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Abstract

Alzheimer’s disease (AD) is highly heritable and recent studies have identified over 20 disease-

associated genomic loci. Yet these only explain a small proportion of the genetic variance, 

indicating that undiscovered loci remain. Here, we performed a large genome-wide association 

study of clinically diagnosed AD and AD-by-proxy (71,880 cases, 383,378 controls). AD-by-

proxy, based on parental diagnoses, showed strong genetic correlation with AD (rg=0.81). Meta-

analysis identified 29 risk loci, implicating 215 potential causative genes. Associated genes are 

strongly expressed in immune-related tissues and cell types (spleen, liver and microglia). Gene-set 

analyses indicate biological mechanisms involved in lipid-related processes and degradation of 

amyloid precursor proteins. We show strong genetic correlations with multiple health-related 

outcomes, and Mendelian randomisation results suggest a protective effect of cognitive ability on 

AD risk. These results are a step forward in identifying the genetic factors that contribute to AD 

risk and add novel insights into the neurobiology of AD.

Alzheimer’s disease (AD) is the most frequent neurodegenerative disease with roughly 35 

million people affected.1 AD is highly heritable, with estimates ranging between 60 and 

80%.2 Genetically, AD can be roughly divided into 2 subgroups: 1) familial early-onset 

cases that are often explained by rare variants with a strong effect,3 and 2) late-onset cases 

that are influenced by multiple common variants with low effect sizes.4 Segregation analyses 

have linked several genes to the first subgroup, including APP5, PSEN16 and PSEN27. The 

identification of these genes has resulted in valuable insights into a molecular mechanism 

with an important role in AD pathogenesis, the amyloidogenic pathway,8 exemplifying how 

gene discovery can add to biological understanding of disease etiology.
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Besides the identification of a few rare genetic factors (e.g. TREM29 and ABCA710), 

genome-wide association studies (GWASs) have mostly discovered common risk variants 

for the more complex late-onset type of AD. APOE is the strongest genetic risk locus for 

late-onset AD, responsible for a 3- to 15-fold increase in risk.11 A total of 19 additional 

GWAS loci have been described using a discovery sample of 17,008 AD cases and 37,154 

controls, followed by replication of the implicated loci with 8,572 AD patients and 11,312 

controls.4 The currently confirmed AD risk loci explain only a fraction of the heritability of 

AD and increasing the sample size is likely to boost the power for detection of more 

common risk variants, which will aid in understanding biological mechanisms involved in 

the risk for AD.

In the current study, we included 455,258 individuals (Nsum) of European ancestry, meta-

analysed in 3 phases (Figure 1). Phase 1 consisted of 24,087 clinically diagnosed late-onset 

AD cases, paired with 55,058 controls. In phase 2, we analysed an AD-by-proxy phenotype, 

based on individuals in the UK Biobank (UKB) for whom parental AD status was available 

(N proxy cases=47,793; N proxy controls=328,320). The value of by-proxy phenotypes for 

GWAS was recently demonstrated by Liu et al.12 for 12 common diseases, including 

substantial gains in statistical power for AD. The high heritability of AD implies that case 

status for offspring can be partially inferred from parental case status and that offspring of 

AD parents are likely to have a higher genetic AD risk load. We thus defined individuals 

with one or two parents with AD as proxy cases, while upweighting cases with 2 parents. 

Similarly, the proxy controls include subjects with 2 parents without AD, where older 

cognitively normal parents were upweighted to account for the higher likelihood that 

younger parents may still develop AD (see Methods). As the proxy phenotype is not a pure 

measure of an individual’s AD status and may include individuals that never develop AD, 

genetic effect sizes will be somewhat underestimated. However, the proxy case-control 

sample is very large, and therefore substantially increases power to detect genetic effects for 

AD12, as was also demonstrated in a more recent study using UKB13. Finally, in phase 3, we 

meta-analysed all individuals of phase 1 and phase 2 together and tested for replication in an 

independent sample.

Results

Genome-wide meta-analysis for AD status

Phase 1 involved a genome-wide meta-analysis for clinically-diagnosed AD case-control 

status using cohorts collected by 3 independent consortia (Alzheimer’s disease working 

group of the Psychiatric Genomics Consortium (PGC-ALZ), the International Genomics of 

Alzheimer’s Project (IGAP), and the Alzheimer’s Disease Sequencing Project (ADSP)), 

totalling 79,145 individuals (Nsum; effective sample size Neff=72,500) of European ancestry 

and 9,862,738 genetic variants passing quality control (Figure 1, Supplementary Table 1). 

The ADSP subset encompassed whole exome sequencing data from 4,343 cases and 3,163 

controls, while the remaining datasets consisted of genotype single nucleotide 

polymorphism (SNP) arrays. For PGC-ALZ and ADSP, raw genotypic data were subjected 

to a standardized quality control pipeline. GWA analyses were run per cohort and then 

included in a meta-analysis alongside IGAP, for which only summary statistics were 

Jansen et al. Page 2

Nat Genet. Author manuscript; available in PMC 2020 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



available (see Methods). As described in detail in the Supplementary Note, the phase 1 

analysis identified 18 independent loci meeting genome-wide significance (GWS; 

P<5×10−8), all of which have been identified by previous GWASs (Table 1, Supplementary 

Figure 1, Supplementary Table 2).

We next (phase 2) performed a GWAS using 376,113 individuals of European ancestry from 

UKB with parental AD status weighted by age to construct an AD-by-proxy status (Figure 

1). Here, we identified 13 independent GWS loci, 8 of which overlapped with phase 1 (Table 

1, Supplementary Note). We observed a strong genetic correlation of 0.81 (s.e.m=0.185) 

between AD status and AD-by-proxy, as well as substantial concordance in the individual 

SNP effects, as described in the Supplementary Note.

Given the high genetic overlap, in phase 3 we conducted a meta-analysis of the clinical AD 

GWAS and the AD-by-proxy GWAS (Figure 1), comprising a total sample size of 455,258 

(Neff=450,734), including 71,880 (proxy) cases and 383,378 (proxy) controls. The linkage 

disequilibrium (LD) score intercept14 was 1.0018 (s.e.m=0.0109) and the sample size-

adjusted15 λ1000 was 1.044, indicating that most of the inflation in genetic signal 

(λGC=1.0833) could be explained by polygenicity (Supplementary Figure 1B). There were 

2,357 GWS variants, which were represented by 94 lead SNPs, located in 29 distinct loci 

(Table 1, Figure 2, Supplementary Figure 2). These included 15 of the 18 loci detected in 

Phase 1, all of the 13 detected in Phase 2, as well as 9 loci that were sub-threshold in both 

individual analyses but reached significance in the meta-analysis. A large proportion of the 

lead SNPs (60 of 94) was concentrated in the established APOE risk locus on chromosome 

19. This region is known to have a complex LD structure and a very strong effect on AD 

risk; thus, we consider these SNPs likely to represent a single association signal. Conditional 

analysis indicated that most loci represented a single fully independent signal, while the 

TREM2, PTK2B/CLU, and APOE loci contained multiple possible causal signals 

(Supplementary Note; Supplementary Tables 3–4).

Of the 29 associated loci, 16 overlapped 1 of the 20 genomic regions previously identified 

by the GWAS of Lambert et al.4, replicating their findings, while 13 were novel. The 

association signals of five loci (CR1, ZCWPW1, CLU/PTK2B, MS4A6a and APH1B) are 

partly based on the ADSP exome-sequencing data. Re-analysis of these loci excluding 

ADSP resulted in similar association signals (Supplementary Table 5), implying that we 

have correctly adjusted for partial sample overlap between IGAP and ADSP. The lead SNPs 

in three loci (with nearest genes HESX1, TREM2 and CNTNAP2) were only available in the 

UKB cohort (Table 1), but were of good quality (INFO>0.91, HWE P>0.19, 

missingness<0.003). These SNPs were all rare (minor allele frequency (MAF) <0.003), 

meaning that they will require future confirmation in another similarly large sample. 

However, variants in TREM2 have been robustly linked to AD in prior research.9

Verifying the 13 novel loci against other recent genetic studies on AD9,16,12,17,18, 4 loci 

(TREM2, ECHDC3, SCIMP and ABI3) have been previously discovered in addition to the 

16 identified by Lambert et al., leaving 9 novel loci at the time of this writing (ADAMTS4, 
HESX1, CLNK, CNTNAP2, ADAM10, APH1B, KAT8, ALPK2, AC074212.3). The 

ADAMTS4 and KAT8 loci have also since been identified in a recent analysis in a partially 
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overlapping sample.13 Comparing our meta-analysis results with all loci of Lambert et al.4 to 

determine differences in associated loci, we were unable to observe 4 loci (MEF2C, NME8, 
CELF1 and FERMT2) at a GWS level (observed P-values were 1.6×10−5 to 0.0011), which 

was mostly caused by a lower association signal in the UKB dataset (Supplementary Table 

6). By contrast, Lambert et al.4 were unable to replicate the DSG2 and CD33 loci in the 

second stage of their study. In our study, DSG2 was also not supported (meta-analysis 

P=0.030; UKB analysis P=0.766), implying invalidation of this locus, while the CD33 locus 

(rs3865444 in Table 1) was significantly associated with AD (meta-analysis P=6.34×10−9; 

UKB analysis P=4.97×10−5), implying a genuine genetic association with AD risk.

Next, we aimed to find further support for the novel findings by using an independent 

Icelandic cohort (deCODE19,20), including 6,593 AD cases and 174,289 controls (Figure 1; 

Supplementary Table 7) to test replication of the lead SNP or an LD-proxy of the lead SNP 

(r2>0.9) in each locus. We were unable to test two loci as the lead SNPs (and SNPs in high 

LD) either were not present in the Icelandic reference panel or were not imputed with 

sufficient quality. For 6 of the 7 novel loci tested for replication, we observed the same 

direction of effect in the deCODE cohort. Furthermore, 4 loci (CLNK, ADAM10, APH1B, 

AC074212.3) showed nominally significant association results (P<0.05) for the same SNP or 

a SNP in high LD (r2>0.9) within the same locus (two-tailed binomial test P=1.9×10−4). The 

locus on chromosome 1 (ADAMTS4) was very close to significance (P=0.053), implying 

stronger evidence for replication than for non-replication. Apart from the novel loci, we also 

observed sign concordance for 96.3% of the top (per-locus) lead SNPs in all loci from the 

meta-analysis (two-tailed binomial test P=4.17×10−7) that were available in deCODE (26 of 

27).

As an additional method of testing for replication, we used genome-wide polygenic score 

prediction in two independent samples.21 The current results explain 7.1% of the variance in 

clinical AD at a low best fitting P-threshold of 1.69×10−5 in 761 individuals with case-

control diagnoses (P=1.80×10−10). When excluding the APOE locus (chr19: 45020859–

45844508), the results explain 3.9% of the variance with a best fitting P-threshold of 

3.5×10−5 (P=1.90×10−6). We also predict AD status in a sample of 1,459 pathologically 

confirmed cases and controls22 with an R2=0.41 and an area under the curve (AUC) of 0.827 

(95% confidence interval (95% CI): 0.805–0.849, P=9.71×10−70) using the best-fitting 

model of SNPs with a GWAS P<0.50, as well as R2=0.23 and AUC=0.733 (95% CI: 0.706–

0.758, P=1.16×10−45) using only APOE SNPs. This validation sample contains a small 

number of individuals overlapping with IGAP; previous simulations with this sample have 

indicated that this overfitting increases the margin of error of the estimate approximately 2–

3%.22 This sample, however, represented severe, late-stage AD cases contrasted with 

supernormal controls, so the polygenic prediction may be higher than expected for typical 

case-control or population samples.

Functional interpretation of genetic variants

Functional annotation of all GWS SNPs (n=2,357) in the associated loci showed that SNPs 

were mostly located in intronic/intergenic areas, but also in regions that were enriched for 

chromatin states 4 and 5, implying effects on active transcription (Figure 3; Supplementary 
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Table 8). Twenty-five GWS SNPs were exonic non-synonymous (Figure 3A; Supplementary 

Table 9) with likely deleterious impacts on gene function. Converging evidence of strong 

association (Z>|7|) and a high observed probability of a deleterious variant effect (CADD23 

score≥30) was found for rs75932628 (TREM2), rs142412517 (TOMM40) and rs7412 

(APOE). The first two missense mutations are rare (MAF=0.002 and 0.001, respectively) 

and the alternative alleles were associated with higher risk for AD. The latter APOE 
missense mutation is the well-established protective allele Apoε2. Supplementary Tables 8 

and 9 present a detailed annotation catalogue of variants in the associated genomic loci. We 

also applied a fine-mapping model24 to identify credible sets of causal SNPs from the 

identified GWS variants (Supplementary Table 8). The proportion of plausible causal SNPs 

varied drastically between loci; for example, 30 out of 854 SNPs were selected in the APOE 
locus (no. 26), while 345 out of 434 SNPs were nominated in the HLA-DRB1 locus (no. 7). 

Credible causal SNPs were not limited to known functional categories such as ExNS, 

indicating more complicated causal pathways that merit investigation with the set of variants 

prioritized by these statistical and functional annotations.

Partitioned heritability analysis,25 excluding SNPs with extremely large effect sizes (that is, 

APOE variants) showed enrichment for the SNP-heritability (h2
SNP) for variants located in 

H3K27ac marks (enrichment=3.18, P=9.63×10−5), which are associated with activation of 

transcription, and in super enhancers (enrichment=3.62, P=2.28×10−4), which are genomic 

regions where multiple epigenetic marks of active transcription are clustered (Figure 3D; 

Supplementary Table 10). Heritability was also enriched in variants on chromosome 17 

(enrichment=3.61, P=1.63×10−4) and we observed a trend of enrichment for heritability in 

common rather than rarer variants (Supplementary Figure 3; Supplementary Tables 11 and 

12). Although a large proportion (23.9%) of the heritability can be explained by SNPs on 

chromosome 19, this enrichment is not significant, due to the large standard errors around 

this estimate (Supplementary Table 11). Overall these results suggest that, despite some 

nonsynonymous variants contributing to AD risk, most of the GWS SNPs are located in non-

coding regions and are enriched for regions that have an activating effect on transcription.

Implicated genes

To link the associated variants to genes, we applied three gene-mapping strategies 

implemented in Functional Mapping and Annotation (FUMA)26 (see Methods). We used all 

SNPs with a P-value<5×10−8 for gene-mapping. Positional gene-mapping aligned SNPs to 

99 genes by their location within or immediately up/downstream (±10 kilobases (kb)) of 

known gene boundaries, eQTL (expression quantitative trait loci) gene-mapping matched 

cis-eQTL SNPs to 168 genes whose expression levels they influence in one or more tissues, 

and chromatin interaction mapping linked SNPs to 21 genes based on three-dimensional 

DNA-DNA interactions between each SNP’s genomic region and nearby or distant genes, 

which we limited to include only interactions between annotated enhancer and promoter 

regions (Supplementary Figure 4; Supplementary Tables 13 and 14). This resulted in 192 

uniquely mapped genes, 80 of which were implicated by at least two mapping strategies and 

16 by all 3 (Figure 4E).
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Of special interest is the locus on chromosome 8 (CLU/PTK2B). In the GWAS by Lambert 

et al.4, this locus was defined as 2 distinct loci (CLU and PTK2B). Although our conditional 

analysis based on genetic data also specified this locus as having at least 2 independent 

association signals (Supplementary Table 4), the chromatin interaction data in two immune-

related tissues – the spleen and liver (Supplementary Table 14) – suggests that the genomic 

regions indexed by PTK2B and CLU loci might physically interact (Figure 3E), therefore 

putatively affecting AD pathogenesis via the same biological mechanism. The patterns of 

tissue-specific gene expression are largely dissimilar between CLU and PTK2B, although 

both are expressed relatively highly in the brain and lymph nodes.27 Future studies should 

thus consider the joint effects of how these two genes simultaneously impact AD risk.

Eight genes (HLA-DRB5, HLA-DRB1, HLA-DQA, HLA-DQB1, KAT8, PRSS36, ZNF232 
and CEACAM19) are particularly notable as they are implicated via eQTL association in the 

hippocampus, a brain region highly affected early in AD pathogenesis (Supplementary Table 

13). Chromosome 16 contains a locus implicated by long-range eQTL association (Figure 

3F), clearly illustrating how the more distant genes C16orf93, RNF40 and ITGAX can be 

affected by a genetic factor (rs59735493) in various body tissues (for example, blood and 

skin), including a change in expression for RNF40 observed in the dorsolateral prefrontal 

cortex. These observations emphasize the relevance of considering putative causal genes or 

regulatory elements not solely on the physical location but also on epigenetic influences. As 

detailed in the Supplementary Note, eQTLs were overrepresented in the risk loci and a 

number of quantitative trait locus (QTL) associations (including eQTLs, methylation 

quantitative trait loci (mQTLs), and histone acetylation quantitative trait loci (haQTLs)) 

were identified in relevant brain regions, providing interesting targets for future functional 

follow-up and biological interpretation (Supplementary Tables 15–17).

Although these gene-mapping strategies imply multiple putative causal genes per GWAS 

locus, several genes are of particular interest, as they have functional or previous genetic 

association with AD. For locus 1 in Supplementary Table 13, ADAMTS4 encodes a protein 

of the ADAMTS family which has a function in neuroplasticity and has been extensively 

studied for its role in AD pathogenesis.28 For locus 19, the obvious most likely causal gene 

is ADAM10, as this gene has been associated with AD by research focusing on rare coding 

variants in ADAM10.29 However, this is the first time that this gene is implicated as a 

common risk factor for AD, and is supported by the putative causal molecular mechanism 

observed in dorsolateral prefrontal cortex eQTL and mQTL data (Supplementary Tables 15 

and 16) for multiple common SNPs in LD. The lead SNP for locus 20 is a nonsynonymous 

variant in exon 1 of APH1B, which encodes for a protein subunit of the γ-secretase complex 

cleaving APP.30 A highly promising candidate gene for locus 21 is KAT8, as the lead SNP 

of this locus is located within the third intron of KAT8, and multiple significant variants 

within this locus influence the expression or methylation levels of KAT8 in multiple brain 

regions (Supplementary Tables 13 and 16) including hippocampus. The chromatin modifier 

KAT8 is regulated by KANSL1, a gene associated with AD in absence of Apoɛ4. A study on 

Parkinson’s disease reported KAT8 as potential causal gene based on GWAS and differential 

gene expression results, implying a putative shared role in neurodegeneration of KAT8 in 

AD and Parkinson’s disease.31 Although previously reported functional information on 
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genes can be of great value, it is preferable to consider all implicated genes as putative 

causal factors to guide potential functional follow-up experiments.

We next performed genome-wide gene-based association analysis (GWGAS) using Multi-

marker Analysis of GenoMic Annotation (MAGMA).32 This method annotates SNPs to 

known protein-coding genes to estimate aggregate associations based on all SNPs in a gene. 

It differs from FUMA as it provides a statistical gene-based test, whereas FUMA maps 

individually significant SNPs to genes. With GWGAS, we identified 97 genes that were 

significantly associated with AD (Supplementary Figure 5; Supplementary Table 18), of 

which 74 were also mapped by FUMA (Figure 4E). In total, 16 genes were implicated by all 

four strategies (Supplementary Table 19), of which 7 genes (HLA-DRA, HLA-DRB1, 
PTK2B, CLU, MS4A3, SCIMP and RABEP1) are not located in the APOE-locus, and 

therefore of high interest for further investigation.

Gene-sets implicated in AD and AD-by-proxy

Using the gene-based P-values, we performed gene-set analysis for curated biological 

pathways and tissue/single-cell expression. Four Gene Ontology (GO)33 gene-sets were 

significantly associated with AD risk: Protein lipid complex (P=3.93×10−10), Regulation of 
amyloid precursor protein catabolic process (P=8.16×10−9), High density lipoprotein 
particle (P=7.81×10−8), and Protein lipid complex assembly (P=7.96×10−7) (Figure 4A; 

Supplementary Tables 20 and 21). Conditional analysis on the APOE locus showed 

associations with AD for these four gene-sets to be independent of the effect of APOE, 

though part of the association signal was also attributable to APOE. All 25 genes of the High 
density lipoprotein particle pathway are also part of the Protein lipid complex; conditional 

analysis showed that these gene-sets are not interpretable as independent associations 

(P=0.18), but the other three sets are independently significant (Supplementary Table 20).

Linking gene-based P-values to tissue- and cell-type-specific gene-sets, no association 

survived the stringent Bonferroni correction, which corrected for all tested gene-sets (that is, 

6,994 GO categories, 53 tissues and 39 cell types). However, we did observe suggestive 

associations across immune-related tissues when correcting only for the number of tests 

within all tissue types or cell-types (Figure 4C; Supplementary Table 22), particularly whole 

blood (P=5.61×10−6), spleen (P=1.50×10−5) and lung (P=4.67×10−4), which were 

independent from the APOE locus. In brain single-cell expression gene-set analyses, we 

found association for microglia in the mouse-based expression dataset (P=1.96×10−3), 

though not surviving the stringent Bonferroni correction (Figure 4B; Supplementary Table 

23). However, we observed a similar association signal for microglia in a second 

independent single-cell expression dataset in humans (P=2.56×10−3) (Supplementary Figure 

6; Supplementary Table 24). As anticipated, both microglia signals are partly depending on 

APOE, though a large part is independent (Supplementary Tables 23 and 24).

Cross-trait genetic influences

As described in the Supplementary Note and Supplementary Tables 25–26, we observed that 

the genetic influences on AD overlapped with a number of other diseases and psychological 

traits including cognitive ability and educational attainment, replicating previous studies.
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34,35 To extend these findings, we used Generalised Summary-statistic-based Mendelian 

Randomisation36 (GSMR) to test for potential credible causal associations of genetically 

correlated outcomes which may directly influence the risk for AD. Due to the nature of AD 

being a late-onset disorder and summary statistics for most other traits being obtained from 

younger samples, we do not report tests for the opposite direction of potential causality (that 

is, we did not test for a causal effect of a late-onset disease on an early-onset disease). In this 

set of analyses, SNPs from the summary statistics of genetically correlated phenotypes were 

used as instrumental variables to estimate the putative causal effect of these “exposure” 

phenotypes on AD risk by comparing the ratio of SNPs’ associations with each exposure to 

their associations with AD outcome (see Methods). Association statistics were standardized, 

such that the reported effects reflect the expected difference in odds ratio (OR) for AD as a 

function of every SD increase in the exposure phenotype. We observed a protective effect of 

cognitive ability (OR=0.89, 95% CI: 0.85–0.92, P=5.07×10−9), educational attainment 

(OR=0.88, 95%CI: 0.81–0.94, P=3.94×10−4), and height (OR=0.96, 95%CI: 0.94–0.97, 

P=1.84×10−8) on risk for AD (Supplementary Table 27; Supplementary Figure 7). No 

substantial evidence of pleiotropy was observed between AD and these phenotypes, with 

<1% of overlapping SNPs being filtered as outliers (Supplementary Table 27).

Discussion

By using an unconventional approach of including a proxy phenotype for AD to increase 

sample size, we have identified nine novel loci and gained novel biological knowledge on 

AD etiology. We were able to test seven of the nine novel loci for replication, of which four 

loci showed clear replication, one locus showed marginal replication and two loci were not 

replicated at this moment. Both the high genetic correlation between the standard case-

control status and the UKB by proxy phenotype (rg=0.81) and the high rate of novel loci 

replication in the independent deCODE cohort suggest that this strategy is robust. Through 

in silico functional follow-up analysis, and in line with previous research,18,37 we emphasise 

the crucial causal role of the immune system - rather than immune response as a 

consequence of disease pathology - by establishing variant enrichments for immune-related 

body tissues (whole blood, spleen, liver) and for the main immune cells of the brain 

(microglia). Of note, the enrichment observed for liver could alternatively indicate the 

genetic involvement of the lipid system in AD pathogenesis.38 Furthermore, we observe 

informative eQTL associations and chromatin interactions within immune-related tissues for 

the identified genomic risk loci. Together with the AD-associated genetic effects on lipid 

metabolism in our study, these biological implications (which are based on genetic signals 

and unbiased by prior biological beliefs) strengthen the hypothesis that AD pathogenesis 

involves an interplay between inflammation and lipids, as lipid changes might harm immune 

responses of microglia and astrocytes, and vascular health of the brain.39

In accordance with previous clinical research, our study suggests an important role for 

protective effects of several human traits on AD. Cognitive reserve has been proposed as a 

protective mechanism in which the brain aims to control brain damage with prior existing 

cognitive processing strategies.40 Our findings imply that some component of the genetic 

factors for AD might affect cognitive reserve, rather than being involved in AD-pathology-

related damaging processes, influencing AD pathogenesis in an indirect way through 
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cognitive reserve. Furthermore, a large-scale community-based study observed that AD 

incidence rates declined over decades, which was specific for individuals with at minimum a 

high school diploma.41 Combined with our Mendelian randomisation results for educational 

attainment, this suggests that the protective effect of educational attainment on AD is 

influenced by genetics. Similarly, the observed positive effects of height could be a result of 

the genetic overlap between height and intracranial volume42,43, a measure associated to 

decreased risk of AD.44 This indirect association is furthermore supported by the observed 

increase in cognitive reserve for taller individuals.45 Alternatively, genetic variants 

influencing height might also affect biological mechanisms involved in AD aetiology, such 

as IGF1 that codes for the insulin-like growth factor and is associated with cerebral amyloid.
46

The results of this study could furthermore serve as a valuable resource for selection of 

promising genes for functional follow-up experiments and identify targets for drug 

development and stratification approaches. We anticipate that functional interpretation 

strategies and follow-up experiments will result in a comprehensive understanding of late-

onset AD aetiology, which will serve as a solid foundation for improvement of AD therapy.

URLs

UK Biobank: http://ukbiobank.ac.uk

Database of Genotypes and Phenotypes (dbGaP): https://www.ncbi.nlm.nih.gov/gap

Functional Mapping and Annotation (FUMA) software: http://fuma.ctglab.nl

Multi-marker Analysis of GenoMic Annotation (MAGMA) software: http://ctg.cncr.nl/

software/magma

mvGWAMA and effective sample size calculation: https://github.com/Kyoko-wtnb/

mvGWAMA

LD Score Regression software: https://github.com/bulik/ldsc

LD Hub (GWAS summary statistics): http://ldsc.broadinstitute.org/

LD scores: https://data.broadinstitute.org/alkesgroup/LDSCORE/

Psychiatric Genomics Consortium (GWAS summary statistics): http://

www.med.unc.edu/pgc/results-and-downloads

MSigDB curated gene-set database: http://software.broadinstitute.org/gsea/msigdb/

collections.jsp

NHGRI GWAS catalog: https://www.ebi.ac.uk/gwas/

Generalised Summary-data-based Mendelian Randomisation software: http://

cnsgenomics.com/software/gsmr/
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Credible SNP set analysis software: https://github.com/hailianghuang/FM-summary

Online Methods

Participants

Participants in this study were obtained from multiple sources, including raw data from case-

control samples collected by the Psychiatric Genomics Consortium (PGC-ALZ) and the 

Alzheimer’s Disease Sequencing Project (ADSP; made publicly available through dbGaP 

[see URLs]), summary data from the case-control samples in the International Genomics of 

Alzheimer’s Project (IGAP), and raw data from the population-based UK Biobank (UKB) 

sample which was used to create a weighted AD-proxy phenotype. An additional 

independent case-control sample (deCODE) was used for replication. Full descriptions of 

the samples and their respective phenotyping and genotyping procedures are provided in the 

Supplementary Note and the Life Sciences Reporting Summary.

Data Analysis

Single-marker association analysis—Genome-wide association analysis (GWAS) for 

each of the ADSP, PGC-ALZ and UKB datasets was performed in PLINK47, using logistic 

regression for dichotomous phenotypes (cases versus controls for ADSP and PGC-ALZ 

cohorts), and linear regression for phenotypes analysed as continuous outcomes (proxy 

phenotype constructed as the number of parents with AD for UKB cohort). For the ADSP 

and PGC-ALZ cohorts, association tests were adjusted for gender, batch (if applicable), and 

the first 4 ancestry principal components. Twenty principal components were calculated, and 

depending on the dataset being tested, additional principal components (on top of the 

standard of 4) were added if significantly associated to the phenotype. Furthermore, for the 

PGC-ALZ cohorts age was included as a covariate. For 4,537 controls of the DemGene 

cohort (subset of PGC-ALZ), no detailed age information was available, besides the age 

range the subjects were in (20–45 years). We therefore set the age of these individuals 

conservatively to 20 years. For the ADSP dataset, age was not included as a covariate due to 

the enrichment for older controls (mean age cases = 73.1 years (s.e.m.=7.8); mean age 

controls = 86.1 years (s.e.m.=4.5)) in their collection procedures. Correcting for age in 

ADSP would remove a substantial part of genuine association signals (e.g. well-established 

APOE locus rs11556505 is strongly associated to AD (P=1.08×10−99), which is lost when 

correcting for age (P=0.0054). For the UKB dataset, 12 ancestry principal components were 

included as covariates, as well as age, sex, genotyping array, and assessment centre. We used 

the genome-wide threshold for significance of P<5×10−8).

Multivariate genome-wide meta-analysis—Two meta-analyses were performed, 

including: phase 1) cohorts with case-control phenotypes (IGAP, ADSP and PGC-ALZ 

datasets), and phase 3) all cohorts, also including the UKB proxy phenotype.

Because of partial overlap between cohorts, the per SNP test statistics was defined by
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Zk =
∑iwiZi

∑iwi
2 + ∑i ∑ jwiw j CTIi j i ≠ j

where wi and Zi are the squared root of the sample size and the test statistics of SNP k in 

cohort i, respectively. CTI is the cross-trait LD score intercept estimated by LDSC14,48 using 

genome-wide summary statistics. This is equal to48

CTIi j
Nsi jρi j

NiN j

where Ni and Nj are the sample sizes of cohorts i and j and Nsij the number of samples 

overlapping between them, and ρij the phenotypic correlation between the measures used in 

the two cohorts for the overlapping samples. Under the null hypothesis of no association any 

correlation between Zi and Zj is determined only by that phenotypic correlation, scaled by 

the relative degree of overlap. As such, this correlation can be estimated by the CTI.

The test statistics per SNP per GWAS were converted from the P-value, incorporating the 

sign of either beta or odds ratio. When direction is aligned the conversion is two-sided. To 

avoid infinite values, we replaced P-value 1 with 0.999999 and P-value < 1e-323 to 1e-323 

(the minimum >0 value in Python). The script for the multivariate GWAS is available online 

(see URLs).

Effective sample size: The effective sample size (Neff) is computed for each SNP k from the 

matrix M, containing the sample size Ni of each cohort i on the diagonal and the estimated 

number of shared data points Nsi jρi j = CTIi j NiN j for each pair of cohorts i and j as the off-

diagonal values. A recursive approach is used to compute Neff. Going from the first cohort to 

the last the (remaining) size of the current cohort is added to the total Neff. Then for each 

remaining other cohort it overlaps with, the size of those other cohorts is reduced by the 

expected number of samples shared by the current cohort; overlap between the remaining 

cohorts is similarly adjusted. This process ensures that each overlapping data point is 

counted only once in Neff.

The computation proceeds as follows. Starting with the first cohort in M, Neff is first 

increased by M1,1, corresponding to the sample size of that cohort. The proportion of 

samples shared between cohort 1 and each other cohort j is then computed as p1,j = M1,j/

Mj,j, and M is adjusted to remove this overlap, multiplying all values in each column j by 1-

p1,j. This amounts to reducing the sample size of each other cohort j by the number of 

samples it shares with cohort 1 and reducing the shared samples between cohort j and 

subsequent cohorts by the same proportion. After this, the first row and column of M are 

discarded, and the same process is applied to the new M matrix. This is repeated until M is 

empty.

The effective sample size is used as a parameter in the MAGMA analysis (see Methods 

“Gene based-analysis”) and reported in the main text as the combined sample sizes for the 
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meta-analysis. We use the term Nsum to indicate the total number of individuals when simply 

summing them over the distinct cohorts. The script for the Neff computation is available 

online (see URLs).

Genomic risk loci definition: We used FUMA26 v1.2.8, an online platform for functional 

mapping and annotation of genetic variants, to define genomic risk loci and obtain 

functional information of relevant SNPs in these loci. We first identified independent 

significant SNPs that have a genome-wide significant P-value (<5×10−8) and are 

independent from each other at r2<0.6. These SNPs were further represented by lead SNPs, 

which are a subset of the independent significant SNPs that are in approximate linkage 

equilibrium with each other at r2>0.6. We then defined associated genomic risk loci by 

merging any physically overlapping lead SNPs (LD blocks <250kb apart). LD information 

was calculated using the UK Biobank genotype data as a reference.

For GWS SNPs in the defined risk loci, we applied a summary statistic-based fine-mapping 

model to identify credible causal SNPs within each locus, as previously described24. This 

Bayesian model estimates a per-SNP posterior probability of a true disease association using 

maximum likelihood estimation and the steepest descent approach, creating a set of SNPs in 

each locus that contains the causal SNP in 99% of cases, given that the causal variants are 

among the genotyped/imputed SNPs. The software used, FM-summary, is available online 

(see URLs).

Independent sample replication—For novel SNPs identified in the phase 3 meta-

analysis, replication was tested in the independent deCODE sample using logistic regression 

with Alzheimer’s disease status as the response and genotype counts and a set of nuisance 

variables including sex, county of birth, and current age as predictors.20 Correction for 

inflation of test statistics due to relatedness and population stratification in this Icelandic 

cohort was performed using the intercept estimate (1.29) from LD score regression14.

Conditional analysis—We performed conditional analysis with GCTA-COJO49 to assess 

the independence of association signals, either within or between GWAS risk loci. COJO 

enables conditional analysis of GWAS summary statistics without individual-level genotype 

data. We therefore performed conditional analysis on the phase 3 summary statistics, using 

10,000 randomly selected unrelated samples from the UKB dataset as a reference dataset to 

determine LD-patterns. Conditional analysis was run per chromosome or per locus with the 

default settings of the software.

Heritability and genetic correlation—LD score regression14 was used to estimate 

clinical AD heritability and to calculate genetic correlations48 between the case-control and 

proxy phenotypes using summary statistics. Pre-calculated LD scores from the 1000 

Genomes European reference population were obtained online (see URLs). Liability 

heritability was calculated with a population prevalence of 0.0431 (the population prevalence 

of age group 70–75 in the Western European population, resembling the average age of 

onset of 74.5 for the clinical case group) and a sample prevalence of 0.304. The genetic 

correlation was calculated on HapMap3 SNPs only to ensure high quality LD score 

calculation.
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Stratified heritability: To test whether specific categories of SNP annotations were 

enriched for heritability, we partitioned the SNP heritability for binary annotations using 

stratified LD score regression14. Heritability enrichment was calculated as the proportion of 

heritability explained by a SNP category divided by the proportion of SNPs that are in that 

category. Partitioned heritability was computed by 28 functional annotation categories, by 

minor allele frequency (MAF) in six percentile bins, and by 22 chromosomes. Annotations 

for binary categories of functional genomic characteristics (for example, coding or 

regulatory regions) were obtained online (see URLs). The Bonferroni-corrected significance 

threshold for 56 annotations was set at: P<0.05/56=8.93×10−4.

Polygenic risk scoring—We calculated polygenic scores (PGS) using two independent 

genotype datasets. First, 761 individuals (379 cases and 382 controls) from the 

ADDNeuroMed study50 were included, using the same QC and imputation approach as for 

the other datasets with genotype-level data (see Supplementary Note). Second, 1459 

individuals (912 severe, late-stage cases and 547 age-matched controls with little to no 

cognitive dysfunction) from the TGEN study22 were assessed and their diagnostic status was 

confirmed via post-mortem neuropathology. Imputed SNPs in this sample were filtered 

based on INFO score>0.9 and MAF>0.01. PGS were created using PLINK47 for the TGEN 

dataset and PRSice21 for the ADDNeuroMed dataset. In both samples, PGS were calculated 

on hard-called imputed genotypes using P-value thresholds from 0.0 to 0.5 and using 

PLINK’s clumping procedure to prune for LD. Clumping was based on the effect size 

estimates of SNPs originating from the phase 3 meta-analysis for the ADDNeuroMed 

sample. For TGEN, clumping was previously performed using the IGAP summary statistics; 

these clumped SNPs were filtered for overlap with the phase 3 SNPs. PGS were calculated 

in both samples using the SNP effect size estimates from the phase 3 meta-analysis. The 

explained variance (ΔR2) was derived from a linear model in which the AD phenotype was 

regressed on each PGS while controlling for GWAS covariates, compared to a linear model 

with covariates only. In the TGEN dataset, sensitivity, specificity, and area under the curve 

(AUC) of predicting confirmed case/control status were calculated, using the R package 

pROC51 and bootstrapped confidence intervals. Of note, approximately 3% of the TGEN 

sample overlapped with the IGAP cohort included in the meta-analysis; previous simulation 

work using PGS in this sample has shown that this overfitting leads to only a modest 

increase (2–3%) in the margin of error around the AUC estimate.22

Functional annotation—Functional annotation of GWS SNPs implicated in the meta-

analysis was performed using FUMA26 v1.2.8. Functional consequences for these SNPs 

were obtained by matching SNPs to databases containing known functional annotations, 

including ANNOVAR52 categories, Combined Annotation Dependent Depletion (CADD) 

scores23, RegulomeDB53 (RDB) scores, and chromatin states54,55. ANNOVAR annotates the 

functional consequence of SNPs on genes (for example, intron, exon, intergenic). CADD 

scores predict how deleterious the effect of a SNP with higher scores referring to higher 

deleteriousness. A CADD score above 12.37 is the threshold to be potentially pathogenic56. 

The RegulomeDB score is a categorical score based on information from expression 

quantitative trait loci (eQTLs) and chromatin marks, ranging from 1a to 7 with lower scores 

indicating an increased likelihood of having a regulatory function. The chromatin state 
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represents the accessibility of genomic regions (every 200bp) with 15 categorical states 

predicted by a hidden Markov model based on 5 chromatin marks in the Roadmap 

Epigenomics Project.55 A lower state indicates higher accessibility, with states 1–7 referring 

to open chromatin states. We annotated the minimum chromatin state across tissues to SNPs. 

A legend describing the RegulomeDB and chromatin state scores can be found in the 

Supplementary Note.

Gene-mapping—Genome-wide significant loci obtained by GWAS were mapped to genes 

in FUMA26 using three strategies:

1. Positional mapping maps SNPs to genes based on physical distance (within a 

10kb window) from known protein coding genes in the human reference 

assembly (GRCh37/hg19).

2. eQTL mapping maps SNPs to genes with which they show a significant eQTL 

association (i.e. allelic variation at the SNP is associated with the expression 

level of that gene). eQTL mapping uses information from 45 tissue types in 3 

data repositories (GTEx57 v6, Blood eQTL browser58, BIOS QTL browser59), 

and is based on cis-eQTLs which can map SNPs to genes up to 1Mb apart. We 

used a false discovery rate (FDR) of 0.05 to define significant eQTL 

associations.

3. Chromatin interaction mapping was performed to map SNPs to genes when there 

is a three-dimensional DNA-DNA interaction between the SNP region and 

another gene region. Chromatin interaction mapping can involve long-range 

interactions as it does not have a distance boundary. FUMA currently contains 

Hi-C data of 14 tissue types from the study of Schmitt et al60. Since chromatin 

interactions are often defined in a certain resolution, such as 40kb, an interacting 

region can span multiple genes. If a SNP is located in a region that interacts with 

a region containing multiple genes, it will be mapped to each of those genes. To 

further prioritize candidate genes, we selected only genes mapped by chromatin 

interaction in which one region involved in the interaction overlaps with a 

predicted enhancer region in any of the 111 tissue/cell types from the Roadmap 

Epigenomics Project55 and the other region is located in a gene promoter region 

(250bp up- and 500bp downstream of the transcription start site and also 

predicted by Roadmap to be a promoter region). This method reduces the 

number of genes mapped but increases the likelihood that those identified will 

have a plausible biological function. We used an false discovery rate of 1×10−5 to 

define significant interactions, based on previous recommendations60 modified to 

account for the differences in cell lines used here.

Brain-specific QTL annotation: As AD is characterized by neurodegeneration, we 

annotated the significant genomic loci with publicly available databases of expression, 

methylation, and histone acetylation QTLs, as catalogued in BRAINEAC61, CommonMind 

Consortium Portal62 and xQTL Serve63, as an extension of the GTEx tissue eQTL mapping 

performed in FUMA. Descriptions of these brain eQTL databases and settings we used are 

in the Supplementary Note.
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Gene-based analysis—To account for the distinct types of genetic data in this study, 

genotype array (PGC-ALZ, IGAP, UKB) and whole-exome sequencing data (ADSP), we 

first performed two gene-based genome-wide association analysis (GWGASs) using 

MAGMA32, followed by a meta-analysis. SNP-based P-values from the meta-analysis of the 

3 genotype-array-based datasets were used as input for the first GWGAS, while the 

unimputed individual-level sequence data of ADSP was used as input for the second 

GWGAS. A total of 18,233 protein-coding genes (each containing at least one SNP in the 

GWAS) from the National Center for Biotechnology Information (NCBI) 37.3 gene 

definitions were used as basis for GWGAS in MAGMA. Bonferroni correction was applied 

to correct for multiple testing (P<2.74×10−6).

Gene-set analysis—Results from the GWGAS analyses were used to test for association 

in 7,086 predefined gene-sets of four categories:

1. 1. 6,994 curated gene-sets representing known biological and metabolic 

pathways derived from Gene Ontology (5917 gene-sets), Biocarta (217 gene-

sets), KEGG (186 gene-sets), Reactome (674 gene-sets) catalogued by and 

obtained from the MsigDB version 6.164 (see URLs)

2. Gene expression values from 53 tissues obtained from GTEx57, log2 transformed 

with pseudocount 1 after winsorization at 50 and averaged per tissue.

3. Cell-type specific expression in 24 broad categories of brain cell types, which 

were calculated following the method described in ref.37. Briefly, brain cell-type 

expression data was drawn from single-cell RNA sequencing data from mouse 

brains. For each gene, the value for each cell-type was calculated by dividing the 

mean Unique Molecular Identifier (UMI) counts for the given cell type by the 

summed mean UMI counts across all cell types. Single-cell gene-sets were 

derived by grouping genes into 40 equal bins based on specificity of expression.

4. Nucleus specific gene expression of 15 distinct human brain cell-types from the 

study described in65. The value for each cell-type was calculated as in point 3.

These gene-sets were tested using MAGMA. We computed competitive P-values, which 

represent the test of association for a specific gene-set compared with genes not in the gene-

set to correct for baseline level of genetic association in the data. The Bonferroni-corrected 

significance threshold was 0.05/7,087 gene-sets=7.06×10−6. The suggestive significance 

threshold was defined by the number of tests within the category. Conditional analyses were 

performed as a follow-up using MAGMA to test whether each significant association 

observed was independent of APOE (a gene-set including all genes within region 

chr19:45,020,859–45,844,508). Furthermore, the association between each of the significant 

gene-sets was tested conditional on each of the other significantly associated gene-sets. 

Gene-sets that retained their association after correcting for other sets were considered to 

represent independent signals. We note that this is not a test of association per se, but rather 

a strategy to identify, among gene-sets with known significant associations and overlap in 

genes, which set(s) are responsible for driving the observed association.
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Cross-trait genetic correlation—Genetic correlations (rg) between AD and 41 

phenotypes were computed using LD score regression14, based on GWAS summary 

statistics obtained from publicly available databases (see URLs and Supplementary Table 

26). The Bonferroni-corrected significance threshold was 0.05/41 traits=1.22×10−3.

Mendelian randomization—To infer credible causal associations between AD and traits 

that are genetically correlated with AD, we performed Generalised Summary-data based 

Mendelian Randomisation36 (GSMR; see URLs). This method utilizes summary-level data 

to test for putative causal associations between a risk factor (exposure) and an outcome by 

using independent genome-wide significant SNPs as instrumental variables as an index of 

the exposure. HEIDI-outlier detection was used to filter genetic instruments that showed 

clear pleiotropic effects on the exposure phenotype and the outcome phenotype. We used a 

threshold p-value of 0.01 for the outlier detection analysis in HEIDI, which removes 1% of 

SNPs by chance if there is no pleiotropic effect. To test for a potential causal effect of 

various outcomes on risk for AD, we selected phenotypes in non-overlapping samples that 

showed (suggestive) significant (P<0.05) genetic correlations (rg) with AD. With this 

method it is typical to test for bi-directional causation by repeating the analyses while 

switching the role of the exposure and the outcome; however, because AD is a late-onset 

disease, it makes little sense to estimate its causal effect on outcomes that develop earlier in 

life, particularly when the summary statistics for these outcomes were derived mostly from 

younger samples than those of AD cases. Therefore, we conducted these analyses only in 

one direction. For genetically correlated phenotypes, we selected independent (r2=<0.1), 

GWS lead SNPs as instrumental variables in the analyses. The method estimates a putative 

causal effect of the exposure on the outcome (bxy) as a function of the relationship between 

the SNPs’ effects on the exposure (bzx) and the SNPs’ effects on the outcome (bzy), given 

the assumption that the effect of non-pleiotropic SNPs on an exposure (x) should be related 

to their effect on the outcome (y) in an independent sample only via mediation through the 

phenotypic causal pathway (bxy). The estimated causal effect coefficients (bxy) are 

approximately equal to the natural log odds ratio (OR)36 for a case-control trait. An OR of 2 

can be interpreted as a doubled risk compared to the population prevalence of a binary trait 

for every SD increase in the exposure trait. This method can help differentiate the causal 

direction of association between two traits, but cannot make any statement about the 

intermediate mechanisms involved in any potential causal process.

Data Availability

Summary statistics will be made available for download upon publication (https://

ctg.cncr.nl).

Code Availability

The analyses were produced with standard code for software programs utilized, which can 

be made available on request from the first author. All software used is freely available 

online. Custom code for the meta-analysis correcting for overlapping samples is available at 

https://github.com/Kyoko-wtnb/mvGWAMA
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Figure 1. Overview of analysis steps.
The main genetic analysis encompasses the procedures to detect GWAS risk loci for AD. 

The functional analysis includes the in silico functional follow-up procedures with the aim 

to put the genetic findings in biological context. N=total of individuals within specified 

dataset.
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Figure 2. GWAS meta-analysis for AD risk (N=455,258).
Manhattan plot displays all associations per variant ordered according to their genomic 

position on the x-axis and showing the strength of the association with the −log10 

transformed P-values on the y-axis. The y-axis is limited to enable visualization of non-

APOE loci. For the Phase 3 meta-analysis, the original −log10 P-value for the APOE locus is 

276.
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Figure 3. Functional annotation of GWAS results.
a) Functional effects of variants in genomic risk loci of the meta-analysis (the colours of the 

legend are ordered from right to left in the figure) – the second bar shows distribution for 

exonic variants only; b) Distribution of RegulomeDB score for variants in genomic risk loci, 

with a low score indicating a higher probability of having a regulatory function (see 

Methods); c) Distribution of minimum chromatin state across 127 tissue and cell types for 

variants in genomic risk loci, with lower states indicating higher accessibility (see Methods); 

d) Heritability enrichment of 28 functional variant annotations calculated with stratified LD 

score regression (bars represent standard errors). UTR=untranslated region; CTCF=CCCTC-

binding factor; DHS=DNaseI Hypersensitive Site; TFBS=transcription factor binding site; 

DGF=DNAaseI digital genomic footprint; e) Zoomed-in circos plot of chromosome 8; f) 
Zoomed-in circos plot of chromosome 16. Circos plots show implicated genes by significant 

loci, where dark blue areas indicate genomic risk loci, green lines indicate eQTL 
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associations and orange lines indicate chromatin interactions. Genes mapped by both eQTL 

and chromatin interactions are in red. The outer layer shows a Manhattan plot containing the 

negative log10-transformed P-value of each SNP in the GWAS meta-analysis of AD. Full 

circos plots of all autosomal chromosomes are provided in Supplementary Figure 4.
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Figure 4. Functional implications based on gene-set analysis, genetic correlations and functional 
annotations.
The gene-set results are displayed per category of biological mechanisms (a), brain cell-

types (b) and tissue types (c). The red horizontal line indicates the significance threshold 

corrected for all gene-set tests of all categories, while the blue horizontal lines display the 

significance threshold corrected only for the number of tests within the three categories (that 

is, gene-ontology, tissue expression or single cell expression); d) Genetic correlations 

between AD and other heritable traits (bars represent 95% confidence intervals); e) Venn 

diagram showing the number of genes mapped by four distinct strategies. ADHD=attention 

deficit hyperactivity disorder; BMI=body mass index; EBV=Epstein-Barr virus.
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