Skip to main content
. 2019 Nov 6;19:211. doi: 10.1186/s12911-019-0918-5

Table 5.

Results using 10-fold cross-validation for diabetes classification

Lab Year & Case Model AUC Precision Recall F1
No lab Logistic Reg. 0.827 0.75 0.75 0.75
1999-2014 SVM 0.849 0.77 0.77 0.77
Diab. Case I Random Forest 0.855 0.78 0.78 0.78
XGBoost 0.862 0.78 0.78 0.78
Ensemble 0.859 0.78 0.78 0.78
Logistic Reg. 0.732 0.67 0.67 0.67
1999-2014 SVM 0.734 0.68 0.68 0.68
Diab. Case II Random Forest 0.731 0.67 0.67 0.67
XGBoost 0.734 0.67 0.67 0.67
Ensemble 0.737 0.68 0.68 0.68
Logistic Reg. 0.800 0.72 0.72 0.72
2003-2014 SVM 0.822 0.75 0.75 0.75
Diab. Case I Random Forest 0.841 0.77 0.76 0.76
XGBoost 0.837 0.75 0.75 0.75
Ensemble 0.834 0.75 0.75 0.75
Logistic Reg. 0.718 0.66 0.66 0.66
2003-2014 SVM 0.716 0.66 0.66 0.66
Diab. Case II Random Forest 0.719 0.67 0.67 0.66
XGBoost 0.725 0.67 0.67 0.67
Ensemble 0.725 0.66 0.66 0.66
With lab Logistic Reg. 0.866 0.79 0.79 0.79
1999-2014 SVM 0.887 0.81 0.81 0.81
Diab. Case I Random Forest 0.937 0.86 0.86 0.86
XGBoost 0.957 0.89 0.89 0.89
Ensemble 0.944 0.87 0.87 0.87
Logistic Reg. 0.724 0.67 0.67 0.67
1999-2014 SVM 0.737 0.68 0.68 0.68
Diab. Case II Random Forest 0.738 0.68 0.68 0.68
XGBoost 0.802 0.74 0.74 0.74
Ensemble 0.783 0.71 0.71 0.71
Logistic Reg. 0.877 0.80 0.80 0.80
2003-2014 SVM 0.882 0.81 0.80 0.80
Diab. Case I Random Forest 0.939 0.86 0.86 0.86
XGBoost 0.962 0.89 0.89 0.89
Ensemble 0.948 0.88 0.88 0.88
Logistic Reg. 0.738 0.68 0.68 0.68
2003-2014 SVM 0.737 0.68 0.68 0.68
Diab. Case II Random Forest 0.740 0.68 0.68 0.67
XGBoost 0.834 0.75 0.75 0.75
Ensemble 0.798 0.72 0.72 0.72

AUC - Area Under the Curve, Precision=TPTP+FP,Recall=TPTP+FN (where TP - True Positive, FP - False Positive, FN - False Negative), and F1 (score) = 2precisionrecallprecision+recall. Bold face font signifies best performing model result