK
(𝓁)VK

(𝓁)T − VKVK
T

F
≲

K Σu
(𝓁)

2
λK ΛK

(𝓁) .

and
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1
m ∑

𝓁 = 1

m
VK

(𝓁)VK
(𝓁)T − VKVK

T

F
≲ K

m ∑
𝓁 = 1

m Σu
(𝓁)

2
λK ΛK

(𝓁) . (8.14)

The proof is completed by collecting (8.11), (8.12), (8.13) and (8.14). □

8.2 Technical lemmas

8.2.1 Tail bounds—Lemma 3. Suppose X and Xi i = 1
n  are i.i.d. sub-Gaussian random 

vectors in Rd with zero mean and covariance matrix Σ ≽ 0. Let Σ = 1
n Σi = 1

n XiXi
T be the 

sample covariance matrix, λ j j = 1
d

 be the eigenvalues of ∑ sorted in descending order, and 

r = Tr ( Σ )/ Σ 2 . There exist constants c ≥ 1 and C ≥ 0 such that when n > r, we have

ℙ Σ − Σ 2 ≥ s ≤ exp − s
cλ1 r /n , ∀s ≥ 0,

and Σ − Σ 2 ψ1
≤ Cλ1 r /n .

Proof. By the Theorem 9 in Koltchinskii and Lounici (2017) and the simple fact

𝔼 X 2
2/ Σ 2 ≤ 𝔼 X 2

2
/ Σ 2 = Tr ( Σ )/ Σ 2 = r( Σ ),

we know the existence of a constant c > 1 such that

ℙ Σ − Σ
2

≥ cλ1max r
n , r

n , t
n , t

n ≤ e−t, ∀t ≥ 1. (8.15)

Since 1 ≤ r ≤ n, (8.15) yields

ℙ Σ − Σ
2

≥ cλ1
t
n ≤ e−t, r ≤ t ≤ n, (8.16)

ℙ Σ − Σ
2

≥ cλ1
t
n ≤ e−t, t ≥ n . (8.17)

When r ≤ t ≤ n, we have t
n ≤ t

n
n
r . By letting s = cλ1

t
n

n
r  we derive from (8.16) that for 

cλ1
r
n ≤ s ≤ cλ1

n
r ,
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ℙ Σ − Σ 2 ≥ s ≤ ℙ Σ − Σ
2

≥ cλ1
t
n ≤ e−t = exp − s nr

cλ1
. (8.18)

When t ≥ n, we let s = cλ1
t
n  and derive from (8.17) that for s ≥ cλ1,

ℙ Σ − Σ 2 ≥ s = ℙ Σ − Σ
2

≥ cλ1
t
n ≤ e−t = exp − ns

cλ1
. (8.19)

(8.18), (8.19) and n ≥ r lead to

ℙ Σ − Σ 2 ≥ s ≤ exp − s nr
cλ1

, ∀s ≥ cλ1 r /n .

and thus

ℙ Σ − Σ 2 ≥ s ≤ exp 1 − s
cλ1 r /n , ∀s ≥ 0.

According to the Definition 5.13 in Vershynin (2012), we get Σ − Σ 2 ψ1
≤ Cλ1 r /n for 

some constant C. □

The next lemma investigates the sum of independent random vectors in a Hilbert space 

whose norms are sub-exponential, which directly follows from Theorem 2.5 in Bosq (2000).

Lemma 4. If Xi i = 1
n  are independent random vectors in a separable Hilbert space (where 

the norm is denoted by ⋅ ) with 𝔼Xi = 0 and Xi ψ1
≤ Li < ∞ . We have

∥ ∑
i = 1

n
Xi ∥

ψ1

≲ ∑
i = 1

n
Li

2 .

Proof. We are going to apply Theorem 2.5 in Bosq (2000). By definition 

k−1𝔼1/k Xi
k ≤ Xi ψ1

≤ Li for all k ≥ 1, and

𝔼 Xi
k ≤ kLi

k ≤ 2πk(k /e)k eLi
k ≲ k! eLi

k .

Hence there exists some constant c such that 

𝔼 Xi
k ≤ k!

2 cLi
k for k ≥ 2. Let 𝓁 = c2 Σ

i = 1
n

Li
2 and b = c · maxi ∈ n] Li . We have
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∑
i = 1

n
𝔼 X

k
≤ k!

2 ∑
i = 1

n
cLi

k ≤ k!
2 ∑

i = 1

n
c2Li

2 c ⋅ maxi ∈ [n]Li
k − 2 = k!

2 𝓁2bk − 2, ∀k ≥ 2.

Let Sn = Σi = 1
n Xi . Theorem 2.5 in Bosq (2000) implies that

ℙ Sn ≥ t ≤ 2exp − t2

2𝓁2 + 2bt
, ∀t > 0.

When 4𝓁 ≤ t ≤ 𝓁2/b (this cannot happen if 4b > 𝓁), we have 2𝓁2 ≥ 2bt and

ℙ Sn ≥ t ≤ 2exp − t2

2𝓁2 + 2𝓁2 ≤ 2exp − 4𝓁 ⋅ t

4𝓁2 = 2exp − t
𝓁 ≤ exp 1 − t

4𝓁 .

When t ≥ 𝓁2/b, we have 2bt ≥ 2𝓁2 and

ℙ Sn ≥ t ≤ 2exp − t2
2bt + 2bt = 2exp − t

4b ≤ exp 1 − t
4𝓁 ,

where the last inequality follows from 2 ≤ e and b ≤ 𝓁. It is then easily seen that

ℙ Sn ≥ t ≤ exp 1 − t
4𝓁 , ∀t ≥ 0.

With the help of Definition 5.13 in Vershynin (2012), we can conclude that

‖‖Sn‖‖ψ1
≲ 𝓁 ≲ ∑

i = 1

n
Li

2 .

□

8.2.2 Matrix analysis—Lemma 5. Suppose that A ∈ ℝd × d is a symmetric matrix with 

eigenvalues λ j j = 1
d

 (in descending order) and corresponding eigenvectors 

u j j = 1
d . When K ∈ [d], PK = ∑ j = 1

K u ju j
T an optimal solution to the SDP:

min
P ∈ Sd × d

− Tr PTA

s.t. Tr(P) ≤ K, P 2 ≤ 1, P ≽ 0
. (8.20)
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Proof. By orthonormal invariance of the problem formulation, we assume without loss of 

generality that u j j = 1
d

 are the canonical bases e j j = 1
d . Then 

A = diag λ1, ⋯λd and Tr PTA = ∑ j = 1
d λ jP j j . The constraints on P force 

0 ≤ P j j ≤ and ∑ j = 1
d P j j ≤ K . Hence −Tr(PTA) ≥ − ∑ j = 1

K λ j always holds, and 

PK = ∑ j = 1
K e je j

T is a feasible solution that attains this minimum. □

Lemma 6. Suppose 

VK
(𝓁) ∈ 𝒪d × K, ∀𝓁 ∈ [m], and define Σ = 1

m ∑𝓁 = 1
m VK

(𝓁)VK
(𝓁)T . Let Σ = ∑ j = 1

d λ jv jv j
T be its 

eigen-deconposition, where λ 1 ≥ ⋯ ≥ λ d . Then 

VK = v1, ⋯, vK ∈ argminU ∈ 𝒪d × K
∑𝓁 = 1

m ρ2 U, VK
(𝓁) .

Proof. Let P(𝓁) = VK
(𝓁)VK

(𝓁)T and R(U) = 1
m ∑𝓁 = 1

m ρ2 U, VK
(𝓁) . Then Σ = 1

m ∑𝓁 = 1
m P(𝓁) and

R(U) = 1
m ∑

𝓁 = 1

m
ρ2 U, VK

(𝓁) = 1
m ∑

𝓁 = 1

m
UUT − P(𝓁)

F
2 = UUT − Σ F

2 + 1
m ∑

𝓁 = 1

m
Σ − P(𝓁)

F
2 = UUT

F
2

+ Σ
F

2
− 2 Tr UUT Σ + 1

m ∑
𝓁 = 1

m
Σ − P(𝓁)

F
2 .

The fact U ∈ 𝒪d×K forces UUT
F
2 = K . Hence

argmin U ∈ 𝒪d × K
R(U) = argmax U ∈ 𝒪d × K

Tr UUT Σ .

By slightly modifying the proof for Lemma 5 we get the desired result. □

Suppose that U, V ∈ 𝒪d × K Let PU = UUT, PV = VVT, H = VTU, and σ j j = 1
K

 be the 

singular values (sorted in descending order) of H. By the Corollary 5.4 in Chapter I, Stewart 

and Sun (1990), σ j j = 1
K

 are cosines of the canonical angles θ j j = 1
K ⊆ [0, π /2) between 

Col(U) and Col(V). Let sin Θ (U, V) = diag(sin θ1, sin θK).

Define H = sgn (H). Here sgn(·) is the matrix sign function (see Gross (2011)) defined as 

follows: let H = ∑ j = 1
K σ ju jv j

T be the singular value decomposition, where u j j = 1
K , v j j = 1

K

are two orthonormal bases in 

ℝK and σ j j = 1
K ⊆ [0, + ∞), then H = ∑ j = 1

K sgn σ j u jv j
T = ∑σ j > 0u jv j

T .
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Lemma 7. We have 
PU − PV 2 = sin Θ (U, V)

2
and PU − PV F

= 2 sin Θ (U, V)
F

. If PU − PV 2 < 1, then H

is orthonormal, H − H
2

≤
PU − PV 2

2

2 − PU − PV 2
2 ,

‖VH − U‖F ≤ ‖VH − U‖F = 2‖H − H‖*
1/2, 1

2‖PU − PV‖
F

≤ ‖VH − U‖F ≤
‖PU − PV‖

F

2 − ‖sin Θ (U, V)‖2
2 .

Proof. By the Theorem 5.5 in Chapter I, Stewart and Sun (1990), the singular values of PU − 
PV are sin θK, sin θK, sin θK − 1, sin θK − 1,..., sin θ1, sin θ1, 0,..., 0. This immediately leads 

to PU − Pv 2 = sin Θ (U, V)
2

and PU − PV F
= 2 sin Θ (U, V)

F
..

When sin Θ (U, V)
2

= PU − PV 2 < 1, we have θK < π/2. Thus the smallest singular value 

of H is σK = 1 − cos θK > 0, and H is orthonormal. Observe that

‖VH − U‖F
2 = ‖VH‖F

2 + ‖U‖F
2 − 2Tr HTVTU = 2K − 2Tr HTH

= 2 ∑
j = 1

K
1 − σ j = 2‖H − H‖* .

(8.21)

Hence VH − U F ≤ VH − U F follows from

‖VH − U‖F
2 = ‖VH‖F

2 + ‖U‖F
2 − 2Tr HTVTU = K − ‖H‖F

2 = ∑
j = 1

K
1 − σ j

2 = ∑
j = 1

K
1 − σ j 1 + σ j

≤ 2 ∑
j = 1

K
1 − σ j = ‖VH − U‖F

2 .

For any θ ∈ [0, π/2), we have 

1 − cosθ = 1 − cos2θ
1 + cosθ = sin2θ

2 − (1 − cosθ) , which leads to 1
2sin2θ ≤ 1 − cosθ ≤ sin2θ and furthermore, 1

− cosθ = sin2θ
2 − (1 − cosθ) ≤ sin2θ

2 − sin2θ
.

Hence

VH − U
F

2
= 2 ∑

j = 1

K
1 − σ j = 2 ∑

j = 1

K
1 − cosθ j ≥ ∑

j = 1

K
sin2θ j = 1

2 PU − PV F
2 ,
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VH − U
F

2

≤ 2 ∑
j = 1

K sin2θ j

2 − sin2θ j
≤

2∑ j = 1
K sin2θ j

2 − sin2θK
=

PU − PV F
2

2 − sin Θ (U, V) 2
2 ,

H − H
2

= 1 − σK = 1 − cosθK ≤
sin2θK

2 − sin2θK
=

sin Θ (U, V) 2
2

2 − sin Θ (U, V) 2
2 .

□

Lemma 8. Consider the settings for Lemma 2 and define 

H = UTU and H = sgn (H) . When ε = ‖E‖2/ Δ ≤ 1/10, we have UUT − UUT
2 ≤ ε/(1 − ε),

f (EU) F
1 + 5ε ≤ UH − U

F
≤

f (EU) F
1 − 5ε , (8.22)

UH − U − f (EU) F ≤ 9ε f (EU) F, (8.23)

2 f (EU) F
1 + 7ε ≤ UUT − UUT

F ≤
2 f (EU) F

1 − 7ε , (8.24)

UUT − UUT − f (EU)UT + U f (EU)T
F ≤ 24ε f (EU)

F
. (8.25)

Besides, f (EU)UT + U f (EU)T F = 2 f (EU)
F

.

Proof. Define P = UUT, P = UUT and P⊥ = I − P . The Davis-Kahan sin Θ theorem (Davis and 

Kahan, 1970) and Lemma 7 force that 

δ P − P
2

≤ EP
2

≤ E
2
, where δ = min λs − λs + 1 +, λs + r − λs + r + 1 + and we define x+

= max x, 0 for x ∈ ℝ .

Since the Weyl’s inequality (Stewart and Sun, 1990, Corollary IV.4.9) leads to 

δ ≥ Δ − E 2 = (1 − ε) Δ , we get P − P 2 ≤ ε/(1 − ε) .

To attack (8.22) and (8.23), we divide the difference

UH − U − f (EU) = P⊥UH − f (EU) + P⊥U(H − H) + (PUH − U) (8.26)
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and conquer the terms separately. Since ε < 1/2, the first claim in Lemma 8 yields 

UUT −UUT ∥2 < 1. Then according to Lemma 7, H is orthonormal,

P⊥U(H − H)
F

= P⊥(UH − U)HT(H − H)
F

≤ UH − U
F

H − H
2
,

and

PUH − U
F

= U HTH − I F ≤ HTH − I F = (H − H)TH F = H

− H
F

≤ H − H
2
1/2 H − H

*
1/2

= H − H
2
1/2 UH − U

F
/ 2 .

(8.27)

Observe that when ε < 1/10, Lemma 7 forces that

‖H − H‖2 ≤
‖P − P‖2

2

2 − ‖P − P‖2
2 ≤

ε
1 − ε

2

2 − ε
1 − ε

2 = ε2

2(1 − ε)2 − ε2 ≤ 5
8ε2 ≤ 1

16ε . (8.28)

Combining the estimates above yields

‖P⊥U(H − H) + (PUH − U)‖
F

≤ 1
16 + 5

16 ε‖UH − U‖F ≤ 16
25ε‖UH − U‖F

.
(8.29)

We start to work on 

P⊥UH − f (EU) . Define Λ = diag λs + 1, ⋯, λs + K , and L(V) = AV − V Λ for V ∈ ℝd × K .

Note that L v1, ⋯, vK = A − λs + 1I v1, ⋯, A − λs + KI vK , and G j A − λs + jI = P⊥ holds for 

all j ∈ [K]. As a result, f (L(V)) = − P⊥V for any V ∈ ℝd × K . This motivates us to work on 

L(UH) in order to study P⊥UH .

Let Λ = diag λs + 1, ⋯, λs + K . By definition, AU = UΛ and

L(UH) = AUH − UH Λ = (A − A)UH + (AU − U Λ )H + U( Λ − Λ )H + U
( Λ H − H Λ ) = − EUH + U( Λ − Λ )H + U( Λ H − H Λ ) . (8.30)

Now we study the images of these three terms under the linear mapping f. First, the facts 

f ( ⋅ ) F ≤ Δ−1 ⋅ F and UH − U F ≤ UH − U F (by Lemma 7) imply that
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f (EUH) − f (EU) F = f [E(UH − U)] F ≤ Δ−1 E(UH − U) F ≤ Δ−1

E 2 UH − U F ≤ ε UH − U F .
(8.31)

Second, the definition of f forces f (UM) = 0 for all M ∈ ℝK × K .

‖ f [U( Λ − Λ )H]‖F = ‖ f (UH − U)HT( Λ − Λ )H ‖
F

≤ Δ−1 ‖(UH − U)HT( Λ − Λ)H‖F ≤ Δ−1 ‖UH − U‖F‖HT( Λ − Λ )H‖2

≤ Δ−1 ‖UH − U‖F‖E‖2‖H‖2 ≤ ε‖UH − U‖F .

(8.32)

Here we applied Weyl’s inequality Λ − Λ 2 ≤ E 2 and used the fact that 

H 2 = UTU 2 ≤ 1. Third, by similar tricks we work on the third term

f [U( Λ H − H Λ )]
F

= f (UH − U)HT( Λ H − H Λ )
F

≤ Δ−1 (UH − U)HT(ΛH − H Λ ) F ≤ Δ−1 UH − U
F

Λ H − H Λ
2

.
(8.33)

As an intermediate step, we are going to show that ΛH − H Λ 2 ≤ 2 E 2 . On the one hand, 

AU = U Λ yields

L(U) = (A − A)U + (AU − U Λ ) + U( Λ − Λ ) = − EU + U( Λ − Λ ) . (8.34)

On the other hand, let 

U1 = u1, ⋯, us, us + K + 1, ⋯, ud , U1 = u1, ⋯, us, us + K + 1, ⋯, ud , and Λ1 =
diag λ1, ⋯, λs, λs + K + 1, ⋯, λd .

 We have

AU = U U1
Λ 0
0 Λ1

UT

U1
T U = U U1

ΛHT

Λ1 U1
TU

,

UΛ = U U1
UT

U1
T UΛ = U U1

HTΛ
U1

TUΛ
.

As a result, (8.34) yields that

Λ H − H Λ 2 = HT Λ − Λ HT
2 ≤ L(U) 2 = − EU + U( Λ − Λ) 2

≤ 2 E 2 .
(8.35)
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By combining (8.30), (8.31), (8.32), (8.33) and (8.35), we obtain that

P⊥UH − f (EU)
F

= − f [L(UH)] − f (EU)
F

≤ 4ε UU − U
F

. (8.36)

Based on (8.26), (8.29) and (8.36), we obtain that

UH − U − f (EU)
F

≤ 116
25 ε UH − U

F
. (8.37)

It follows from the triangle’s inequality that

f (EU) F
1 + 5ε ≤

f (EU) F
1 + 116ε/25 ≤ UH − U

F
≤

f (EU) F
1 − 116ε/25 ≤

f (EU) F
1 − 5ε ,

UH − U − f (EU)

F

≤ 116
25 ε

f (EU) F

1 − 116
25 ⋅ 1

10
≤ 8.66ε f (EU)

F

≤ 9ε f (EU)

F

.

Hence we have proved (8.22) and (8.23). Now we move on to (8.24) and (8.25). Note that

P − P = UH(UH)T − UUT = (UH − U)(UH)T + U(UH − U)T = (UH − U
)(UH − U)T + (UH − U)UT + U(UH − U)T .

(8.38)

The first term is controlled by

‖(UH − U)(UH − U)T‖F ≤ ‖UH − U‖2‖UH − U‖F

≤ ‖UH − U‖2 + ‖U(H − H)‖2 ‖UH − U‖F = ‖(P − P)U‖2 + ‖U(H − H)‖2

‖UH − U‖F ≤ ‖P − P‖2 + ‖H − H‖2 ‖UH − U‖F ≤ 1
1 − ε + 1

16 ε‖UH

− U‖F ≤ 1.18ε‖UH − U‖F,

(8.39)

where the penultimate inequality uses P − P 2 ≤ ε/(1 − ε) and (8.28). By defining 

W = UH − U − f (EU) we can write

(UH − U)UT + U(UH − U)T = f (EU)UT + U f (EU)T + WUT + UWT . (8.40)

It is easily seen that

Fan et al. Page 36

Ann Stat. Author manuscript; available in PMC 2020 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



WUT + UWT
F = P⊥WUT + PWUT + UWTP⊥ + UTWP

F
≤ P⊥WUT + UWTP⊥ F

+ PWUT + UTWP F = P⊥WUT
F
2 + UWTP⊥ F

2 1/2
+ PWUT + UTWP F ≤ 2 P⊥W

F
+ 2 PW

F
.

On the one hand, (8.37) forces that P⊥W
F

≤ W
F

≤ 116
25 ε UH − U

F
.On the other hand, 

the fact Pf(EU) = 0, (8.27) and (8.28) yield

PW
F

= P[UH − U − f (EU)]
F

= PUH − U
F

≤ 5
16ε UH − U

F
.

Hence

WUT + UWT
F ≤ 116

25 2 + 2 5
16 ε UH − U

F
≤ 7.68ε UH − U

F
. (8.41)

By collecting (8.38), (8.39), (8.40) and (8.41) we derive that

P − P − f (EU)UT + U f (EU)T F ≤ 8.86ε UH − U
F

≤ 8.86ε
P − P F

2 − P − P 2
2 ≤ 8.86ε

P − P F

2 − 1/92 ≤ 6.29ε P

− P
F

,

where we also used Lemma 7 and P − P
2

≤ ε
1 − ε ≤ 1/9. Therefore,

f (EU)UT + U f (EU)T F
1 + 6.29ε ≤ P − P

F
≤

f (EU)UT + U f (EU)T F
1 − 6.29ε , P − P − f (EU)UT + U f (EU)T F

≤ 6.29ε
1 − 6.29ε f (EU)UT + U f (EU)T F ≤ 16.96ε f (EU)UT + U f (EU)T F .

We finish the proof by

f (EU)UT + U f (EU)T F
2 = f (EU)UT

F
2 + U f (EU)T F

2 + 2Tr f (EU)UT TU f (EU)T = f (EU)UT
F
2

+ U f (EU)T F
2 + 0 = 2 f (EU)

F

2
.

□
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Figure 1: 
Statistical error rate with respect to: (a) the dimension d when λ = 50 and n = 2000; (b) the 

number of servers m when λ = 50 and n = 2000; (c) the subsample size n when λ = 50 and 

m = 50; (d) the eigengap δ when d = 800 and n = 2000.
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Figure 2: 
Observed and fitted values of log ρ VK, VK .
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Figure 3: 
Statistical error with respect to the number of machines when the total sample size N = 6000 

is fixed.
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Figure 4: 
Comparison between DP, FP and DP5: (a) m = 20, n = 2000 and λ = 50; (b) d = 1600, n = 

1000 and λ = 30; (c) d = 800, m = 5 and λ = 30; (d) d = 1600, m = 10 and n = 500.
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