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Abstract

In genetic association studies, joint modeling of related traits/phenotypes can utilize the 

correlation between them and thereby provide more power and uncover additional information 

about genetic etiology. Moreover, detecting rare genetic variants are of current scientific interest as 

a key to missing heritability. Logistic Bayesian LASSO (LBL) has been proposed recently to 

detect rare haplotype variants using case-control data, i.e., a single binary phenotype. As there is 

currently no haplotype association method that can handle multiple binary phenotypes, we extend 

LBL to fill this gap. We develop a bivariate model by using a latent variable to induce correlation 

between the two outcomes. We carry out extensive simulations to investigate the bivariate LBL 

and compare with the univariate LBL. The bivariate LBL performs better or similar to the 

univariate LBL in most settings. It has the highest gain in power when a haplotype is associated 

with both traits and it affects at least one trait in a direction opposite to the direction of the 

correlation between the traits. We analyze two datasets — Genetic Analysis Workshop 19 

sequence data on systolic and diastolic blood pressures and a genome-wide association dataset on 

lung cancer and smoking, and detect several associated rare haplotypes.
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1 Introduction

In health-related studies, multiple correlated traits and outcomes are often recorded 

(Teixeira-Pinto & Normand, 2009). These traits can have a shared genetic etiology, e.g, 

systolic and diastolic blood pressures (Schillert & Konigorski, 2016). In particular, one 

genetic variant may influence multiple phenotypes, a phenomenon referred to as cross-

phenotype (CP) association or pleiotropy. The former typically refers to simply association 
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without regard to the cause of association while pleiotropy refers to true effects of a genetic 

locus on multiple phenotypes (Solovieff, Cotsapas, Lee, Purcell, & Smoller, 2013).

There has been mounting scientific evidence that pleiotropy is widespread (Gratten & 

Visscher, 2016; Solovieff et al., 2013; C. Yang, Li, Wang, Chung, & Zhao, 2015). In fact, 

pleiotropy has been reported even between seemingly unrelated phenotypes, for example, 

between psychiatric disorders, autoimmune diseases, and metabolic disorders (Kember et al., 

2018; Solovieff et al., 2013; Q. Wang, Yang, Gelernter, & Zhao, 2015), and between 

coronary artery disease and tonsillectomy (Gratten & Visscher, 2016). The shared variants 

can have concordant or discordant effects on the phenotypes. As Hackinger and Zeggini 

(2017) point out, understanding of pleiotropy is important not only from the point of view of 

association but it also holds potential for more accurate disease classification especially 

when aetiopathology of some disorders are ambiguous, e.g., in some psychiatric conditions. 

A deeper insight into the etiological overlap can have a wide-ranging implications for 

prevention and treatment strategies (Q. Wang et al., 2015; C. Yang et al., 2015). This is 

especially crucial as personalized and genomic medicines are gaining more traction. For 

example, if a specific variant is associated with multiple traits in opposite directions, the 

molecular targets for drug development and genome editing need to take it into account 

(Gratten & Visscher, 2016). Indeed, as the importance of uncovering pleiotropy is becoming 

clearer, it is motivating more large-scale PheWAS (phenome-wide association studies) 

wherein each genetic variant is tested for association with all available phenotypes 

(Hackinger & Zeggini, 2017).

The most common analytic approach to multiple outcomes is to consider each outcome 

separately in a univariate framework. However, such a strategy ignores the extra information 

contained in the correlation among the outcomes and amounts to a missed opportunity to 

gain insight into the underlying common genetic mechanism. Moreover, testing each 

outcome separately leads to loss of power especially after multiplicity adjustment. In fact, 

commonly used multiplicity adjustment approaches such as Bonferroni method assume that 

the tests are independent, which does not clearly hold as the outcomes are correlated. A 

better approach from both biological and statistical standpoint is to jointly model multiple 

correlated outcomes in a multivariate setting (Galesloot, van Steen, Kiemeney, & Janss, 

2014; Mitteroecker, Cheverud, & Pavlicev, 2016; Teixeira-Pinto & Normand, 2009). It 

provides better control over type I error rates, increased power, and can answer intrinsically 

multivariate questions such as pleiotropy (Teixeira-Pinto & Normand, 2009).

In recent years, a number of methods have been proposed for testing genetic association 

with mutiple phenotypes jointly (Hackinger & Zeggini, 2017; Kaakinen et al., 2017; Klei, 

Luca, Devlin, & Roeder, 2008; Lee et al., 2017; O’Reilly et al., 2012; Pei, Zhang, Liu, & 

Deng, 2009; Ray & Basu, 2017; Ray, Pankow, & Basu, 2016). However, they almost 

exclusively use single-nucleotide polymorphisms (SNP) obtained from genome-wide 

association studies (GWAS) or next generation sequencing (NGS) as genetic variants. In 

particular, if the interest lies in testing rare SNPs, which are currently of great scientific 

interest as a key to missing heritability, then methods proposed for NGS data can be used. 

This is because rare SNPs are usually not genotyped in GWAS. Nevertheless, NGS data are 

typically of much smaller sample sizes than GWAS especially for the purpose of joint 
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modeling of multiple phenotypes. Moreover, NGS data have several limitations such as 

genotype calling may not be accurate for extremely rare variants and how to distinguish and 

prioritize among different types of genetic variants may not be clear (Goldstein et al., 2013). 

Thus, for the purpose of testing common disease rare variant (CDRV) hypothesis, there is 

clearly a need for alternative approaches that do not necessarily rely on NGS data.

In this regard, haplotype-based tests are a powerful compliment to SNP-based tests. As 

common SNPs can combine to form rare haplotypes, tests using haplotypes as the basic 

genetic variant can not only be carried out using NGS data but also using GWAS data. This 

opens up enormous possibilities for investigating CDRV hypothesis especially because a 

vast array of GWAS data, still largely untapped, are already available and those datasets are 

typically of much larger sample sizes than NGS data. Thus, rare haplotype variants can be 

tested for association with one or multiple diseases using GWAS data without a need for 

collecting additional data. Apart from this specific rationale from the point of view of rare 

variants, a general motivation for studying haplotypes is that they have biological 

significance in terms of functionality of a genomic region as elucidated nicely in Chapter 13 

of Ziegler and König (2010); also see Clark (2004); D. J. Schaid (2004). Indeed several 

haplotype-based association tests were proposed long before rare variants garnered attention 

of the scientific community (Burkett, Graham, & McNeney, 2006; Lake et al., 2003; D. 

Schaid, Rowland, Tines, Jacobson, & Poland, 2002). Conventionally, a haplotype analysis is 

conducted as a follow-up on regions deemed to be of interest using single-SNP genome-

wide approaches. In fact, haplotype-based tests are powerful when there are multiple causal 

SNPs in a region acting in cis or if the causal variant is not genotyped (Morris & Kaplan, 

2002; Ziegler & König, 2010). Moreover, following on the promise of the haplotype-based 

tests for investigating CDRV hypothesis, several tests have been proposed more recently and 

it has been also shown that rare haplotypes formed by common SNPs are likely to tag rare 

single nucleotide variants (Biswas & Lin, 2012; Guo & Lin, 2009; J. Li, Zhang, & Yi, 2011; 

Y. Li, Byrnes, & Li, 2010; Lin et al., 2013).

Specifically, logistic Bayesian LASSO (LBL) has been shown to be a powerful rare 

haplotype association method (Biswas & Lin, 2012; Biswas & Papachristou, 2014; Datta & 

Biswas, 2016; Datta, Zhang, Zhang, & Biswas, 2016; Papachristou & Biswas, 2019; M. 

Wang & Lin, 2015). The Bayesian framework of LBL is highly flexible and naturally allows 

for extensions in different directions. Indeed, LBL has been extended to incorporate gene-

environment interactions (Biswas, Xia, & Lin, 2014; Zhang & Biswas, 2015; Zhang, Lin, & 

Biswas, 2017), data generated using complex sampling designs (Zhang, Hofmann, Purdue, 

Lin, & Biswas, 2017), and family data (Datta, Lin, & Biswas, 2018; M. Wang & Lin, 2014). 

These developments motivate us to consider extension of LBL for the purpose of modeling 

multiple phenotypes jointly. It is especially of practical interest because currently there is no 

method available for testing haplotype (rare or common) association with multiple binary 

traits, at least to the best of our knowledge. We could find only one haplotype-based test for 

two traits called Bivariate HTR (haplotype trend regression), however, it is applicable for 

quantitative traits only and is not targeted for detecting rare haplotype association (Pei et al., 

2009). Thus, our goal is to fill this gap especially from the standpoint of detecting rare 

haplotype variants.
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In this article, we propose bivariate LBL to jointly model two correlated binary (case/

control) phenotypes. We adapt the general framework of LBL for each phenotype and model 

dependence between them by introducing latent variables in a way similar to how it is 

modeled in generalized linear mixed models through subject-specific random effect (Agresti, 

2012). More specifically, in the framework of usual probit regression, Teixeira-Pinto and 

Normand (2009) use latent variables to induce correlation between a continuous and a 

binary outcomes. We adapt the idea in the context of LBL for two binary outcomes 

involving logistic regression under retrospective likelihood with regularization. We carry out 

extensive simulations under varying association scenarios to investigate the properties of 

bivariate LBL and compare with those of the original version of LBL (Biswas & Lin, 2012), 

which was proposed for analysis of a single phenotype (referred to as univariate LBL 

henceforth). We find that bivariate LBL has power higher or similar to that of univariate 

LBL in most scenarios. Finally we apply the methods to two datasets — exome sequence 

data from Genetic Analysis Workshop (GAW) 19 (Engelman et al., 2016) and GWAS data 

on lung cancer (database of Genotypes & Phenotypes, 2019). In the GAW data, we analyze 

haplotype blocks in several genes for testing association with systolic and diastolic blood 

pressures jointly. In the lung cancer data, we analyze haplotype blocks in chromosome 

15q25.1 region for association with lung cancer and smoking jointly. In both analyses, we 

detect several haplotypes, including rare ones, to be associated with one or both phenotypes 

with same or opposite direction of effects. Some of these haplotypes are detected by 

bivariate LBL but not by univariate LBL.

2 Methods

2.1 Retrospective Likelihood for Bivariate LBL

Consider a sample consisting of two correlated disease statuses with each status being of 

binary type (case/control). Let Yi1 = 0/1 and Yi2 = 0/1 denote the ith individual’s affection 

statuses for diseases 1 and 2, respectively. Suppose n00 subjects are free of both diseases, n10 

have disease 1 only, n01 have disease 2 only, and n11 have both diseases. Thus the two 

subscripts denote the two disease statuses. Let n = n00+n10+n01+n11 be the total sample size. 

Define Y1 = (Y11,…,Yn1) and Y2 = (Y12,…,Yn2). Let Gi denote the observed genotype of the 

ith individual and G = (G1,…,Gn). As haplotype pair of a person may not be deduced 

unambiguously from the observed genotype data, we further let S(Gi) denote the set of 

haplotype pairs compatible with Gi, Zir denote the rth element of S(Gi), and Z denote a 

vector consisting of all elements of S(Gi) for all i (Zhang & Biswas, 2015). Further, we 

introduce a latent variable ui for ith individual, which is shared between the disease models 

for Yi1 and Yi2 to model marginal dependence between them (Agresti, 2012; Teixeira-Pinto 

& Normand, 2009). Assume ui follows N 0, σu
2  distribution for all i. Let u = (u1,u2,…,un). 

Assume Yi1 and Yi2 are independent given ui. That is, even though Yi1 and Yi2 are 

marginally dependent, they are conditionally independent given ui. In other words, latent 

variables induce conditional independence between seemingly correlated outcomes. The 

retrospective likelihood can be written as:
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L Ψ = ∏
i = 1

n00
∑

Zir ∈ S Gi

P Zir Y i1 = 0, Y i2 = 0, ui P ui Y i1 = 0, Y i2 = 0

· ∏
i = n00 + 1

n00 + n10
∑

Zir ∈ S Gi

P Zir Y i1 = 1, Y i2 = 0, ui P ui Y i1 = 1, Y i2 = 0

· ∏
i = n00 + n10 + 1

n00 + n10 + n01
∑

Zir ∈ S Gi

P Zir Y i1 = 0, Y i2 = 1, ui P ui Y i1 = 0, Y i2 = 1

· ∏
i = n00 + n10 + n01 + 1

n
∑

Zir ∈ S Gi

P Zir Y i1 = 1, Y i2 = 1, ui P ui Y i1 = 1, Y i2 = 1 ,

(1)

where Ψ is the set of model parameters (σu
2, regression coefficients, and parameters 

associated with haplotype frequencies). To completely write the likelihood in terms of the 

model parameters, we will go through the following steps. For ease of exposition, the 

subscripts i and r are suppressed and l = 1,2.

1. Write each probability term in the likelihood in terms of (i) σu
2, (ii) 

aZ
l = P Z |Y l = 0 , the frequency of haplotype pair Z in the control population for 

disease l, and (iii) θZ, u
l = P Y l = 1|Z, u /P Y l = 0|Z, u , the odds of the disease l 

given Z and u. So we need to specify the models for aZ
l  and θZ, u

l  in terms of the 

model parameters, which we do in the next two steps.

2. Assume there are m possible haplotypes. Model aZ
l  in terms of two sets of 

parameters: (1) f l = f 1
l , …, f m

l , the frequencies of m haplotypes in the controls 

for disease l and (2) d, the within-population inbreeding coefficient, which can 

be used for modeling Hardy-Weinberg disequilibrium (Biswas & Lin, 2012; 

Weir, 1996). f1 and f2 are further expressed in terms of f00 = f 1
00, …, f m

00 , 

f10 = f 1
10, …, f m

10 , and f01 = f 1
01, …, f m

01 , the population frequencies of m 

haplotypes corresponding to the three sub-samples of sizes n00, n10, and n01, 

respectively.

3. Model θZ, u
l  in terms of regression coefficients βl and u.

Thus, the set of model parameters in the likelihood is Ψ = (β1,β2,f00,f10,f01,d,σu
2). The 

details of the steps 1 and 2 can be found in Appendix A1 while the step 3 is described in the 

following.

Modeling of θZ, u
1  and θZ, u

2 . We model the two disease odds using the following logistic 

regression models:
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logθZ, u
l = XZβl + u, l = 1, 2.

Here XZ = (1,x1,x2,…,xm−1) is a (row) design vector, where xk is the number of copies of 

haplotype zk in a haplotype pair Z, k = 1,…,m − 1. The mth haplotype is assumed to be 

baseline without loss of generality. β1 and β2 are vectors of regression coefficients 

(including intercepts) representing the effects of haplotypes on the two diseases.

As the models for both disease odds share u (with same sign), the marginal correlation 

modeled between the two traits can only be non-negative (Agresti, 2012). If that is not the 

case in any particular application, one can flip the case/control status for one trait to make 

the correlation positive before applying bivariate LBL (Teixeira-Pinto & Normand, 2009). 

The marginal correlation between Y1 and Y2 can be found in Appendix A2; it is an 

increasing function of σu
2. This product moment correlation is referred to as ϕ coefficient 

from which odds ratio can be computed using the marginal probabilities of a 2 × 2 

contingency table of Y1 and Y2 (Olivier & Bell, 2013). As ui N 0, σu
2 , when σu

2 = 0, all uis 

are equal to 0, which corresponds to the two phenotypes being uncorrelated.

2.2 Priors

Following Biswas and Lin (2012), we use Bayesian LASSO to regularize the regression 

coefficients, which basically amounts to setting the prior for each element of β1 and β2 to be 

a double exponential distribution:

π β j
l λ = λ

2exp −λ β j
l , − ∞ < β j < ∞, l = 1, 2, j = 0, 1, …, m − 1.

The above distribution has mean 0 and variance 2/λ2. We can use the hyper-parameter λ to 

control the degree of penalty in order to shrink the unassociated haplotype effects close to 

zero. This will allow the associated haplotypes, especially the rare ones, more likely to stand 

out with their coefficients estimated to be large (in absolute scale) and variance to be small. 

We let λ follow Gamma(a,b) distribution with a = b = 20 (Biswas & Lin, 2012; Zhang, Lin, 

& Biswas, 2017). As a = b, the prior variance of β is 2a2/((a − 1)(a − 2)), for a > 2. With a = 

b = 20, the standard deviation of β is 1.53.

Prior for each of f00, f10, and f01 is set to be Dirichlet(1,…,1) consisting of m ones. For d, we 

use a uniform prior. However, d is not independent of f00, f10, and f01 because aZ
1  and aZ

2

must be nonnegative. There is a constraint that d > −
f k
l

1 − f k
l , l = 1, 2, and for all k (see 

Appendix A1 for more details). So the prior for d given f00, f10, and f01 is set to be Uniform 

max
k

max
l

−
f k
l

1 − f k
l , 1 . We use a non-informative uniform prior for σu, which is equivalent 

to p σu
2 ∝ σu

−1, σu
2 > 0 (Gelman, Carlin, Stern, & Rubin, 2003).
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2.3 Posterior Distributions and MCMC Algorithm

Combining the likelihood and prior distributions, the joint posterior distribution of all 

parameters is:

π β1, β2, λ, f00, f01, f10, d, σu
2, Z Y1, Y2, G, u

∝ L Ψ π β1 λ π β2 λ π(λ)π f00 π f01 π f10 π d f00, f01, f10 π σu
2 .

We use Markov chain Monte Carlo (MCMC) methods to estimate the posterior distributions 

of all parameters (Biswas & Lin, 2012) and these are described in Appendix A3.

2.4 Association Testing

After obtaining the posterior distribution of each β coefficient, we can use it to test for 

association. In order to compare the performance of our proposed bivariate LBL with 

univariate LBL and to take into account the fact that the phenotypes are correlated, we 

consider two sets of hypotheses: (1) Hypothesis 1 to test whether a specific haplotype is 

associated with any of the two phenotypes (2) Hypothesis 2 to test whether any haplotype 

(i.e., not a specific haplotype) in the block under study is associated with any of the two 

phenotypes. We will describe the testing procedure for the two sets of hypotheses in order in 

the following.

Hypothesis 1. For bivariate LBL, for testing association with jth haplotype, the null 

hypothesis of no association and the alternative hypothesis of association with at least one of 

the phenotypes are written as:

H0: β j
1 ≤ ϵ and β j

2 ≤ ϵ versus Ha: β j
1 > ϵ or β j

2 > ϵ for a fixed j, where ϵ is a small number:

While for univariate LBL, we carry out two separate tests with the corresponding null and 

alternative hypotheses being:

H01: β j
1 ≤ ϵ versus Ha1: β j

1 > ϵ for a fixed  j,

H02: β j
2 ≤ ϵ versus Ha2: β j

2 > ϵ for a fixed  j .

These hypotheses are the same as what was proposed for the original LBL for one 

phenotype (Biswas & Lin, 2012).

We use ϵ = 0.1 following Biswas and Lin (2012) in our simulations and real data analyses. 

Bayes Factors (BF) are used to carry out the test of hypotheses, which is the ratio of the 

posterior odds to the prior odds of the alternative hypothesis. The unconditional joint prior 

distribution of β of dimension m is:
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π(β) = ba m + a − 1 !
2m a − 1 !

⋅ 1

∑i = 1
m βi + b

m + a , − ∞ < βi < ∞, i = 1, …, m .

This is used to find the prior odds of a specific hypothesis. For the bivariate model, if a BF 

exceeds a certain threshold, we conclude association with at least one disease. While for a 

univariate model, if its BF exceeds a certain threshold, we conclude association with the 

corresponding disease. A threshold of 2 has been proposed earlier (Biswas & Lin, 2012), 

however, it may not be valid for testing with two or more phenotypes individually or jointly. 

We will discuss calculation of appropriate thresholds in the simulation study and real data 

application sections.

Hypothesis 2. For bivariate LBL, the null and the alternative hypotheses are:

H0: β j
1 ≤ ϵ and β j

2 ≤ ϵ for all j versus Ha: β j
1 > ϵ or β j

2 > ϵ for at least one j .

While for the two univariate LBL models, we carry out two separate tests with the following 

two sets of null and alternative hypotheses:

H01: β j
1 ≤ ϵ for all  j versus Ha1: β j

1 > ϵ for at least one  j,

H02: β j
2 ≤ ϵ for all  j versus Ha2: β j

2 > ϵ for at least one  j .

The null hypothesis 2 for bivariate LBL is more difficult to hold than the corresponding null 

hypothesis 1 because the former requires all β j
l  to be less than ϵ for l =1, 2 and j = 1,…,m

−1, i.e., for a total of 2(m−1) β parameters. For large m, a small ϵ value can make the null 

hypothesis to be rejected easily, which will lead to high type I error rates. So we use a larger 

value of ϵ = 0.4 for testing hypothesis 2.

3 Simulation Study

3.1 Settings and Data Generation

In order to evaluate the performance of bivariate LBL and compare it with that of univariate 

LBL, we carry out a number of simulations under each combination of settings and 

association scenarios listed in Table 1. Specifically, we have three settings with 6, 9, and 12 

haplotypes, respectively. Each haplotype is formed by 5 SNPs. Under each setting, we varied 

the type of association between haplotypes and traits to generate a scenario. In particular, a 

rare haplotype 11011 is associated with one or both diseases, i.e., its β coefficient(s) is/are 

set to be non-zero and the direction(s) of association(s) can be positive (risk) or negative 

(protective). Specifically, |β| = {2,2,1,1.5,1.5} in the five scenarios, respectively. Although 

these |β| values are relatively large, they were chosen to ensure that at least one of the two 

methods gives reasonable power at type I error rates of 1–10%. Moreover, |β| values around 
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1.5 do seem to occur in real data (e.g., in our GAW19 data analysis to follow). Rest of the 

haplotypes are null or non associated with their β coefficients set as 0. We choose to set only 

one haplotype to be associated so that we can easily examine how varying the directions of 

effects of the haplotype on one or both phenotypes influences the power. Also, in many real 

data applications (including ours), often only one haplotype is associated in a haplotype 

block.

To generate haplotype pairs for subjects, we first consider all possible haplotype pairs under 

each setting and use the frequencies listed in Table 1 to calculate their probabilities in the 

control population for both diseases by assuming Hardy-Weinberg equilibrium. Next, we use 

these haplotype pair probabilities to randomly choose one haplotype pair for each subject in 

a sample and form the design row vector XZ. Once the haplotype pairs of all subjects are 

generated, we use a probit model to assign the subjects to be cases or controls for the two 

phenotypes (Teixeira-Pinto & Normand, 2009). Specifically, for each subject, we generate 

two continuous variables using the following bivariate normal (BVN) distribution:

Y1*

Y2*
BVN

XZ β1

XZ β2 ,
σ1

2 σ1σ2ρ

σ2
2 ,

where β1 and β2 (excluding intercepts β0
l , l = 1, 2) are as shown in Table 1, β0

1 = β0
2 = −2.94, 

σ1 = σ2 = 3, and ρ = {0,0.3,0.7,0.99}. These ρ values correspond to empirically calculated 

approximate ϕ = {−0.15,0,0.3,0.83}, respectively. Next, the binary disease statuses (Y1,Y2) 

are generated in the following way (l = 1, 2):

Yl =
0,  if Yl* ≤ 0,

1,  if Yl* > 0.

We generate a sample of size 2000 consisting of 1000 unaffected subjects and 1000 subjects 

affected with one or both diseases.

A total of 500 samples are generated for each simulation. We analyze each sample using 

bivariate LBL applied to the two phenotypes jointly. We run a total of 200,000 MCMC 

iterations with 50,000 burn-in to ensure satisfactory convergence. We also analyze each 

sample using univariate LBL (applied twice to the two phenotypes) for which the default 

total number of MCMC iterations is 50,000 with 20,000 burn-in. We apply appropriate 

cutoffs (to be described below) to the resulting BFs to declare significance. A significant 

result counts towards the calculation of power or type I error rate depending on whether the 

haplotype (for hypothesis 1) or haplotype block (for hypothesis 2) under study is truly 

associated or not. Then we compare powers of all methods using receiver operating 

characteristic (ROC) type curves wherein power is plotted against type I error rate.

3.2 Calculation of Cutoffs

We now describe how we calculate appropriate cutoffs for BF for both bivariate and 

univariate LBL (Galesloot et al., 2014). For each combination of simulation setting and a 
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fixed value of ρ, we create a null sample of size 2000 (1000 controls and 1000 cases) in the 

same way as above but by setting all haplotype effects (βs) to be 0. We generate 1000 

replicates for each null sample and use them to calculate cutoffs corresponding to varying 

type I error rates. These cutoffs are used in power calculations under the non-null settings 

listed in Table 1.

Cutoffs for hypothesis 1. For the bivariate model, we record BFs for hypothesis 1 for all 

haplotypes in a block and find their maximum. Then we sort the 1000 maximum BF values 

(one from each null sample) in descending order and use the value at a fixed top percent 

position as the cutoff. For example, we use the average of maximum BF values at the 50th 

and 51st positions as the cutoff for the type I error rate of 0.05. Note that the cutoffs 

calculated in this manner incorporate multiplicity adjustment for multiple testing within a 

haplotype block by taking maximum of BFs over all haplotypes in the block. For the 

univariate models, we first get the BFs for all haplotypes from the two univariate models and 

find the maximum of all those BFs. Note that as there are two univariate tests corresponding 

to each bivariate test, maximum is taken over twice as many BFs as in the bivariate model. 

For example, for the setting with 6 haplotypes, we get 5 × 2 = 10 univariate BFs (excluding 

the baseline) and find their maximum. Then we sort the 1000 maximum BF values in 

descending order and find the cutoffs in the same way as for the bivariate model.

Cutoffs for hypothesis 2. For the bivariate model, we sort all 1000 BFs for hypothesis 2 

(there is only one BF per sample) in descending order and use the same way as mentioned 

above to find the cutoffs. For the univariate models, we get two BFs corresponding to 

hypothesis 2 from the two univariate tests and find their maximum. Then we sort the 1000 

maximum BF values in descending order and find the cutoffs in the same way.

Note that an alternative way of calculating cutoffs for a given sample is to permute the case-

control statuses of individuals to create a null sample and repeating the procedure a large 

number of times. However, it is more computationally intensive as this whole permutation 

procedure has to be carried out for every simulated sample to obtain a cutoff corresponding 

to that replicate. Moreover, the cutoffs will vary by sample.

3.3 Results

The results for hypothesis 1 for settings 1 and 3 are shown in Figures 1 to 8 and for setting 2 

in Supplementary Figures S1 to S4. Depending on whether a haplotype is truly associated 

with one or both traits, we plot for univariate LBL, one or two curves for the power(s) to 

detect the haplotype by the respective model(s) individually. Also, in scenarios 1 – 3, where 

the haplotype is associated with both traits, we plot the results when maximum of BFs from 

the two univariate models is used for declaring significance. Here the maximum is calculated 

in the same manner as described in the sub-section “Calculation of Cutoffs”.

When the correlation between the two traits is zero or small (ρ = 0, 0.3), bivariate LBL has 

high power advantage over univariate LBL in scenarios 2 and 3 while in the other three 

scenarios the curves for bivariate LBL are close to those for univariate LBL using individual 

or maximum BF. When the two traits are moderately or highly correlated (ρ = 0.7,0.99), 

bivariate LBL has better performance in scenarios 2 – 5 especially when the target haplotype 
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affects the two diseases in opposite directions (Scenario 3). However, for ρ = 0.99, it looses 

power slightly compared to univariate LBL using maximum BF in scenario 1 where the 

target haplotype is positively associated with both diseases as seen in Figures 4 and 8.

For a different perspective into the results, we can compare the performances of the two 

models across different scenarios. For scenarios 2 and 3, in which the β coefficients of the 

target haplotype for the two traits are both negative or have different directions, the bivariate 

model clearly outperforms the univariate model for all ρ values. For scenarios 4 and 5, 

where only one of the two traits is associated, bivariate LBL has higher power when ρ = 

0.7,0.99 especially for ρ = 0.99 while the methods exhibit similar powers when ρ is 0 or 0.3. 

For scenario 1, where both βs are positive, bivariate LBL has some advantage when ρ is 0 or 

0.3 especially for settings with 9 and 12 haplotypes. However, when ρ = 0.99, bivariate LBL 

performs slightly worse compared to univariate LBL using maximum BF even though not 

using individual BFs as seen in Figures 4 and 8. Thus, overall we may conclude that 

bivariate LBL performs better or similar to univariate LBL in all situations except for 

scenario 1 under ρ = 0.99.

The results for testing hypothesis 2 for setting 2 (9 haplotypes) are shown in Figures S5 to 

S8. In general, the results that we reported above regarding comparison between bivariate 

and univariate LBL appear to hold for hypothesis 2 as well.

4 Application to GAW19 Blood Pressure Data

GAW19 data consist of multiple phenotypes including systolic and diastolic blood pressures 

(SBP and DBP) for each subject (Engelman et al., 2016). These two phenotypes are 

correlated (sample correlation coefficient = 0.549) and may have some common underlying 

genetic mechanism (Schillert & Konigorski, 2016). A common strategy to analyze data on 

the two blood pressure (BP) measurements is to combine them into a single binary 

hypertension phenotype by using a clinical threshold for each to declare if a BP is high and 

if any one of the two BPs are high for any subject, then labeling the subject as a case with 

hypertension (Datta et al., 2016). However, this leads to loss of information and does not 

allow investigation of potential pleiotropy. Being a sequence dataset, GAW19 data also 

contain a large number of rare SNPs, for example, more than 97% of variants on 

chromosome 3 have a minor allele frequency (MAF) less than 0.01 (Datta et al., 2016). We 

use bivariate LBL to study the association between the two related traits and haplotypes 

(specifically hypothesis 1) using data on unrelated individuals. After removing subjects with 

a missing value in either disease status, 1851 individuals remain in our study.

We analyze haplotype blocks in eight selected genes, namely, ULK4, MAP4, FBN3, HRH1, 

INMT, SAT2, SHBG, and ZNF280D. The first two were studied by Datta et al. (2016) while 

the rest were studied by Sun, Bhatnagar, Oualkacha, Ciampi, and Greenwood (2016). 

VCFtools is used to extract relevant genotype data from the provided data set. Following 

Datta et al. (2016), we use high quality genotypes listed under NALTT (the number of 

alternate alleles threshold) field. For each gene, we only include SNPs for which the 

proportion of subjects with missing genotypes is not more than 25% and whose MAF is at 

least 0.001. With these conditions, the total numbers of SNPs are 70 in ULK4, 18 in MAP4, 
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28 in FBN3, 10 in HRH1, 18 in INMT, 7 in SAT2, 15 in SHBG, and 30 in ZNF280D. We 

create sliding haplotype blocks by combining 5 successive SNPs starting from the first SNP 

and covering the whole gene. The haplotype blocks/windows are overlapping, i.e., windows 

are formed by SNPs 1–5, 2–6, and so on.

We convert the two continuous phenotypes SBP and DBP into two binary disease statuses in 

the following way. If a subject’s SBP value is greater than 140, we label him/her as a case 

(1) otherwise as a control (0). DBP is coded in the same way with a threshold of 90. Using 

the same notations as in the Methods section, we have n00 = 1457, n10 = 289, n01 = 26 and 

n11 = 79. After conversion of SBP and DBP values to binary variables, the ϕ coefficient 

between them is estimated to be 0.340.

We find appropriate cutoffs for BF for drawing inference at type I error rate of 1%. Recall 

that we had earlier calculated cutoffs for all simulation settings. Rather than using those 

directly, we supplement them with cutoffs calculated using real data with the goal of 

obtaining more robust cutoffs for real data application. To this end, we generate a large 

number of null samples using several windows in ULK4 and ZNF280D genes and setting βs 

for all haplotypes in a window to be 0. Then we use the same way as described in the 

simulation study to get the cutoffs for these windows. Finally, we put together the cutoffs 

from the simulation settings and the real data windows and plot them together.

The cutoffs for both models are plotted in Supplementary Figure S9. We see in the figure 

that the cutoffs for rare haplotypes are clearly higher than those for the common ones. So we 

dichotomize haplotype frequencies into rare or common with rare being of frequency less 

than or equal to 0.02. In the same figure, we also note that the cutoffs seem to be larger for 

smaller values of ρ especially for bivariate LBL (recall ρ = 0.55 for windows obtained from 

the GAW 19 data). We plot cutoffs versus ρ values in Figure S10 and cutoffs versus number 

of haplotypes in the corresponding window/block in Figure S11. We see that for bivariate 

LBL, the cutoff is higher when ρ value is smaller (Figure S10; left column plots) and the 

number of haplotypes in the block is smaller (for rare haplotypes; top left plot of Figure 

S11). Thus, we determine cutoffs separately for each combination of haplotype frequency 

(rare/common), ρ value (weak/moderate-strong), and # haplotypes (<= 8 or > 8; 8 is the 

median number of haplotypes across all windows). In particular, we use the mean of the 

cutoffs in each category for final inference and these are listed in Supplementary Table S1. 

We note that some cutoffs are less than 1. However, we confirm that the empirical type I 

error rates are indeed around 1% for bivariate LBL using the simulated data (shown in Table 

S2). For reference, if we average across all ρ values and number of haplotypes (rather than 

treating their categories separately), the cutoffs for rare haplotypes would be 2.16 and 5.26 

for bivariate and univariate LBL, respectively, and for common haplotypes, these cutoffs 

would be 0.7 and 3.28.

We apply bivariate LBL to each haplotype block within each gene using both phenotypes 

jointly and apply univariate LBL to the same haplotype block twice using SBP and DBP 

separately. In each haplotype block, the haplotype with the highest frequency is used as the 

baseline. We run MCMC chain for each block for 300,000 iterations including 50,000 burn-

in. The cutoffs we found above are applied to all the blocks in all genes. The haplotypes that 

Yuan and Biswas Page 12

Genet Epidemiol. Author manuscript; available in PMC 2020 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



show significance using at least one method are listed in Table 2. In this table, we see that 

the bivariate LBL produces more significant results. In some cases when the estimated β 
coefficients for SBP and DBP are both negative, the bivariate model detects the signals 

while univariate model does not, e.g., the haplotype in ZNF280D. When both βs are 

estimated to be positive, bivariate LBL also detects several haplotypes missed by univariate 

LBL such as the haplotype in window 7–11 in ULK4. We can see that the magnitudes of β
for those haplotypes are not too small as estimated by bivariate LBL. However, for 

haplotypes with small β s (both less than 1), the univariate model may perform better as in 

the window 16–20 of FBN3. The results are consistent with the general pattern we found in 

the simulation study.

5 Application to Lung Cancer and Smoking Data

We consider the GWAS data collected in EAGLE (Environment And Genetics in Lung 

cancer Etiology) study and PLCO (Prostate, Lung, Colorectal, and Ovarian cancer) 

screening trial to illustrate the application of bivariate LBL on two related binary phenotypes 

of lung cancer and smoking status (database of Genotypes & Phenotypes, 2019). Several 

studies have shown that SNPs in the chromosomal region 15q25.1 are associated with lung 

cancer susceptibility as well as smoking behavior (Lassi et al., 2016; Liu et al., 2010; Spitz, 

Amos, Dong, Lin, & Wu, 2008; Thorgeirsson et al., 2008; VanderWeele et al., 2012; I. A. 

Yang, Holloway, & Fong, 2013; Yokota, Shiraishi, & Kohno, 2010; Yu et al., 2012). Indeed 

this was the motivation for the gene-environment interaction analysis of Zhang et al. (Zhang, 

Lin, & Biswas, 2017), where they specifically accounted for gene-environment dependence 

as smoking (the environmental covariate) is associated with (and hence is dependent on) the 

genetic region under study. Thus, following the findings from this body of literature, we 

analyze this region but from a different perspective wherein we investigate if it is jointly 

associated with lung cancer and smoking after taking into account the correlation between 

the two phenotypes.

We consider the same five haplotype blocks that Zhang et al. (Zhang, Lin, & Biswas, 2017) 

analyzed after locating them with Haploview (Barrett, Fry, Maller, & Daly, 2005). The 

blocks consist of the following SNPs: (i) Block 1 with 4 SNPs: rs1394371, rs12903150, 

rs12899131, and rs2656069 (ii) Block 2 with 2 SNPs: rs13180 and rs3743079 (iii) Block 3 

with 4 SNPs: rs8034191, rs3885951, rs2036534, and rs2292117 (iv) Block 4 with 3 SNPs: 

rs12914385, rs1051730, and rs1948 and (v) Block 5 with 2 SNPs: rs11636753 and 

rs12441998. The total sample size is 5546 with the four sub-samples of sizes n00 = 713, n10 

= 220, n01 = 2108, n11 = 2508, where the two subscripts denote the lung cancer and smoking 

statuses in order. Smoking status of 1 includes current and former smokers. The ϕ coefficient 

between the two phenotypes is estimated to be 0.23. Due to strong gene-environment 

dependence in this region, the haplotype frequencies differ substantially across the sub-

groups (Zhang, Lin, & Biswas, 2017). Thus, we initially encountered an issue with the 

convergence of the frequency parameters (f00,f10,f01) in the MCMC algorithm. However, 

with slight tuning of the C value used in updating these parameters (setting it to be 10000 for 

00 and 01 sub-populations and 2000 for 10 sub-population; refer to the Appendix A3 for 

MCMC updates), we are able to achieve satisfactory convergence. Moreover, to ensure 
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convergence, we ran the chain much longer for a total of 800,000 iterations with a burn-in of 

200,000.

The haplotypes found to be significant by testing hypothesis 1 after applying the relevant 

cutoffs from Supplementary Table S1 are shown in Table 3. We see that at least one 

haplotype was found to be associated in all five blocks. Of these, the haplotype TTTG in the 

third block is a rare haplotype. Note that the effects of a haplotype on the two phenotypes 

can be concordant or discordant. For the sake of completeness, we also applied univariate 

LBL to each phenotype separately and found the same haplotypes to be significant as seen in 

the table. However, fitting a univariate model in this specific application is questionable as 

smoking is the most important and well-established risk factor for lung cancer. So testing for 

genetic association of lung cancer without accounting for smoking as a covariate is not 

sensible. On the other hand, bivariate LBL results are likely to be more credible as it 

accounts for the known correlation between lung cancer and smoking. Moreover, bivariate 

LBL results establish joint association of haplotypes with the two phenotypes unlike 

univariate LBL.

6 Discussion

Most health-related studies collect multiple outcomes and often several of them are 

correlated. Studying each trait separately can lead to loss of information contained in the 

correlation between the outcomes. Moreover, univariate analyses of correlated phenotypes 

misses an opportunity to investigate shared etiology such as pleiotropy, which is now widely 

believed to be pervasive. Many multivariate methods have been proposed to address this 

problem in the context of genetic association studies, however, none of them are haplotype-

based applicable to case-control data. In order to fill up this gap, we proposed bivariate LBL, 

an extension of univariate LBL. It can detect association between a specific haplotype (or a 

haplotype block) and two binary phenotypes jointly.

Our simulation results show that bivariate LBL performs better or similar to univariate LBL 

in most of the scenarios when a rare haplotype is associated with one or both traits. The 

advantages of bivariate LBL become more pronounced when the two traits are highly 

correlated and the haplotype affects at least one of the two traits in direction opposite to the 

direction of correlation between the two traits. Recall that in our simulations, the correlation 

between the two traits was positive so direction opposite to the direction of correlation 

between the two traits amounts to the associated haplotype being negatively associated with 

a trait. However, when those effects are both positive and the two traits have high positive 

correlation, univariate LBL performs slightly better.

Although this result is counter-intuitive, it is consistent with the literature (Galesloot et al., 

2014; Ray et al., 2016; Teixeira-Pinto & Normand, 2009). For example, Galesloot et al. 

(2014) found that a univariate approach outperforms multivariate approaches when traits 

were positively correlated and the genetic correlation (correlation between genetic effects) 

was positive. Essentially in this situation, the joint modeling does not add any independent 

piece of information beyond what a univariate model captures and as joint modeling is more 

complicated, slight power loss may ensue. On the other hand, when one or more genetic 
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effects are of direction opposite to that of the correlation between traits (e.g., scenarios 2 and 

3), then these different pieces of information cannot be captured adequately by a univariate 

model and it suffers power loss. Indeed, Teixeira-Pinto and Normand (2009) report that 

multivariate approach gives more efficient estimates when the outcomes depend on different 

set of covariates. This is also reflected in our results from scenarios 4 and 5 where a 

haplotype (covariate) affects only one disease.

We note that univariate LBL has been compared extensively with several existing haplotype 

association methods and LBL has been shown to be one of the most powerful methods 

(Biswas & Lin, 2012; Biswas & Papachristou, 2014; Datta & Biswas, 2016; Papachristou & 

Biswas, 2019; Zhang & Biswas, 2015; Zhang, Lin, & Biswas, 2017). Thus, we do not repeat 

the same exercise of comparison with other existing haplotype methods (all being univariate) 

in the current article.

In GAW19 data analysis, we detected a number of significant haplotypes in ULK4, FBN3, 

HRH1, and ZNF280D genes. These include both common and rare ones, and several of 

them could not be detected by univariate LBL. Thus, bivariate LBL can potentially help 

uncover cross-phenotype association, which could possibly be due to pleiotropic effects 

(establishing pleiotropy will require causal inference). Datta et al. (2016) reported haplotype 

association on ULK4 and MAP4 genes. Their phenotype was hypertension obtained by 

combining SBP and DBP. They reported several significant haplotypes using a BF threshold 

of 2, which may not be significant when a higher threshold is applied for multiplicity 

adjustment (as applied in our univariate LBL results). For example, they reported a rare 

haplotype on MAP4 gene with BF of 3.19, which is below the threshold used in our 

univariate LBL analysis (listed in Table S1). Sun et al. (2016) used the whole ZNF280D 
gene as a variable and found it to be significantly associated with DBP only. In our study, we 

find one haplotype significant in that gene using bivariate LBL only. They also detected 

significant associations between some SNPs in FBN3 and HRH1 genes and the two blood 

pressure traits jointly. We find some windows in those genes to be significant as well using 

bivariate LBL.

In our lung cancer data analysis, we found haplotypes in all five blocks that we analyzed to 

be associated with lung cancer and smoking jointly, consistent with the literature. In 

particular, two haplotypes in block 3, namely CTTG and TTTG were reported earlier to have 

significant interactions with smoking (Zhang, Lin, & Biswas, 2017). However, the results of 

that study and others on gene-environment interactions in this region are not directly 

comparable with our results as we investigated the region from a viewpoint different from 

gene-environment interaction. We did not treat smoking as a covariate rather as a phenotype 

correlated with lung cancer due to shared genetic mechanism. Thus our analysis does not 

investigate gene-environment interaction rather is intended to only answer whether carriers 

of certain haplotypes in this region have higher/lower susceptibility to lung cancer and/or 

smoking after accounting for the correlation between the two. A limitation of our application 

is that we had to treat smoking as a binary covariate whereas the literature suggests that a 

continuous measure such as smoking intensity is more strongly associated with this region 

(Lassi et al., 2016; I. A. Yang et al., 2013). Nonetheless, our analysis serves as an illustration 
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of how the existing wealth of GWAS data can be mined for rare variant association with 

multiple phenotypes.

In addition to using BF for drawing inference, we also explored 95% simultaneous credible 

region (CR) for β parameters jointly (Besag, Green, Higdon, & Mengersen, 1995). However, 

we found that it is highly conservative in our setting. That is because the prior odds for the 

null hypothesis 1 is very large for bivariate LBL (105.17) making it highly likely for the 

simultaneous CR to cover the null vector of 0 for all β parameters involved in hypothesis 1. 

Thus, many haplotypes that were significant using BF were not significant using 

simultaneous CR method. We investigated few other variations of our model and MCMC 

updating steps but they produced similar or worse results compared to what we finally used. 

For example, we tried using two different λ parameters for the priors for β1 and β2 but that 

made little difference. For updating u jointly, we tried multivariate normal proposals and for 

σu
2 parameter, we explored a conjugate scaled inverse-χ2 prior. However, those attempts gave 

slower convergence of the MCMC algorithm and so we did not pursue them further.

Bivariate LBL is much more computationally intensive compared to univariate LBL. That is 

because in bivariate LBL, the number of β parameters is doubled and there is additionally a 

parameter vector u of dimension equal to the total sample size. Furthermore, because of the 

more complicated model, it needs more iterations for convergence. However, we are able to 

control the computing costs to some extent by implementing some calculations using 

parallel computing (e.g., updating of u), which was not available in univariate LBL code. In 

our simulation study, using a sample of size 2000, the time costs of univariate LBL to finish 

two separate analyses (for two phenotypes) with 50,000 iterations for each analysis under 

Settings 1–3 are 60, 60, and 114, seconds, respectively. While the corresponding times for 

bivariate LBL to finish 200,000 iterations are 616, 1071, and 1770 seconds. These 

computing times are for a 3.40 GHz Xeon processor with 8 cores under Linux operating 

system and 32.89 GB RAM. Considering the computational burden, we recommend using 

bivariate LBL only when there is evidence of correlation between phenotypes or when the 

effect(s) of haplotype(s) on phenotypes are estimated to be negative because in these 

situations univariate LBL may miss association signals.

In spite of the computational limitation, bivariate LBL performs well for detecting 

associations between rare (and common) haplotypes and correlated phenotypes in most 

scenarios. The type I error rates are well-controlled and the powers are in a reasonable 

range. Thus, given that there is no haplotype association method available currently to 

jointly analyze two binary phenotypes, we believe that bivariate LBL is an important 

addition to the toolkit for genetic association studies especially for detecting rare variants. A 

relevant future work from practical standpoint will be to develop a more computationally 

efficient version of bivariate LBL. We also plan to extend bivariate LBL to jointly model 

correlated continuous phenotypes, a combination of binary and continuous phenotypes, and 

gene-environment interactions.
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7 Software

An R package implementing the proposed bivariate LBL method is available at https://

www.utdallas.edu/~swati.biswas/, CRAN (https://cran.r-project.org/web/packages/

LBLGXE/index.html), and GitHub (https://github.com/MorningXY/LBLGXE_v1.4).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Appendix

A1. Derivation of the Likelihood

Recall that aZ
1 = P Z |Y1 = 0  and aZ

2 = P Z |Y2 = 0  are the frequencies of haplotype pair Z in 

the control populations for diseases 1 and 2, respectively. We assume that aZ
1  and aZ

2  are 

independent of u. Next let bZ, u
1 = P Z |Y1 = 1, u  and bZ, u

2 = P Z |Y2 = 1, u  denote the 

frequencies of haplotype pair Z in the case populations of diseases 1 and 2. Recall that 

θZ, u
1 = P Y1 = 1|Z, u /P Y1 = 0|Z, u  and θZ, u

2 = P Y2 = 1|Z, u /P Y2 = 0|Z, u  are the odds of 

the two diseases given Z and u. We can express bZ, u
1  in terms of aZ

1  and θZ, u
1  as follows:

bZ, u
1 = P Z Y1 = 1, u =

θZ, u
1 aZ

1

∑H θH, u
1 aH

1 ,

where H represents the set of all haplotype pairs (Biswas & Lin, 2012). Similarly, we can 

express bZ, u
2  in terms of aZ

2  and θZ, u
2  as bZ, u

2 = θZ, u
2 aZ

2 /∑H θH, u
2 aH

2 . The models for θZ, u
1  and 

θZ, u
2  were provided in the main text. In the following sub-sections, we will fully model aZ

1

and aZ
2  in terms of the model parameters, and then use aZ

l , θZ, u
l , l = 1,2 to represent the 

likelihood in (1).
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Modeling of aZ
1  and aZ

2 . Recall that f1 = f 1
1, …, f m

1  and f2 = f 1
2, …, f m

2  are the frequencies 

of the m haplotypes in the controls for diseases 1 and 2, and f00 = f 1
00, …, f m

00 , 

f10 = f 1
10, …, f m

10 , and f01 = f 1
01, …, f m

01  are the frequency vectors of m haplotypes in the 

three corresponding disjoint sub-populations. There are constraints that f k
00 > 0, f k

10 > 0, and 

f k
01 > 0 for all k, and ∑k = 1

m f k
00 = 1, ∑k = 1

m f k
10 = 1, and ∑k = 1

m f k
01 = 1. Then we can 

represent the elements of f1 and f2 in terms of f00, f10, and f01 in the following way:

f k
1 =

f k
00 · n00 + f k

01 · n01
n00 + n01

, f k
2 =

f k
00 · n00 + f k

10 · n10
n00 + n10

, k = 1, …, m .

For a haplotype pair Z = zk/zk′, we can model aZ
1  and aZ

2  as follows:

aZ
l γl = P Z = zk /zk′ Y l = 0, γl = δkk′d f k

l + 2 − δkk′ 1 − d f k
l f k′

l , l = 1, 2, (2)

where δkk′ = 1(0) if zk = zk′(zk ≠ zk′), γl = {fl,d}, and d ∈ (−1,1) is the within-population 

inbreeding coefficient, which can be used to capture excess/reduction of homozygosity 

(Biswas & Lin, 2012; Weir, 1996). When d = 0, the expression in (2) reduces to the 

assumption of Hardy-Weinberg equilibrium (HWE) while other values of d allow for Hardy-

Weinberg disequilibrium.

Modeling of P(u | Y1,Y2). Assuming the disease statuses (Y1,Y2) to be fixed, we can write

P u Y1, Y2 ∝ P Y1, Y2 u P u = P Y1 u P Y2 u P u , (3)

where we used independence of Y1 and Y2 given u, as mentioned earlier. Consider

P Y1 = 1 u = ∑
H

P Y1 = 1 H, u P(H u) = ∑
H

θH, u
1 P Y1 = 0 H, u P H u

= ∑
H

θH, u
1 P H Y1 = 0, u P Y1 = 0 u = ∑

H
θH, u
1 aH

1 P Y1 = 0 u

= ∑
H

θH, u
1 aH

1 1 − P Y1 = 1 u .

By combining the terms involving P(Y1 = 1 | u) on both sides, we have

P Y1 = 1 u =
∑H θH, u

1 aH
1

1 + ∑H θH, u
1 aH

1  and P Y1 = 0 u = 1
1 + ∑H θH, u

1 aH
1 . (4)

Similarly, we have
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P Y2 = 1 u =
∑H θH, u

2 aH
2

1 + ∑H θH, u
2 aH

2  and P Y2 = 0 u = 1
1 + ∑H θH, u

2 aH
2 . (5)

Substituting the expressions in (4) and (5) into (3), we have

P u Y1, Y2 ∝
P u ∑H θH, u

1 aH
1 Y1 ∑H θH, u

2 aH
2 Y2

1 + ∑H θH, u
1 aH

1 1 + ∑H θH, u
2 aH

2 . (6)

Modeling of P(Z | Y1,Y2,u). Consider

P Z Y1 = 0, Y2 = 0, u =
P Y1 = 0 Z, Y2 = 0, u P Z Y2 = 0, u

P Y1 = 0 u
=

P Y1 = 0 Z, u aZ
2

P Y1 = 0 u

=
P Z, Y1 = 0 u

P Z u ⋅
aZ

2

P Y1 = 0 u
=

P Z Y1 = 0 P Y1 = 0 u
P Z u ⋅

aZ
2

P Y1 = 0 u

=
aZ

1aZ
2

P Z u .

(7)

In this calculation, we use the facts that Y1 and Y2 are independent given u and that 

aZ
1 = P Z |Y1 = 0  is independent of u. In the same way, we can get 

P Z |Y1 = 1, Y2 = 0, u = bZ, u
1 aZ

2 /P Z |u , P Z |Y1 = 0, Y2 = 1, u = aZ
1bZ, u

2 /P Z |u , and 

P Z |Y1 = 1, Y2 = 1, u = bZ, u
1 bZ, u

2 /P Z |u . Now what remains to be modeled is P(Z | u). Using 

equations (4), (5), and (7), P(Z | u) can be written as:

P Z u = ∑
Y1 = 0

1
∑

Y2 = 0

1
P Y1, Y2, Z u = ∑

Y1 = 0

1
∑

Y2 = 0

1
P Z Y1, Y2, u P Y1 u P Y2 u

=
aZ

1aZ
2

P Z u · 1
1 + ∑H θH, u

1 aH
1 · 1

1 + ∑H θH, u
2 aH

2 +
aZ

1bZ, u
2

P Z u · 1
1 + ∑H θH, u

1 aH
1 ·

∑H θH, u
2 aH

2

1 + ∑H θH, u
2 aH

2

+
bZ, u
1 aZ

2

P Z u ·
∑H θH, u

1 aH
1

1 + ∑H θH, u
1 aH

1 · 1
1 + ∑H θH, u

2 aH
2 +

bZ, u
1 bZ, u

2

P Z u ·
∑H θH, u

1 aH
1

1 + ∑H θH, u
1 aH

1 ·
∑H θH, u

2 aH
2

1 + ∑H θH, u
2 aH

2 .

Multiplying both sides by P(Z | u) we get

P Z u =
aZ

1aZ
2 1 + θZ, u

2 + θZ, u
1 + θZ, u

1 θZ, u
2

1 + ∑H θH, u
1 aH

1 1 + ∑H θH, u
2 aH

2

1
2

. (8)

By combining equations (6–8) and adding back the subscripts i and r, we can now write the 

likelihood in (1) completely in terms of the parameter vector Ψ = (β1,β2,γ1,γ2,σu
2) in the 

following way:
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L Ψ ∝ ∏
i = 1

n P ui

1 + ∑H θH, ui
1 aH

1 1 + ∑H θH, ui
2 aH

2
1
2

∑
Zir ∈ S Gi

θZir, ui
1 2 Y1i

θZir, ui
2 2 Y2i

aZir
1 aZir

2

1 + θZir, ui
1 + θZir, ui

2 + θZir, ui
1 θZir, ui

2

1
2

.

Recall that P(ui) is N 0, σu
2 , i = 1,…,n.

A2. Correlation between Y1 and Y2

Consider the latent variable representation of Yl (l = 1,2) as follows:

Yl =
1,  if Yl* > 0,

0,  if Yl* ≤ 0,

where Y l* = XZ βl + u + ϵl*, u N 0, σu
2 , and ϵl* logistic 0, 1 . Here u, ϵ1*, and ϵ2* are independent 

of each other. Then

Cov Y1*, Y2* = Cov XZ β1 + u + ϵ1*, XZ β2 + u + ϵ2* = Cov(u, u) = σu
2,

Var Yl* = Var(u) + Var ϵl* = σu
2 + π2

3 , l = 1, 2,  and Corr Y1*, Y2* =
σu

2

σu
2 + π2/3

.

Thus, the correlation between Y1* and Y2* (and thus between Y1 and Y2) is an increasing 

function of σu
2. The exact correlation between Y1 and Y2 can be also derived by noting that

Corr Y1, Y2 =
E Y1Y2 − E Y1 E Y2

E Y1 1 − E Y1 E Y2 1 − E Y2
,

E Y l = Eu P ϵl* > − u − XZ βl |u = 1
2πσu

∫ −∞
∞ 1

1 + exp −u − XZ βl exp −u2

2σu
2 du, l = 1,2, and 

similarly, E Y1Y2 = 1
2πσu

∫ −∞
∞ 1

1 + exp −u − XZ β1 1 + exp −u − XZ β2 exp −u2

2σu
2 du.
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These expectations are functions of σu
2 and their values can computed using numerical 

integration. Moreover, approximate bounds can be obtained on Corr(Y1,Y2) by using normal 

approximation to the sum of independent and identically distributed standard logistic 

random variables (George & Mudholkar, 1983) and the distribution of sum of logistic and 

normal random variables (Nadarajah, 2005).

A3. MCMC Algorithm

Given the parameter estimates at the tth iteration (denoted by superscript t), we sample the 

new parameter values at the (t + 1)th iteration in the following way:

Updating of β1 and β2. These are the main parameters of interest. For each element 

β j
l l = 1, 2, j = 0, …, m − 1 , we update it using Metropolis-Hastings algorithm. The proposal 

distribution is double exponential with mean β j
l t  and SD β j

l t .

Updating of λ. We use a Gibbs sampler by directly sampling from the conditional 

distribution of λ, which is Gamma 2m + a, ∑l = 1
2 ∑ j = 0

m − 1 β j
l + b .

Updating of f00, f10, and f01. We update f00 using Metropolis-Hastings algorithm with 

proposal distribution Dir(a1,a2,…,am). The parameters satisfy 

a1/a0 = f 1
00 t , a2/a0 = f 2

00 t , …, am/a0 = f m
00(t), with a0 = ∑i = 1

m ai = C set equal to 1000, 

which gives reasonable acceptance rates and satisfactory convergence (Gelman et al., 2003). 

f01 and f10 are updated in the same way.

Updating of d. We update d using Metropolis-Hastings algorithm with proposal distribution 

Uniform(d(t) − v, d(t) + v) with v = 0.5. The updating is carried out subject to the constraint 

that max −
f k
1

1 − f k
1 , −

f k
2

1 − f k
2 < d t + 1 < 1, k = 1, …, m.

Updating of u. We update ui using Metropolis-Hastings algorithm with proposal distribution 

N ui
t , ui

t , i = 1,…,n.

Updating of σu
2. We use a Gibbs sampler because the conditional distribution of σu

2 is Inverse 

− χ2 n − 1, ∑i = 1
n ui

2/ n − 1 , which is same as Inverse-gamma n − 1 /2, ∑i = 1
n ui

2/2 .
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Figure 1: 
Simulation results for hypothesis 1 under setting 1 (6 haplotypes) and ρ = 0. The scenarios 

are listed in Table 1. d1=disease 1, d2=disease 2.
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Figure 2: 
Simulation results for hypothesis 1 under setting 1 (6 haplotypes) and ρ = 0.3. The scenarios 

are listed in Table 1. d1=disease 1, d2=disease 2.
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Figure 3: 
Simulation results for hypothesis 1 under setting 1 (6 haplotypes) and ρ = 0.7. The scenarios 

are listed in Table 1. d1=disease 1, d2=disease 2.
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Figure 4: 
Simulation results for hypothesis 1 under setting 1 (6 haplotypes) and ρ = 0.99. The 

scenarios are listed in Table 1. d1=disease 1, d2=disease 2.
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Figure 5: 
Simulation results for hypothesis 1 under setting 3 (12 haplotypes) and ρ = 0. The scenarios 

are listed in Table 1. d1=disease 1, d2=disease 2.
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Figure 6: 
Simulation results for hypothesis 1 under setting 3 (12 haplotypes) and ρ = 0.3. The 

scenarios are listed in Table 1. d1=disease 1, d2=disease 2.
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Figure 7: 
Simulation results for hypothesis 1 under setting 3 (12 haplotypes) and ρ = 0.7. The 

scenarios are listed in Table 1. d1=disease 1, d2=disease 2.
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Figure 8: 
Simulation results for hypothesis 1 under setting 3 (12 haplotypes) and ρ = 0.99. The 

scenarios are listed in Table 1. d1=disease 1, d2=disease 2.
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Table 1:

Simulation settings and association scenarios.

Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5

Setting Hap Freq β1 β2 β1 β2 β1 β2 β1 β2 β1 β2

1 01100 0.300 0 0 0 0 0 0 0 0 0 0

10100 0.005 0 0 0 0 0 0 0 0 0 0

11011 0.010 2 2 −2 −2 1 −1 1.5 0 −1.5 0

11100 0.155 0 0 0 0 0 0 0 0 0 0

11111 0.110 0 0 0 0 0 0 0 0 0 0

10011 0.420 0 0 0 0 0 0 0 0 0 0

2 01010 0.060 0 0 0 0 0 0 0 0 0 0

01100 0.250 0 0 0 0 0 0 0 0 0 0

10000 0.080 0 0 0 0 0 0 0 0 0 0

10100 0.005 0 0 0 0 0 0 0 0 0 0

11011 0.010 2 2 −2 −2 1 −1 1.5 0 −1.5 0

11100 0.090 0 0 0 0 0 0 0 0 0 0

11101 0.085 0 0 0 0 0 0 0 0 0 0

11111 0.100 0 0 0 0 0 0 0 0 0 0

10011 0.320 0 0 0 0 0 0 0 0 0 0

3 00111 0.070 0 0 0 0 0 0 0 0 0 0

01000 0.020 0 0 0 0 0 0 0 0 0 0

01011 0.050 0 0 0 0 0 0 0 0 0 0

01101 0.060 0 0 0 0 0 0 0 0 0 0

01110 0.140 0 0 0 0 0 0 0 0 0 0

10010 0.080 0 0 0 0 0 0 0 0 0 0

10100 0.005 0 0 0 0 0 0 0 0 0 0

11011 0.010 2 2 −2 −2 1 −1 1.5 0 −1.5 0

11101 0.090 0 0 0 0 0 0 0 0 0 0

11110 0.130 0 0 0 0 0 0 0 0 0 0

11111 0.100 0 0 0 0 0 0 0 0 0 0

10001 0.245 0 0 0 0 0 0 0 0 0 0

Hap: Haplotype, Freq: Haplotype frequency
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Table 2:

Results of GAW19 data analysis in the order of ULK4, FBN3, HRH1, and ZNF280D genes. Cutoffs are listed 

in Table S1. Significant results are shown in bold.

β(Bi) β(Uni) BF (Bi) BF (Uni)

Win Hap Freq #Hap SBP DBP SBP DBP Joint SBP DBP

3 – 7 h10101 0.0014 8 1.21 0.95 1.69 1.34 2.83 6.95 2.15

4 – 8 h01010 0.0012 9 1.45 1.06 2.04 1.54 3.54 11.01 2.54

5 – 9 h10101 0.0012 6 1.46 1.11 2.13 1.59 4.68 9.82 3.33

6 – 10 h01010 0.0014 4 1.05 0.95 1.46 1.24 2.42 5.20 1.91

7 – 11 h10100 0.0013 4 1.08 0.97 1.51 1.25 2.48 4.61 2.16

8 – 12 h01000 0.0014 6 1.06 0.94 1.53 1.28 2.36 4.57 2.29

9 – 13 h10000 0.0014 5 1.09 0.93 1.54 1.21 2.63 4.66 1.85

15 – 19 h00010 0.0125 8 −0.95 −1.60 −0.93 −1.59 3.78 3.25 2.44

16 – 20 h00101 0.0122 9 −0.92 −1.45 −0.93 −1.45 3.35 2.97 1.83

17 – 21 h01011 0.0121 9 −0.94 −1.51 −0.97 −1.48 3.29 3.3 1.84

18 – 22 h10111 0.0118 7 −0.75 −1.56 −0.75 −1.54 2.78 1.7 2.36

24 – 28 h10000 0.0275 8 −0.47 −0.52 −0.45 −0.53 0.75
a 1.12 0.76

39 – 43 h11100 0.0055 11 1.15 −0.15 1.15 −0.01 3.60 10.75 0.58

40 – 44 h11000 0.0050 12 1.89 0.10 2.17 0.35 49.51 > 100 0.77

40 – 44 h11110 0.0466 12 0.79 0.22 1.28 0.58 3.99 > 100 1.22

41 – 45 h10001 0.0060 12 1.04 −0.17 1.03 −0.02 2.67 7.41 0.58

42 – 46 h00010 0.0062 9 0.88 −0.30 1.01 −0.15 1.70 5.25 0.53

42 – 46 h01100 0.0443 9 0.55 0.50 1.24 0.86 0.82
a > 100 2.69

43 – 47 h00100 0.0074 9 0.88 −0.28 0.93 −0.14 1.83 6.18 0.54

5 – 19 h00101 0.2501 6 0.35 0.23 0.35 0.30 0.98
a 5.14 0.58

16 – 20 h01010 0.2400 7 0.33 0.12 0.33 0.19 0.59 4.40 0.28

17 – 21 h10100 0.2457 7 0.34 0.12 0.35 0.19 0.64 6.10 0.28

6 – 10 h00001 0.024 5 −0.8 0 −0.72 −0.04 1.83 3.96 0.38

24 – 28 h00001 0.0099 11 −0.94 −1.3 −1.01 −1.29 2.24 2.49 1.49

Hap: Haplotype, Freq: Haplotype frequency, # Hap: Number of haplotypes in the window, Bi: Bivariate, Uni: Univariate.

a
BF significant but less than 1
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Table 3:

Results of lung cancer and smoking data analysis. Cutoffs are listed in Table S1. Significant results are shown 

in bold.

β(Bi) β(Uni) BF (Bi) BF (Uni)

Block Hap Freq #Hap Cancer Smoke Cancer Smoke Joint Cancer Smoke

1 hCAAG 0.2067 9 −0.25 −0.09 −0.24 −0.13 2.55 25.07 0.19

2 hCC 0.2109 2 −0.20 −0.11 −0.19 −0.12 0.72
a 3.85 0.19

3 hCCTG 0.1250 9 0.28 −0.06 0.26 −0.04 2.59 19.81 0.04

3 hCTTG 0.2772 9 0.23 0.00 0.22 0.01 1.72 21.16 0.01

3 hTTTG 0.0149 9 0.62 0.08 0.58 0.13 11.15 44.22 0.21

4 hCCC 0.2594 6 −0.39 −0.05 −0.36 −0.10 > 100 > 100 0.1

4 hCCT 0.3019 6 −0.29 0.04 −0.27 0.00 57.04 524.37 0.02

5 hGG 0.2060 3 −0.33 −0.19 −0.31 −0.14 > 100 > 100 0.36

5 hTA 0.2396 3 0.03 0.89 0.17 2.53 > 100 0.94 > 100

Hap: Haplotype, Freq: Haplotype frequency, # Hap: Haplotype number, Bi: Bivariate, Uni: Univariate.

a
BF significant but less than 1
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