Skip to main content
. 2019 Oct 31;10:1213. doi: 10.3389/fpls.2019.01213

Figure 1.

Figure 1

Starch metabolism in heterotrophic tissue, highlighted in the orange circle; ADP-Glucose (ADP-Glc) enters the plastid by the specific translocator, that is, a phosphate transporter and the ATP/ADP transporter. Subsequently, adenosine 5′-diphosphate glucose pyrophosphorylase (AGPase) enzyme induces the regulating reaction in amyloplasts by converting Glucose-1-phosphate (Glc-1-P) and ATP to ADP-Glc and inorganic pyrophosphate (PPi). Systematic interaction of multienzymes gradually leads to synthesized starch. The major metabolites and enzymes involved in the process: 1, glucose 6-phosphate transporter; 2, amyloplast adenylate transporter; 3, plastidial phosphoglucomutase; 4, ADP–glucose pyrophosphorylase; 5, starch synthases (SS); 6, starch branching enzymes (SBE); 7, inorganic pyrophosphatase. Sucrose synthases (SuSy), granule-bound starch synthase (GBSS), Fructose (Fru), Fructose-6-phosphate (Fru-6-P). Modified from Bahaji et al. (2014).