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Abstract

Gas transport across nanoscale pores is determinant in molecular exchange in living organisms as 

well as in a broad spectrum of technologies. Here we report an unprecedented theoretical and 

experimental analysis of gas transport in a consistent set of confining nanochannels ranging in size 

from the ultra-nano- to the sub-microscale. A generally applicable theoretical approach 

quantitatively predicting confined gas flow in the Knudsen and transition regime was developed. 

Unlike current theories, specifically designed for very simple channel geometries, our approach 

can be applied to virtually all geometries, for which the probability distribution of path lengths for 

particle-interface collisions can be computed, either analytically or by numerical simulations. To 

generate a much needed benchmark experimental model, we manufactured extremely reproducible 

membranes with two-dimensional nanochannels. Channel sizes ranged from 2.5 to 250 nm, and Å-

level of size control and interface tolerances were achieved using leading-edge nanofabrication 

techniques. We then measured gas flow in the Knudsen number range from 0.2 to 20. Excellent 

agreement between theoretical predictions and experimental data was found, demonstrating the 

validity and potential of our approach.
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1. Introduction

Numerous medical and engineering applications rely on gas flow in nanopores where the 

collisions of fluid molecules with confining walls dominate the characteristics of gas 

transport. A highly relevant example is represented by natural gas extraction from 

nanoporous shale rock1. Here, understanding nano-confined transport becomes extremely 

important for designing extraction techniques as well for predicting trends of gas production. 

Other examples are represented by gas filtration in chemical plants2,3,4 or the development 

and characterization of high efficiency membranes for applications such as molecular 

sieving5,6 or drug7,8,9 and cell delivery10,11 among others. These involve gas molecules 

traveling across tight spaces where the interactions with the walls are predominant as 

compared to the interactions among gas molecules. Furthermore, in the context of heat 

transport in nanoscale systems, the mean free path of a confined phonon gas is an essential 

ingredient in models of thermal conductivity12. Ideally, one can identify two limiting 

regimes, characterized by distinct length scales: i) A viscous regime, in which the thermal 

mean free path λT ≪ LC, where LC is the characteristic length scale of the confining 

nanostructure; ii) A rarefied (free molecular flow) regime, in which λT ≫ LC. The latter was 

first investigated by Knudsen13. Accordingly, the Knudsen number Kn is defined as the ratio 

Kn = λT / LC. On a finer scale, three regions can be identified: i) when Kn < 0.1, the gas is 

treated as a continuum and the Navier-Stokes equation with slip boundary condition governs 

gas transport14; ii) when Kn > 10, gas collisions with the confining walls dominate; this free 

molecular flow regime is also known as Knudsen diffusion; iii) an intermediate region, 0.1 < 

Kn < 10, called transition regime, has been experimentally and theoretically explored in the 

literature, primarily for gases at low pressure in microfluidic systems15. Pressure-driven gas 

transport in this latter regime is characterized by the coexistence of diffusive and convective 

(advective) transport. As is the case for concentration driven diffusive transport16,17, the 

formal description of gas flow in the transition regime in nanofluidic channels remains an 

open question. Surprisingly, free molecular flow is also debated: Knudsen’s results 

rigorously apply only to gas flow inside cylindrical channels, and although his work is more 

than a century old, its generalization to other geometries remains controversial18. 

Experimental studies of nanoconfined gas flow are challenging, especially because of 

technological limitations in the fabrication of precise nanofluidic systems with a high 

number and density of channels and tight dimensional and geometrical tolerances. Most 

investigations have relied on experimental data collected with a few channels of irregular 

cross section, approximate size14, and minuscule gas flow outputs19. Experiments adopting 

polymeric membranes have been limited by intricate pore geometries, poor reproducibility 

or high channel tortuosity18. A variety of porous materials such as zeolites20, and carbon 

materials21,22, such as carbon nanotubes (CNT), have received considerable attention due to 

their confining fluidic properties. However, their intrinsic geometric and structural 

variability22 limit the investigator’s ability to study the underlying transport phenomena; one 

can at best know the average properties of these structures, such as their average pore size - 

thus preventing the study of gas transport as a function of the actual Knudsen number. By 

leveraging leading-edge, industrial grade microfabrication techniques, we have 

manufactured highly accurate fluidic structures with tightly reproducible geometry, ranging 

in size from the ultra-nanoscale to the sub-microscale23. By offering an unmatched control 
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on channel size and geometry, such structures represent an ideal model system for the 

accurate investigation of the influence of geometry and size on gas transport24 from the 

Knudsen to the transition regime25.

2. Materials and Methods

2.1 Model derivation

The kinetic theory of gases allows to compute the distribution of paths of length l between 

intermolecular collisions26 in thermal equilibrium, pT(l), whose mean value is the thermal 

mean free path λT. For a gas of identical spherical molecules of diameter d, where velocities 

are Maxwell-distributed at temperature T and pressure P, the thermal mean free path reads as 

λT = η
P

πkBT

2m , where kB is the Boltzmann’s constant, η is the gas viscosity and m the 

molecular mass. It should be noted that the expectation that pT is exponential: pT(l) = 

exp(−l / λT )dl / λT, is generally not true. For simplicity, we will treat it as exponential in the 

applications that follow. Consider a gas in a channel of rectangular section h × w and length 

L. When a pressure difference △P = Pin − Pout is applied between the channel’s ends, a flux 

F results. Kinetic theory states that the volumetric gas flow is

F = Dhw
L

ΔP
P =

4λ0λT
3πη

hw
L ΔP (1)

where m is the molecular mass and D = cλ0/3 is the gas diffusion coefficient written in terms 

of the mean thermal velocity c and the average distance between consecutive collisions, λ0. 

The latter is the characteristic length that has to be computed as a function of the geometry. 

At Knudsen numbers Kn ≤ 1, it is expected that λ0 ≈ λT in Eq. (1). When Kn >> 1, collisions 

between gas molecules can be neglected, and particle-wall encounters dominate the gas 

transport. In such conditions, λ0 ≈ λg, the latter being the average distance between 

successive collisions of a gas molecule with the channel’s walls. Knudsen computed λg for a 

cylindrical geometry and showed that λg = 2R. He then computed λg for a long rectangular 

channel of uniform cross-section h × w, where h, w ≪ L, and found that λg= 2hw/(h+w). 
For a gas confined between two infinite parallel plates (w → ∞), λg = 2h. Stops27 

computed the effective mean free path in the transition regime for two infinite plates at 

distance h. By considering that a number of molecular paths are prematurely terminated by 

the boundaries, so that the effective mean free path λ0 is less than the thermal mean free 

path λT, he computed an explicit expression, given in Eq. (8) in Stops27. We re-derive Stops’ 

λ0 and prove that his result is exact. Stops’ formulation is ad hoc for the infinite parallel 

plates geometry; it did not consider that the geometric mean free path λg can be defined as 

the average of an appropriate distribution of path lengths, in the same way as λT can. Such 

distributions, that we call “geometric distribution of path lengths” (pg(l)), are well known in 

the theory of the Lorentz gas,28, 29 as well as in classical billiard dynamics. For the latter, 

pg(l) has been recently published by Holmin et al.30 (see the full expression for a 3D box in 

Supporting Information Eq. S1–2).
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Having defined both λT and λg as the mean values of pT(l) and pg(l), respectively, we can 

leverage the statistical independence of particle-wall and particle-particle collisions. Since 

pT(l) is the probability that a molecule collides with another molecule after traveling a 

distance l, the total probability that a molecule travels a distance l without collisions with 

other molecules is equal to 1 − ∫ 0
l pT x dx = ∫ l

∞ pT x dx. Similarly, the probability that a 

molecule travels a distance l without collisions with walls reads ∫ l
∞ pg x dx. Statistical 

independence guarantees that the probability of a molecule colliding with a wall but not with 

other molecules after traveling a distance l is pg l ∫ l
∞ pT x dx. Interchanging the subscripts 

“T” and “g” yields the probability of a molecule colliding with another molecule, but not 

with a wall: pT l ∫ l
∞ pg x dx.

2.2 Experimental setup

To test our model against experimental data, we developed and micro-fabricated several sets 

of nanoslit membranes, all identical except for the height h of the nanoslits. The membranes 

(Fig. 1) were fabricated through a sacrificial layer technique. By precisely tailoring the 

thickness of a tungsten film deposited by physical vapor deposition with angstrom-level 

resolution, slit channels with nominal heights of, respectively, 2.5, 3.5, 20, 50, 200, and 250 

nm, parallel to the membrane surface (Fig. 1A) were obtained. During the fabrication 

process the tungsten layer represented the “space keeper” for the nanochannels. Details of 

the membrane fabrication are available elsewhere23,24 and in Supporting Information. 

Scanning and transmission electron microscopy image analysis showed deviations from the 

nominal height of less than 5 Å (Fig. 1B–E). Each membrane is composed of exactly 

340,252 nanochannels regularly and densely organized in rectangular arrays and connected 

to the membrane inlet and outlet surfaces via arrays of microchannels (Fig. 1A).

This design affords high channel density and mechanical robustness23 and unparalleled 

dimensional tolerances as compared with other channel geometries. Indeed, even the most 

refined membranes presenting cylindrical nanopores (e.g. TiO2 or carbon nanotubes) suffer 

from much poorer dimensional accuracy and manufacturing control, as well as lower 

scalability. We verified that despite the presence of microchannels, gas flow across our 

membranes is entirely dominated by the parallel set of nanochannels that represent the 

dominant fluidic resistance. Finite element simulations (COMSOL Multiphysics) showed 

that in first analysis, even for the membranes with the largest nanochannels (h = 250 nm), 

the pressure drop is localized between the inlet and outlet of the nanochannel region 

(Supporting Information Fig. S1), accounting for more than 95% for the pressure drop 

across the membranes, when considering entrance and exit effects.

Gas flow through silicon membranes (Fig. 1A) possessing rectangular slit-nanochannels (W 

= 3μm, L = 1μm, and variable h) was measured with a high sensitivity apparatus consisting 

in a pressure controller (PC3–15PSIG, Alicat) and three mass flow meters (M-500SCCM, 

M-10SCCM, M-0.5SCCM, Alicat) with different sensitivity to ensure a high signal to noise 

ratio always larger than 13.85 (Fig. 2). Measurements were performed by a custom-made 

algorithm (Matlab, The MathWorks, Inc.) setting several differential pressures from 1 to 15 

psi and recording the gas flow through the silicon membrane in steady state conditions.
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3. Results and Discussion

The derivation of probabilities of particle-particle and particle-wall collisions allowed us to 

determine the probability distribution of path lengths in a confined region of arbitrary 

geometry pg l ∫ l
∞ pT x dx + pT l ∫ l

∞ pg x dx, and the effective mean free path λ0 of a gas 

confined in a container of arbitrary geometry:

λ0 = ∫
0

∞
l pg l ∫

l

∞
pT x dx + pT l ∫

l

∞
pg x dx dl . (2)

Eq. (2) is the first important result of this paper. Eq. (2) is completely general, and for it to 

be useful one has to prescribe pT and pg. For instance, assuming both pT and pg to be 

exponential, the result λ0
−1 = λT

−1 +λg
−1 is recovered. The calculations of the effective 

mean free path λ0 in an infinite channel with rectangular cross section or in the parallel 

planes geometry27 are not trivial. From Eq. (2), λ0 can be obtained through integrations: 

pT(l) can be found in Paik31 or assumed to be exponential, while pg(l) can be found in 

Holmin et al.30 and in Supporting Information (Eq. (S1–2)). The resulting λ0 is shown in 

Fig. 3 (red solid line) for a gas with thermal mean free path λT = 44.5 nm in a box of 

dimensions w = 3 μm, L = 1 μm.

Figure 3 also shows λg, as obtained analytically by Holmin et al. for a box of sides h, w and 

L (solid blue line): λg = 2hwL/(hw + hL + wL). This coincides with Knudsen’s λg = 2hw/(h

+w); for an infinite channel, L →∞, and that for infinite parallel planes (w → ∞), λg = 2h. 

In this latter case, the geometric path distribution pg
∞(l) can be found when w, L →∞ in the 

geometric path distribution of Holmin et al.30 (Supporting Information Eq. (S1–2):

pg
∞ l =

0, f or l < h

2h2

l3
otherwise

(3)

Alternatively, Eq. (3) can be derived from Lambert’s cosine law, pθ (θ) = 2sinθcosθ, 

together with the relations pg
∞(l) dl = pθ(θ)dθ, l = h/cosθ. From Eq. (3), assuming 

pT(l)=exp(−l/ λT)/ λT, and performing integrations, yields:

λ0
λT

= 1 − e−β + βe−β − β2∫
β

∞
x−1e−xdx, (4)

which coincides with Eq. (8) in Stops27 where β = h/λT. Eq.(4) is also shown in Fig. 3 for 

comparison (dashed black line).

More complex situation can be addressed. Since Eq. (2) is an exact expression, it allows to 

compute the mean free path of a gas in a channel for any channel shape and wall roughness, 

provided pg(l) is known. In general, pg(l) has to be computed numerically, e.g. by Monte 

Carlo simulations which are routinely employed to evaluate the diffusion coefficient in the 

Knudsen regime inside channels with complicated geometries and/or rough walls. Surface 

Scorrano et al. Page 5

ACS Appl Mater Interfaces. Author manuscript; available in PMC 2019 November 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



roughness was shown to lower the diffusion coefficient32. Thus, we propose to generalize 

Eq. (1) by replacing D with D’ = α0 D, and argue that the roughness-dependent α0 plays a 

similar role in the definition of the accommodation coefficient of the continuum Navier-

Stokes equation with Maxwell boundary conditions, when collisions with the walls are 

properly accounted for33,34. Arkilic et al have derived an analytical expression for gas flow 

through a rectangular channel, from the zero-th order solution of the compressible Navier-

Stokes equation35. Rewriting their mass flow (Eq. (21) in Arkilic et al.35) as a volumetric 

flow Q, and introducing the average pressure P = Pin + Pout /2, yields

Q = h3w
12ηL

P
Pout

+ 62 − σ
σ λT ΔP, (5)

Where 2 − σ /σ is the streamwise momentum accommodation coefficient. At Kn >> 1, Eq. 

(5) must agree with Eq. (1) when α0 D replaces D; this implies that 2 − σ
σ =

8α0λ0
3πh , so that 

σ = σ h . Defining σ0 = σ h = 0 , one can write explicitely:

σ h =
4σ0h

2λ0 + σ0 2h − λ0
. (6)

From λ0 2h as h 0, one finds that α0 = 3π 2 − σ0 / 16σ0 , so that for diffusively reflecting 

walls, σ0 = 1 implies α0 ≈ 0.589. We can therefore rewrite Eq. (5) as follows:

Q = h3w
12ηL

P
Pout

+ 3
2 − σ0

σ0

λ0 h λT

h2 ΔP . (7)

Equation (7) is the second important result of the present work, because only Navier-Stokes 

equations with geometry-dependent accommodation coefficient are able to reproduce 

experimentally observed Knudsen minimum in the channel permeability q = 3π
8

L

h2w

P
ΔP

Q
RT . 

We demonstrate this in Figure 4 where the results of permeability as a function of δ = 1/Kn 

are shown. Figure 4 displays Eq. (5) in Arkilic et al35 with σ = σ0 = 1 (dashed black line), 

our model Eq.(7) with σ0 = 1 (solid red line), as well as the permeability computed by 

Cercignani et al.36 for the Boltzmann equation (solid blue line). The Navier-Stokes equation 

with constant accommodation coeffcients, Eq. (5), reproduces both the small h (large Kn) 

and the large h (small Kn) limits, but fails to exhibit a minimum around Kn ≈ 1. Cercignani 

et al.’s solution to the Boltzmann equation shows the expected minimum, at the expense of 

an unphysical divergence at small h. This is a well-known drawback of the linearized 

Boltzmann equation with (geometry-independent) Maxwell boundary conditions. This 

divergence is enhanced in the limit of entirely specular reflection: for free molecular flow, 

the flow rate diverges even faster as σ0 decreases. In contrast, our Eq. (7) satisfies all 

requirements with a simple analytical expression adaptable to any channel geometry.
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The volumetric gas flows measured at △P varying between 1 and 15 psi or at varying 

nanochannel size (△P =15 psi) are represented in Figure 5A and B, respectively. Results are 

shown for membranes with h = 2.5, 3.5, 20, 50, 200, 250 nm (n=30 replicate measurements), 

where the standard deviation (always < 7%) is smaller than the size of data marks. Plotted 

lines are Eq. (7) with σ0 = 1. Striking agreement between the experimental data and our 

model (Eq. 7) was found for all values of h, which is remarkable considering that no free 

parameters were used.

Although other works considered a geometry-dependent mean free path in the boundary 

conditions34,35, our approach has the distinct advantage to provide a systematic way of 

computing the mean free path in a channel with any geometry. As pT(l) is known, one only 

needs to compute the path length distribution pg(l), which is only determined by wall-wall 

collisions and can be evaluated numerically for arbitrary geometry. The geometry-dependent 

effective mean free path λ0 can then be computed from Eq. (2) to any desired accuracy, and 

from the latter, the geometry-dependent accommodation coeffcient can be obtained. 

Inserting the latter in the Navier-Stokes equation (5), the volumetric flow for the entire span 

of Kn can be quantitatively predicted, as with (7).

4. Conclusions

In this paper we developed a statistical model for the calculation of the effective mean free 

path that takes into account particle-particle and particle-wall collisions. The nanochannel 

membranes employed in this work, also have unique characteristics: they achieved the high 

standard of accuracy and reproducibility, unmatched in the literature to date, allowing us to 

reliably test our statistical approach to nanoconfined gas transport. The remarkable 

agreement between model and experiments validated both. Such compelling outcomes is of 

great interest for numerous applications: in the natural gas industry our predictive model 

could provide a valuable tool to improve extraction from shale formations and tight sands37, 

where gas is trapped in complex networks of micro- and nanopores. Refined modeling of gas 

flow in shale fractures could lead to increased yield, efficiency and environmental safety of 

gas recovery. For analytical technologies, a better description of gas transport across 

chromatography columns could lead to more efficient instrumentation and reduced time of 

analysis. Further application examples include nanofluidics for the detection of chemical 

agents, membranes for physical separation of gases in the chemical industry, analysis of 

confined fluids17,38 and controlled drug release39,40,41,42.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: 
Schematic depiction of the membrane structure (A); TEM cross-sectional images of selected 

membranes (B, C, D, E); see text for details.
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Figure 2. 
Schematics of the high sensitivity apparatus developed for mass flow measurements.
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Figure 3. 
Comparison of mean free path variation for the present model (solid red line), results from 

Stops (dashed black line), and Knudsen’s model (solid blue line).
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Figure 4. 
Permeability calculated for Eq. (7) of the present model (solid red line), for Cercignani’s 

solution of Boltzmann equation (solid blue line), for Arkilic model from Eq. (5) (dashed 

black line), and experimental data at Δ P =15 psi (black dots) as a function of the rarefaction 

parameter δ=1/Kn.
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Figure 5. 
(A) Volumetric gas flow Q as a function of ΔP for membranes with h = 2.5 (black squares), 

3.5 (black circles), 20 (blue squares), 50 (blue circles), 200 (red squares), 250 (red circles) 

nm, respectively. The solid lines represent Eq. (7) for the considered values of h. (B) 

Volumetric nitrogen flow at △P =15 psi as a function of the nanochannel height.

Scorrano et al. Page 15

ACS Appl Mater Interfaces. Author manuscript; available in PMC 2019 November 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript


	Abstract
	Introduction
	Materials and Methods
	Model derivation
	Experimental setup

	Results and Discussion
	Conclusions
	References
	Figure 1:
	Figure 2.
	Figure 3.
	Figure 4.
	Figure 5.

