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Abstract

The current gold standard for clinical diagnosis of melanoma is excisional biopsy and 

histopathologic analysis. Approximately 15–30 benign lesions are biopsied to diagnose each 

melanoma. In addition, biopsies are invasive and result in pain, anxiety, scarring, and 

disfigurement of patients, which can add additional burden to the health care system. Among 

several imaging techniques developed to enhance melanoma diagnosis, optical coherence 

tomography (OCT), with its high-resolution and intermediate penetration depth, can potentially 

provide required diagnostic information noninvasively. Here, we present an image analysis 

algorithm, “optical properties extraction (OPE),” which improves the specificity and sensitivity of 

OCT by identifying unique optical radiomic signatures pertinent to melanoma detection. We 
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evaluated the performance of the algorithm using several tissue-mimicking phantoms and then 

tested the OPE algorithm on 69 human subjects. Our data show that benign nevi and melanoma 

can be differentiated with 97% sensitivity and 98% specificity. These findings suggest that the 

adoption of OPE algorithm in the clinic can lead to improvements in melanoma diagnosis and 

patient experience.

Introduction

Melanoma is an increasingly important public health problem worldwide. The incidence of 

melanoma has been rising faster than any other cancer, mainly due to changes in sun 

exposure behavior as well as climate change (1). Melanoma was responsible for 59,782 

global deaths in 2015 with an age-standardized rate of one death per 100,000 persons (2).

Healthy and nonhealthy tissues can be well differentiated on the basis of their 

characteristics. There are characteristic differences in the number, size, and distribution of 

melanocytes seen in healthy skin, nevi, and melanoma. In healthy skin, melanocytes occur 

singly along the basal layer of epidermis at the rate of approximately 1 for every 10 

keratinocytes. In benign nevi, there is an increase in the number of melanocytes and they 

occur grouped into nests, but they maintain their normal size. In melanoma, there is an 

increase in the number of melanocytes and the cells are larger and atypical. The atypical 

melanocytes are frequently seen in the layers of epidermis above the basal layer, known as 

pagetoid spreading.

Traditionally, the process of diagnosing a melanoma begins with visual inspection of the 

skin lesions. Visual evaluation criteria for suspected melanomas include the “ABCDE” 

criteria (Asymmetry, Border irregularity, Color variation, Diameter > 6 mm, Evolving; ref. 

3). Skin lesions that fulfill the ABCDE criteria for melanoma are then biopsied for 

histopathologic analysis. The specificity (~59%–78%; ref. 4) of visual inspection criteria 

varies widely based on the experience of a clinician and when used singly or in combination. 

This wide variability in the specificity is due to both subjective interpretation by physicians 

as well the variability in the number of criteria present in a given suspicious lesion. This 

results in unnecessary biopsy of many benign lesions, ranging from 15 to 30 benign lesions, 

biopsied to diagnose one melanoma (5). Performing a biopsy can result in pain, anxiety, 

scarring, and disfigurement for patients as well as a cost for the healthcare system. Another 

challenge is finding the correct lesion(s) to biopsy in a patient with many pigmented lesions. 

Toward addressing these challenges, several imaging techniques have been developed to 

noninvasively image melanoma; however, each of these technologies has inherent 

limitations. The optimal imaging parameters for the detection of melanoma have not been 

clearly established. However, penetration depth reaching at least the papillary dermis is 

necessary to detect the melanoma invasion and differentiate invasive melanoma from 

melanoma in situ. Resolution at the cellular level is desirable to make the diagnosis based on 

histologic differences between benign and malignant melanocytes; however, lower 

resolution devices can still be used for detecting architectural differences between melanoma 

and benign nevi. The limitations of various imaging systems are as follows: dermoscopy 

depends on the appearance of the classic dermoscopic features (6), and, therefore, has 
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limited utility in the diagnosis of very early and mainly featureless melanomas (7). 

Dermoscopy also cannot plan the excision because the margins of the excision rely on the 

Breslow depth. Multispectral imaging captures the image data within specific wavelength 

ranges across the electromagnetic spectrum; these data, however, are projected on the same 

plane, obscuring depth information (8). Reflectance confocal microscopy provides cellular 

information on melanocytic lesions; however, its penetration depth is too limited to detect 

invasive melanoma (9). High-frequency ultrasound has a satisfactory penetration depth to 

detect the size and shape of a tumor, but low resolution and low specificity preclude 

diagnosis of the actual type of malignancy (10). Recently, raster scanning photoacoustic 

(PA) microscopy and cross-sectional PA tomography have been explored for diagnosis and 

staging of melanoma (11, 12) in which melanin serves as an endogenous contrast agent. 

However, melanin is not a tumor-specific biomarker of melanoma as it is present in benign 

nevi and may actually be absent in amelanotic melanoma (13). There have been several 

melanoma detection devices marketed such as MelaFind (14), SIAscop (15), Verisante Aura 

(16), and Nevisence (16). These devices were developed to assist clinicians with any level of 

experience in the detection of melanoma and subsequently rely on histopathologic 

assessment. However, these devices suffer various drawbacks that result in the limited 

specificity [68% (8), 77% (17), 68% (18), and 34% (19) respectively)] and/or sensitivity 

[93% (8), 81% (17), 90% (18), and 94% (19), respectively] and are therefore of limited 

benefit to the clinician. The Melafind and SIAcope devices utilize visible/NIR cameras to 

obtain images of lesions at multiple wavelengths and then apply machine-learning 

algorithms to the resulting image sets to try to distinguish melanomas from benign nevi. 

These longer wavelengths (near-infra-red) images provide subsurface details; however, 

results are reported from all layers simultaneously obscuring essential depth information. 

The Verisante Aura utilizes Raman spectroscopy to analyze the chemical “fingerprint” of the 

lesion, but also has no depth discrimination. The Nevisense device is a nonoptical machine 

that analyses the electrical impedance spectrum of a lesion detected from tiny electrodes 

inserted into the tissue. However, Nevisense does not accurately differentiate nevi from 

melanoma. To date, none of these devices has been widely adopted by clinicians. A key 

challenge with any device that purports to diagnose melanoma is setting the trade-off 

between sensitivity and specificity. Clearly, one desires maximum sensitivity to minimize 

the risk of missing a potentially fatal melanoma, but when set up to do this, the device may 

produce an unacceptably high false-positive rate from benign lesions due to poor specificity 

and so offers little benefit to the clinician over using dermoscopy and their experience. Some 

of these devices can produce a measurement of “risk level” for diagnosing melanoma, but 

this then requires the user to decide “what is an acceptable level of risk.” Therefore, there is 

a persistent unmet need for a melanoma diagnosis device with high sensitivity and 

specificity.

Optical coherence tomography (OCT) with a high spatial resolution (<10 microns), 

intermediate penetration depth (~1.5 to 2 mm), and volumetric imaging capability has 

become a popular diagnostic-assistant modality in dermatology, especially to detect and 

diagnose nonmelanoma skin tumors (20), for example, basal cell carcinoma and squamous 

cell carcinoma (21–23). Contrast in OCT images is generated by the intrinsic scattering 

characteristics of the tissue that are proportional to the density, size, and shape of the tissue 
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microstructures (24). Because malignant cells show pleomorphism with different refractive 

indices and absorption characteristics than normal cells, based on light–tissue interaction 

theories (25), OCT images should discriminate malignant tissues from normal tissues and 

benign neoplasms (26, 27). However, the specificity of OCT for melanoma detection is 

lower than anticipated. Several groups including ours (28) have attempted to increase such 

specificity by image enhancement (29, 30), texture analysis (31–34), even implementing 

more sophisticated configurations of OCT, including polarization-sensitive, phase-sensitive, 

and dynamic OCT; these have also failed to adequately discriminate between melanoma and 

benign lesions. Ostensibly, the aggregation of the predominant optical properties that 

contribute to OCT image formation diminishes the specificity of melanoma detection. We 

have developed an optical properties extraction (OPE) algorithm, based on the Extended 

Huygens–Fresnel (EHF) model (35), to disaggregate the OCT image into its individual 

optical attributes, that is, tissue-scattering coefficient, absorption coefficient, and anisotropy 

factor. We then identified unique optical radiomic signatures pertinent to melanoma 

detection among the extracted optical properties and trained a machine-learning kernel; this 

is the basis of our optical radiomic melanoma detection (ORMD) protocol. The ORMD 

protocol is applied to OCT images of the suspect lesion and will provide the clinician with 

clear information on the tissue status, for example, “Tissue sample is consistent with healthy 

tissue,” “Tissue sample exhibits characteristics consistent with melanoma.”

This algorithm will (i) reduce the number of unnecessary biopsies by helping identify the 

most probable malignant lesion in a person with multiple pigmented spots, which will result 

in fewer biopsies and less pain, anxiety, scarring, and disfigurement for patients; (ii) 

considerably reduce cost to the healthcare system; and (iii) detect melanoma in its early 

stage, when prognosis is optimal. Importantly, the optical properties come at no additional 

cost as they are embedded in the existing image data and can readily be extracted via 

postprocessing applicable to virtually all OCT systems.

Materials and Methods

Imaging system

In this study, we used a multi-beam, swept-source OCT (SS-OCT) system (Vivosight, 

Michelson Diagnostic Inc.; see Supplementary Fig. S1). The OCT system is an FDA-

approved machine with a hand-held scanning probe for skin imaging. The lateral and axial 

resolutions are 7.5 μm and 10 μm, respectively. The scan area of the OCT system is 6 mm 

(width) × 6 mm (length) × 2 mm (depth), with a frame rate of 20 frames/second. A tunable 

broadband laser source (Santee HSL-2000-11-MDL), with central wavelength of 1,305 ± 15 

nm, successively sweeps through the optical spectrum and leads the light to four separate 

interferometers and forms four consecutive confocal gates.

OPE algorithm and EHF model

The light–tissue interaction specific to OCT imaging, that is, OCT modeling, was initiated 

by Schmitt who considered only scattering coefficient for modeling using the single-

scattering theory, that is, the ballistic component only (36). Studies have shown that the 

primary effect of multiple scattering is a less steep slope of signal decay with depth, than 
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predicted by the so-called single-scattering model. Since then, several other groups have 

considered a quantitative analysis of OCT images to improve diagnosis (37–40). The first 

model that adequately includes the ballistic light component and multiple scattered light is 

an analytic solution to the scalar wave equation based on the mutual coherence functions, 

known as the Extended Huygens–Fresnel (EHF) principle. It includes diffraction effects and 

it allows Gaussian beam under any focusing condition (35, 41). We have integrated the 

lateral coherence length variation with depth into previous models by considering the so-

called “shower curtain effect.” The model describes the heterodyne OCT signal as a function 

of depth. This model incorporates both multiple scattering and single scattering effects. 

Later, we employed the EHF principle and proposed an OCT model in a multilayer-

scattering geometry (35, 42). Here, we apply a further extension to our previous model with 

the addition of a third parameter, absorption coefficient, to scattering coefficient and 

anisotropy factor. The mean squared of the OCT heterodyne signal current at the probing 

depth z is described as:

i2(z) = i2 0ψSA(z) (A)

where i2 0 = a/wH
2  is the mean squared heterodyne signal current in the absence of 

scattering and absorption, a is a constant characterized by the OCT system setup, and wH
2  is 

1/e irradiance radius at the probing depth in the absence of scattering:

wH
2 = w0

2 A − B
f

2
+ B

kw0

2
(B)

where A and B are the elements of the ABCD matrix for light propagation from the lens 

plane to the probing depth in the sample. If the focal plane of the beam is fixed on the 

surface of the sample, then A = 1 and B = f + z/n, where n is the refractive index, and f is the 

focal length of the lens, w0 represents the 1/e irradiance radius of the input sample beam at 

the lens plane. k = 2π/λ, and λ is the wavelength of the light source. ψSA(z) is the 

heterodyne efficiency factor describing signal degradation due to scattering and absorption, 

see Eq. C.

ψSA(z) = e
−2μaz

e
−2μsz

+
4e

−μsz
1 − e

−μsz

1 + μaΔzD 1 +
wsA

2

wH
2

+
1 − e

−μsz 2
wH

2

1 + μaΔzD
2wSA

2 (C)

The first term in the brackets represents the single-scattering effect, the third term is the 

multiple-scattering term, and the second term is the cross term including both single and 

multiple scattering. wsA is the 1/e irradiance radius at the probing depth in the presence of 

scattering and absorption:
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wSA
2 = 1 + μaΔzD

−1 w0
2 A − B

f
2

+ B2

kw0
+ 2B

kρ0

2
1 + μAΔzN (D)

where ρ0 is the lateral coherence length given by:

ρ0 = 3
μsz

λ
πθrms

1 +
nRd(z)

z (E)

where θrms is the root mean squared scattering angle, defined as the half-width at 1/e 
maximum of a Gaussian curve fitted to the main frontal lobe of the scattering phase 

function, and nR is the real part of refractive index. Also, ΔzN and ΔzD are presented by 

equations F and G:

ΔzN =
z w0

2 +
ρ0

2

2

4nR
2 B2

(F)

ΔzD = z
2nR

2
w0
f

2
+ 1

kw0

2
+ 2

kρ0

2
(G)

Implementation of OPE algorithm

The OPE algorithm was implemented in MATLAB2015a. w0, λ, and f are inputs to the 

algorithm (the exact values have been acquired from Michelson Diagnostics Inc.). The 

optical properties obtained from the OPE algorithm are scattering and absorption 

coefficients and anisotropy factor.

Implementation of the OPE algorithm is as follows (see Fig. 1): an region of interest (ROI) 

is selected in a preprocessed B-scan OCT image (details of preprocessing are in the 

Preprocessing Section of the Supplementary document); the green rectangles in Fig. 1 

demarcate the selected ROI from which the optical properties are calculated. The pixel 

intensities along the x-axis in the ROI are averaged to obtain an averaged A-line. For the 

fitting, a modified exhaustive search algorithm is utilized (43).

The OPE algorithm adjusts the scattering and absorption coefficients as well as the 

anisotropy factor in the modeled OCT signal, to obtain a curve that best fits the averaged A-

line; that is, to minimize the sum of the differences, (F(μsi, θrmsi, xdatai) − ydatai), where, 

F(μs, θrms, xdata), is the modeled OCT signal, xdata is a vector including the indices of the 

pixels of the ROI from depth z1 to z2 in the axial direction, ydata is the smoothed averaged 

A-line intensity vector, z1 corresponds to the index of the start pixel of the ROI, and z2 

corresponds to its end. The fitting error was calculated using l1 norm described as below 

(Eq. H).
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Error = 100
n ∑

i = 1

n signalOCT(i) − signalmodel(i)
signalOCT(i) (H)

where n is the number of signal elements, i is the pixel index in depth, signalOCT(i) is the 

averaged OCT A-line, and signalmodel(i) is the corresponding EHF model heterodyne signal, 

calculated from Eq. A; a smaller error correlates to a better fit and a more robust result is 

obtained.

Statistical analysis

We used ANOVA to test the global difference among the experimental settings. The null 

hypothesis was that there was no difference among the experiment settings. For the 

similarity measure, we used the equivalence test at 5% level of significance. In this test, the 

null hypothesis was that the absolute difference between the means of two experimental 

settings is larger or equal to a threshold value Δ. (i.e., H0: | meanA − meanB | ≥ Δ). Different 

values of delta were chosen for different settings and the values were based on our 

preliminary results for clinical importance. The rejection of the null hypothesis indicates the 

equivalence of two conditions. All the other statistical tests were two-sided at 5% level of 

significance. Matlab Version 2015a was used for all statistical analyses.

Results

Phantom study

To evaluate the OPE algorithm, we created phantoms, using milk and ink, with optical 

characteristics similar to skin in a comparative study. The advantages of milk are its well-

known optical properties (44), the similarity of its microparticles to organelles that constitute 

the scattering sources in tissue (45), and its homogeneity and accessibility at different 

concentrations. Various concentrations of milk (Horizon Organic Milk) were obtained by 

mixing it with varying quantities of distilled water and India ink (#385460, Speedball Art 

Products) to make milk and milk-ink phantoms.

The concentrations of milk in water were 5%, 20%, 40%, 60%, 80%, and 100%, and those 

of ink were 0%, 0.1%, 0.5%, 1%, 2%, and 3% (see Supplementary Table S1). The 

photographic and OCT images of the phantoms and the values of the scattering coefficients, 

absorption coefficients, anisotropy factors, and error bars for 10 runs, are given in Fig. 2A–I.

In vivo study

A motorized, triaxial holder was used to fix the OCT probe, described in the Materials and 

Methods section, to ensure that the probe is stable during imaging. The OCT probe was 

placed in the middle of the suspected lesion, based on the bright-field image provided by 

miniaturized camera integral to the OCT system and the red indicator beam. A volume of 6 

mm (L) × 6 mm (W) × 2 mm (D) was scanned and 600 cross-section images with 10 μm 

span were generated.
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Inclusion and exclusion criteria were based on the AC Camargo Ethics Committee 

guidelines and on known limitations of the device. Inclusion criteria were as follows: (i) age 

18 years or older; (ii) able to provide written informed consent prior to any trial-related 

procedure. The exclusion criteria were as follows: (i) failure to give written informed 

consent; (ii), the anatomic site of the lesion not accessible to the device; (iii), the lesion 

previously biopsied, excised, or traumatized; (4) skin not intact (e.g., open sores, ulcers, 

bleeding); (v) lesion on palmar, plantar, or mucosal (e.g., lips, genitals) surface or under 

nails; (vi) lesion containing foreign matter (e.g., tattoo ink, splinter, marker). All of the 

imaging procedures and experimental protocols were approved and carried out according to 

the guidelines of the Skin Cancer Department in AC Camargo Cancer Center’s Institutional 

Review Board (IRB). Written informed consent was obtained from all subjects before 

enrollment in the study. The patients neither refused to sign the written informed consent nor 

were excluded from the study. OCT images were taken from 69 subjects, aged between 20 

and 80 years, in a high-risk dermatology clinic at the Skin Cancer Department in AC 

Camargo Cancer Center in Brazil. Twenty-three patients with healthy skin, 23 patients 

assessed with a variety of benign nevi, and 23 patients with at least one suspect melanoma 

lesion scheduled for biopsy were invited to participate in the trial. See Supplementary Table 

S2 for details of patients, lesion types, and locations.

For each of the melanoma or benign nevi imaged, adjacent healthy skin was imaged as a 

control. Two experienced pathologists evaluated all the cases and reported the 

histopathologic findings as per standard of care. The histology image of the suspected area, 

as well as the OCT images of both healthy and diseased regions, were recorded. OCT 

images and histology photographs for ten selected melanoma and benign nevi cases are 

shown in Supplementary Fig. S2 together with OCT images of their nearby healthy skin.

To prepare the images for analysis, an optimum preprocessing strategy was identified and 

applied (explained in preprocessing section in Supplementary Data). In Supplementary Fig. 

S3, the steps to choose the optimum preprocessing algorithm are given. The optical 

properties of healthy skin, melanoma, and benign nevi were then extracted from the images 

using the OPE algorithm. In the processing procedure, for each patient, three adjacent OCT 

images (10 μm apart) from the melanoma/benign and three adjacent OCT images from their 

nearby healthy skin were used for analysis. For each of these three images, 24 ROIs were 

specified, and the optical properties of these ROIs, including the scattering coefficient, the 

absorption coefficient and anisotropy factor, were calculated. The mean and SD of optical 

properties obtained from the 72 ROIs of suspicious images were reported as the optical 

properties of the imaged lesion and 72 ROIs of nearby healthy images were reported as the 

optical properties of the imaged nearby healthy tissue. A more detailed description of the 

algorithm is found in the Materials and Methods section.

The OPE-derived optical properties for ten, arbitrarily selected cases of melanoma and 

benign nevi (five each), as well as their nearby healthy skin comparators, are given in Fig. 

3A–F. Figure 3G–L shows mean and SD for the same patients to demonstrate, in general, 

how melanoma and benign nevi skin differ for each optical property extracted. A detailed 

analysis of these cases is given in Supplementary Figs. S4 and S5. The extracted optical 
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properties from the other 36 cases of melanoma and nevi are given in Supplementary Figs. 

S6A–S6C and S7A–S7C.

Classification

For subjects with dermatologically identified benign nevi and malignant lesions, stacks of 60 

OCT images, with a span of 10 μm, were taken. In addition, another stack of images was 

taken of nearby healthy skin, at a minimum distance of 1.5 cm from the lesion, for data 

normalization; to compensate for factors related to skin type, age, and gender. The dorsal 

surface of the hand was imaged for healthy subjects. From each stack, three images acquired 

from the center of the lesion were selected, and used for the image analysis using our OPE 

algorithm. For each lesion, six optical radiomic features were obtained; F1,F2, F3, the means 

of the scattering coefficient, the absorption coefficient, and the anisotropy factor; and F4, F5, 

F6, the SDs.

Several well-established linear and nonlinear classifiers (46), including Linear Discriminant 

Analysis (LDA), Linear Regression (LR), K-Nearest Neighbor (KNN) with different K-

values (K = 1, 3, 5, and 7), Linear Support Vector Machine (LSVM), Quadratic SVM 

(QSVM), and Gaussian SVM (GSVM) were tested using all possible combinations of 

features. Because of the small number of subjects, we utilized an n-fold cross validation 

algorithm (47) with 20 folds; that is, each classifier was trained with 20 random 

combinations of training and test datasets (70% and 30%, respectively). The reported values 

are the average of 20 measurements, with mean and SDs.

Using all permutations of the six previously obtained features, in combination with each 

classifier and its various configurations, we have numerous unique discriminators to 

determine the best values for sensitivity, specificity, Jaccard index, and accuracy (the 

equations describing these statistics are given in Supplementary Table S3). The best results 

for each classifier are reported in Supplementary Fig. S8S–S8D). The ROC curve for GSVM 

classifier was produced by changing the margin factor, that is, C from 0 to 4 with steps 0.1 

(see Supplementary Fig. S9). The AUC for each margin was calculated and demonstrated in 

the Supplementary Fig. S10. Supplementary Table S4 reports an example of the best data for 

the combinations of four features. Supplementary Table S5 shows the optimum selection of 

the classifier and the feature combinations for sensitivity, specificity, Jaccard index and 

accuracy, and in combination. The best overall was a combination of features 1 through 5 

with the GSVM classifier (C = 2.1; see Supplementary Table S5).

The sensitivity, specificity, Jaccard index, and accuracy of melanoma detection based on 

dermoscopic criteria and ORMD criteria, when the optimum classifier [GSVM classifier (C 

= 2.1)] was used with the optical radiomic signatures, including mean and SD of scattering 

and absorption coefficients, and the mean of the anisotropy factor, are given in Fig. 4.

The intention of our methodology is to produce a binary output: (i) “Tissue sample exhibits 

characteristics consistent with melanoma,” the lesion should be considered for biopsy; or (0) 

“Tissue sample is consistent with healthy tissue,” the lesion does not require biopsy. The 

decision of the proposed method and of dermoscopy versus histology results for the subjects 

used in this study are shown in Figure 5.
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Discussion

Malignant melanoma is by far the most dangerous type of skin cancer (1). The initial step in 

a physician’s decision to biopsy a suspicious lesion is dermoscopic inspection using the 

ABCDE criteria (3). A lesion that apparently fulfills the ABCDE criteria for melanoma is 

biopsied for definitive histopathologic diagnosis (3). Several noninvasive imaging 

approaches have been developed for the diagnosis of melanoma and differentiation from 

benign nevi. Their clinical utility, however, is limited because they do not provide sufficient 

specificity and sensitivity.

Tissues have intrinsic scattering characteristics based on the density, size, and shape of tissue 

microstructures; the absorption characteristics derived from chromophore concentration; and 

the anisotropy factor, which correlates to cell size and disorder. These characteristics are 

modified during tumor development. Methods that can uniquely identify these 

characteristics hold promise for providing diagnostic value (48). OCT is inherently sensitive 

to the changes of these characteristics (49). However, its sensitivity and specificity in 

differentiating morphologically similar structures is low, due to the interrelationships of 

these optical characteristics. Previously, we tried the texture analysis of OCT images, but the 

improvement was limited (31). Here, we proposed an image analysis algorithm based on the 

EHF principles, which we call OPE, to disaggregate the OCT image into its individual 

optical attributes. These optical attributes, when extracted from the OCT image, form a set 

of tissue-specific optical radiomic features. The method presented here demonstrates 

significant improvements in melanoma detection over the current clinical methods.

Our initial tests were conducted on milk and milk-ink phantoms, to determine whether the 

OPE algorithm correctly correlated to changes in optical properties of the phantoms, 

specifically, scattering and absorption coefficients (see Fig. 2).

We observed the following in the OPE-extracted optical properties: the scattering coefficient 

(μs) progressed almost linearly with increasing milk concentration (P <0.001); the 

absorption coefficient (μa) in milk phantoms progressed almost linearly with increasing milk 

concentration (P <0.001); the absorption coefficient in milk-ink phantoms progressed almost 

linearly with increasing ink concentration (P <0.01). The results in Fig. 2G appear nonlinear 

because of the nonlinear scaling of x-axis. The linearized plot is shown in Supplementary 

Fig. S11. Increasing both absorption and scattering coefficients by increasing the 

concentration of milk are consistent with the previous studies conducted by Stocker and 

colleagues (50). This issue does not indicate cross-talk between the scattering and absorption 

coefficients, but indicates the presence of both scattering and absorption properties in milk; 

both are accurately extracted using the OPE algorithm. Also, the observed OPE-extracted μs 

in milk-ink phantoms shows no statistically significant difference (P < 0.001 with Δ = 1[mm
−1]). The values of the anisotropy factor (g) also show no statistically significant difference 

in both milk and milk-ink phantoms (P <0.05 with Δ = 0.03), which is consistent with 

phantoms being homogenous solutions consisting of scatterers of near-identical size. 

Different values of delta were chosen for different settings and the values were based on our 

preliminary results for clinical importance. The average fitting error in both datasets was 
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about 4%. Precision of the obtained values can be improved by using a higher resolution 

OCT.

The next tests were conducted on human subjects. An optimum preprocessing strategy was 

identified [Supplementary Figs. S12 (A–O), S13 (A–D), and S14 (A–C)].Our method is 

noninvasive, the OCT system used is FDA approved, and we acquired IRB approval for 

testing on human subjects. A block diagram of the proposed method, when used in the 

clinic, is given in Fig. 1. Sixty-nine melanoma, benign nevi, and healthy subjects were 

recruited (see Supplementary Table S2). The results obtained from the clinically identified 

melanoma to nonmelanoma area showed a meaningful difference (see Fig. 3). The 

Differences due to factors such as skin type, ethnicity, sun exposure, etc., were negated when 

normalized to nearby healthy skin. The large SD of the optical radiomic features for 

melanoma images correlates to irregularity in tissue structure, signifying disease. Our results 

were consistent with the finding that the scattering and absorption coefficients increase with 

the concentration of melanocytes (melanocyte frequency – melanoma: 71% ± 11%; benign 

nevi: 18% ± 3%; healthy: 14% ± 3%); anisotropy factor increased with cell size (average 

mean diameter of 200 consecutive melanocytes -melanoma: 16 ± 3 μm; benign nevi: 7 ± 0.4 

μm; healthy: 6 ± 0.4 μm) and tissue disorder due to cellular displacement. This was also 

observed in simulations using the OMLC online Mie calculator (Supplementary Tables S6–

S8; ref. 51).

We propose that increases in scattering and absorption coefficients, as can be seen in Fig. 3, 

may be due to increased concentration of melanocytes, and the increase in anisotropy factor 

may be due to increased cell size. The combination of increased numbers of melanocytes 

that are larger with pleomorphic nuclei is the hallmark of melanoma on pathologic 

assessment (52).

Six optical radiomic features are generated by the OPE algorithm from the OCT images. 

These are the mean and SD of the scattering coefficient, the absorption coefficient, and the 

anisotropy factor. As there are only six features, we were able to examine each possible 

combination of features to identify the optimal feature set (46). This exhaustive search 

reaches the optimal feature sets, because it systematically enumerates all possible 

candidates, it finds the optimal feature set more efficiently, compared with other similar 

methods designed for feature selection, such as sequential floating forward search and 

sequential floating backward search (46).

As for the criteria to choose the most appropriate classifier, we need to estimate the true 

class probability density function (46). With small to medium size datasets, such a function 

cannot accurately be estimated, and the performance of classifiers is difficult to calculate. As 

a rule of thumb, low variance classifiers (i.e., Naïve Bayes, SVM) are preferred for such 

datasets. The recommended method in this case is to find the best classifier with the aid of 

validation/training and a repeated random sampling strategy (53). We selected six 

established classifiers; each was trained and tested on the data using a 20-fold cross-

validation algorithm; this evaluates the classifier generalization. The values for sensitivity, 

specificity, Jaccard index, and the accuracy, were determined by testing all permutations of 

the six features, in combination with each classifier [see Supplementary Fig. S8A–S8D; 
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Supplementary Tables S4 and S5]. On the basis of the clinical requirements of high 

specificity and sensitivity, a specific classifier and set of features were selected. Some 

combinations generated high sensitivity with low specificity or vice versa. For example, 

features F2, F3 with the GSVM (C = 1) classifier resulted in the best sensitivity (99%) with a 

specificity of 50% (for more examples, see Supplementary Table S5). The best overall was a 

combination of features through F5 with GSVM classifier; results were sensitivity (97% 

± 3%), specificity (98% ± 2%), Jaccard index (93% ± 5%), and accuracy (98% ± 2%; see 

Fig. 4). For the preferred classifier, GSVM, we calculated AUC with different C-values, and 

C = 2.1 gave us the best results (see Supplementary Figs. S9 and S10).

Using a computer with a Core i7 CPU and 8 GB memory, with MATLAB2015a, it took 1.2 

seconds to assess a suspected lesion with input of OCT images from healthy and suspect 

tissue. Using lower level programming languages, for example, C and parallel processing, 

the computation time will greatly be improved.

The dermoscopic analysis was made using the two-step algorithm followed by Pattern 

Analysis (54, 55). Two experienced dermatologists, T. Blumetti and A.F. Moraes, from the 

dermatology clinic at the Skin Cancer Department in AC Camargo Cancer Center in Brazil 

performed the dermoscopic analysis. The suspicious lesions were selected on the basis of 

changes on dermoscopic follow-up. Assessment of dermoscopy images compared with the 

results of the ORMD methodology showed a significant diagnostic improvement (see Fig. 

5). Using ORMD, only one unnecessary biopsy for melanoma was performed, while 

dermoscopy identified 10 benign nevi as possible melanoma, necessitating 10 biopsies. In 

melanoma, OPE missed one case, where dermoscopy misdiagnosed four cases as benign 

nevi, resulting in delayed treatment.

The statistics indicate that ORMD-based diagnosis is reliable and can effectively 

differentiate between melanoma and nonmelanoma cases (see Figs. 4 and 5), a larger 

number of subjects is required to make a more rigorous conclusion. Overall, the rate of 

unnecessary biopsies is significantly decreased with the use of ORMD methodology. A 

larger number of subjects may necessitate the use of a more sophisticated classification 

algorithm, which may farther increase the accuracy of ORMD methodology and minimize 

the number of misdiagnoses. The next practical challenge for the proposed method is the 

development of a real-time, 3D melanoma margin detection algorithm for use during the 

biopsy.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Significance:

This study describes a noninvasive, safe, simple-to-implement, and accurate method for 

the detection and differentiation of malignant melanoma versus benign nevi.
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Figure 1. 
A schematic representation of the principles of the optical radiomic melanoma detection 

protocol. The steps include: acquisition of OCT images from suspected and a nearby healthy 

skin; the OCT B-scans are preprocessed; optical properties are extracted from the green box 

(z1 and z2 represent the start and end points of the ROI) by fitting the EHF model to 

intensity profile of the averaged A-line obtained from the ROI; the values are the mean and 

SD of scattering coefficient, absorption coefficient, and anisotropy factor extracted from the 

suspected (we call it signal) and nearby healthy (we call it control) skin to create a set of 

normalized optical radiomic features; the selected optical radiomic features, that is, optical 

radiomic signatures, with the optimum classifier evaluate the status of the tissue: “Tissue 

sample is consistent with healthy tissue,” “Tissue sample exhibits characteristics consistent 

with melanoma.”
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Figure 2. 
Phantom study. Photographic and OCT images of milk and milk-ink phantoms (A), 

scattering coefficients (μs; B and F); absorption coefficients (μa; C and G); anisotropy 

factors (D and H); and fitting error (G, E, and I). *,P < 0.001; **, P < 0.01. x-axis shows the 

concentration of milk diluted by water. M and I in the x-axis show the concentration of milk 

and ink diluted by water.
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Figure 3. 
Optical properties extracted from OCT images of melanoma and benign nevi, and nearby 

healthy skin for ten arbitrarily selected subjects. Scattering coefficients (A), absorption 

coefficients (B), and anisotropy factor of melanoma lesions and their nearby healthy skin 

(C). Scattering coefficients (D), absorption coefficients (E), and anisotropy factor of benign 

nevi and their nearby healthy skin (F). G-L, Side-by-side comparison of the optical 

properties, the normalized to nearby healthy tissue of melanoma versus benign nevi: G-l, 
normalized means of scattering coefficient, absorption coefficient, and anisotropy factor, 

respectively. J-L, the normalized SDs of the scattering coefficient, the absorption 

coefficient, and the anisotropy factor, respectively.
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Figure 4. 
Comparison of diagnostic statistics based on dermoscopic and ORMD criteria for the 

selected optimum classifier [GSVM classifier (C = 2.1)] and optimum feature set.
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Figure 5. 
Classification results. Comparison of dermoscopic diagnosis, ORMD method, and histology. 

Nonmelanoma (healthy skin and benign nevi) are marked as dots while melanomas are 

marked with crosses. The tissue statuses were confirmed by histologic analysis. Circles, 

detection of melanoma using dermoscopy. Squares, detection of melanoma using the ORMD 

method. GSVM classifier with the margin factor of 2.1 was used.
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