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Abstract — Gastro-intestinal nematodes, especially Haemonchus contortus, are widespread pathogenic parasites of
small ruminants. Studying their spatial genetic structure is as important as studying host genetic structure to fully
understand host-parasite interactions and transmission patterns. For parasites having a simple life cycle (e.g., monoxe-
nous parasites), gene flow and spatial genetic structure are expected to strongly rely on the socio-spatial behavior of
their hosts. Based on five microsatellite loci, we tested this hypothesis for H. contortus sampled in a wild Mediter-
ranean mouflon population (Ovis gmelini musimon x Ovis sp.) in which species- and environment-related character-
istics have been found to generate socio-spatial units. We nevertheless found that their parasites had no spatial genetic
structure, suggesting that mouflon behavior was not enough to limit parasite dispersal in this study area and/or that
other ecological and biological factors were involved in this process, for example other hosts, the parasite life cycle,
or the study area history.

Key words: Ovis gmelini musimon x Ovis sp., Host-parasite co-structure, Population genetics, Nematode, Mouflon,
Haemonchus contortus.

Résumé — Le comportement socio-spatial de ’héte conduit-il & une structure génétique a fine échelle de ses
parasites ? Les nématodes gastro-intestinaux, et plus particulieérement Haemonchus contortus, sont cosmopolites et
pathogénes chez les petits ruminants. Etudier leur structure génétique spatiale est aussi important que d’étudier celle
des hotes pour pleinement comprendre les interactions hotes-parasites et les processus de transmission. Pour les
parasites ayant des cycles de vie simples (par exemple, les parasites monoxenes), on s’attend a ce que les flux de
genes et la structure génétique spatiale dépendent fortement du comportement socio-spatial de leurs hotes. En
utilisant cinq loci microsatellites, nous avons testé cette hypothese pour des H. contortus échantillonnés dans une
population sauvage de mouflons méditerranéens (Ovis gmelini musimon x Ovis sp.) dans laquelle les
caractéristiques de 1’espéce et de I’environnement génerent des unités socio-spatiales. Nous avons néanmoins mis
en évidence que leurs parasites ne présentent pas de structure génétique spatiale, ce qui suggere que le
comportement des mouflons ne restreint pas la dispersion des parasites dans cette aire d’étude et/ou que d’autres
facteurs biologiques et écologiques tels que d’autres hotes, le cycle de vie du parasite, ou I’histoire de 1’aire
d’étude jouent un rdle dans ce processus.

Introduction

Parasitism has been shown to impact numerous host charac-
teristics (e.g., survival [45], body condition [20] and behavior
[23]). Studying parasite population ecology is thus crucial to

*Corresponding author: elodie. portanier@gmail. com

better understand and predict parasite impacts on host popula-
tions. Among the diverse ecological elements to be studied to
have a complete picture of parasite population ecology, popula-
tion genetics is among the most important since it makes it pos-
sible to identify ecological drivers of population structure,
helping to gather information about processes often difficult
to observe directly in parasite species (e.g., species, such as
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dispersal or demographic changes [34]). Due to their lifestyle,
panmixia of a parasite population (and thus random spatial
distribution of allelic frequencies) can be disrupted by the
non-random transmission of parasites between hosts [34].
Spatial genetic structures of parasite populations are thus
expected to rely on different hosts characteristics (e.g., spatial
behavior and dispersal) [15, 41, 62].

Ruminants can host a large diversity of external and internal
parasite species, especially in their digestive tract [71, 76].
Gastrointestinal parasites are major parasites of ruminants,
due to their high prevalence and potential impact on their host
fitness and population dynamics, in both domestic (e.g., cattle
Bos taurus [11] and sheep Ovis aries [69]), and wild ruminants
(e.g., Soay sheep Ovis aries L. [16, 40]). The most prevalent
gastrointestinal parasites are often the Coccidia and nematodes
(e.g., in roe deer Capreolus capreolus [2], Mediterranean
mouflon Ovis gmelini musimon x Ovis sp [14], see also [44]
for a review, African buffalo Syncerus caffer [29], zebra Equus
quagga, springbok Antidorcas marsupialis, blue wildebeest
Connochaetes taurinus, gemsbok Oryx gazella [44]). Among
the diverse abomasal species of parasites identified, the nema-
tode Haemonchus contortus is a widespread and pathogenic
parasitic worm of small domestic and wild ruminants (e.g.,
mouflon [44, 52, 65, 82], chamois Rupicapra r. rupicapra,
roe deer, Alpine ibex Capra ibex ibex, domestic goat Capra
hircus and sheep [9], African buffalo [6]). Studying population
ecology of this parasite, including population genetics, is of
prime importance for a better understanding and management
of its impact on host populations. While most studies on the
genetic structures of H. contortus populations were performed
on livestock (see [9, 72]), revealing low levels of genetic differ-
entiation even at large (e.g., state or country) spatial scales
(reviewed by [33]), scarce knowledge is available in wild
populations [15]. In such populations, the behavioral ecology
of the host species (e.g., philopatry, sexual segregation, disper-
sal or migration) and landscape structure and connectivity influ-
ence host movements (e.g., [42, 83]) and may generate marked
socio-spatial structures at small intra population scales (e.g.,
[53, 64]). However, how these host populations’ structures
influence the gene flow of their parasites is still an open ques-
tion for numerous populations of wild ruminants [15].

We aimed here to help answer this question by studying
the spatial genetic structure of a H. contortus population para-
sitizing an isolated wild Mediterranean mouflon population.
In this population, males and females have been shown to be
spatially structured (Supplementary Data 1 and [32, 57, 66])
and to have stable home ranges from year to year (see [54],
Appendix S2 in [55]). Because H. contortus has a direct life
cycle (monoxenous parasite), for which free-living infesting
larvae remain close to the host feces [59], we expected the
socio-spatial behavior to generate a spatial genetic signature
in the population of H. contortus.

Materials and methods

Parasites were sampled from the abomasum of 85
Mediterranean mouflon harvested between September 2011
and February 2012 in the Caroux-Espinouse massif (43°38'N,
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Figure 1. Map of the Caroux-Espmouse massif and locations of the
Haemonchus contortus sampled (blue triangles: males, red triangles:
females). Random spatial noise of a few meters using a uniform
distribution was introduced to avoid obtaining duplicate coordinates
for parasites sampled in a same host. The map was generated with
the ggmap R package [49]. France country map© d-maps.com
(https://d-maps.com/carte.php?num_car=2818&lang=en).

2°58'E, 17,000 ha, 130-1124 m a.s.l, southern France,
Fig. 1). Morphologically identified H. contortus [74] were pre-
sent in 70.5% of individuals (based on an aliquot of the aboma-
sum content: estimated median number of worms by parasitized
individuals = 39, min = 3, max = 1100). For genetic analyses, a
total of 115 adult H. contortus (107 males and 8 females,
Fig. 1) were sampled from 43 mouflon (33 males and
10 females, all but one older than 4 years, i.e., adult individuals
having a fixed home range [24, 25, 27]) so that a mean of 2.67
H. contortus were sampled by host (min = 1, max = 7).

DNA was extracted from 5 mm of the body of each individ-
ual, sampled in the head extremity, and avoiding female genital
cords and hence egg DNA contamination. We used the EZ-10
Spin Column genomic DNA Minipreps Biobasic kit (ref
BS628). Following supplier recommendations but adjusting
volumes to the small size of samples, the lysis was performed
in 100 pL of ACL buffer and 7 pL of proteinase K. Samples
were incubated for 1 h at 55 °C under agitation (400 rpm).
Purification and the two washing steps were performed using
150 pL. of AB solution and 200 pL of buffer for each washing.
Elution was done using 50 pL of EB buffer.

For each sample, seven microsatellites (Hcms25, Hcems27,
Hcems33, Hems36, Hems40, Hems22co3 and Hems8a20, see
[63, 68], three multiplexes, see Supplementary Table 1) were
amplified through polymerase chain reaction (PCR) in a final
volume of 15 pL. composed of QIAGEN Multiplex PCR kit
Mastermix (ref. 206145), 40 nM of each primer, and 2 pL of
DNA solution. PCR cycles consisted of 15 min of activation
(95 °C), followed by 40 cycles of denaturation (30 s, 94 °C),
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Table 1. Number of alleles sampled (N,,), allelic richness (Ag), observed heterozygosity (Ho), expected heterozygosity (He) and Fis values
(bold values are significantly different from zero, adjusted Bonferroni nominal levels: 0.01 [3]) for the five loci included in the population
genetics analyses of the Haemonchus contortus sampled in the Caroux-Espinouse massif.

Locus N, AR? Ho He® Fis Fis p-values
Hems22Co3 5 5.00 0.31 0.52 0.40 0.01
Hcms25 15 14.93 0.78 0.84 0.08 0.04
Hcms33 5 5.00 0.54 0.58 0.07 0.16
Hcems36 8 7.96 0.73 0.67 —0.10 0.96
Hcms40 10 9.96 0.44 0.72 0.39 0.01
Mean + SD 8.6 +4.16 857 £4.13 0.56 = 0.20 0.67 = 0.12 0.17 = 0.22 -

# Calculated using the rarefaction method [28].
b Sensu Nei’s gene diversity [61].

annealing (1 min 30 s at primer-specific annealing temperature,
see Supplementary Data 2) and extension (1 min, 72 °C).
Cycles were followed by a final extension step (30 min,
60 °C). PCR products were resolved on a capillary sequencer
ABI 3730XL (Thermo Fisher Scientific) by the Genoscreen
laboratory (Lille, France). The electropherograms obtained
were analyzed using GENEMAPPER software (Applied
Biosystems/Life Technologies) and read by two independent
analysts to determine allele sizes for each individual and mark-
ers. This microsatellite panel is known to produce unambiguous
genotypes and to be highly polymorphic, and has demonstrated
its relevance in previous H. contortus genetic structure studies
(e.g., [68]).

Genotyping errors were tracked using MICROCHECKER
v.2.2.3 software [78]. Using FSTAT v.2.9.3.2 software [35,
36], we determined genetic diversity indices (see Table 1)
and tested for departures from Hardy—Weinberg (HW) equilib-
rium and linkage disequilibrium between pairs of loci (none
detected, results not shown). Observed heterozygosity (Ho)
was determined using R software (R core team 2016), and
the hierfstat package [37].

The spatial population genetic structure of H. contortus was
first investigated using a sPCA (spatial Principal Component
Analysis, library adegenet of R software) [47, 48, 60]. We
performed eigenvalue tests (n = 9999) to assess the significance
of the local and global spatial structures [60]. The connection
network was set using the inverse of the Euclidean pairwise
distances between individuals. We then ran 10 independent
runs of the MCMC simulations implemented in GENELAND
v.4.0.8 software [39], using the correlated allele frequencies
and the null allele models (see Results) to test for K varying
from 1 to 10, with 1,000,000 iterations, a thinning of 100,
and a burn-in of 1000. All analyses involving R packages were
conducted with R 3.3.2 (R core team 2016).

Results

Of the seven loci selected for genotyping, one (Hems8aZ20,
Supplementary Data 2) failed to amplify and was thus not
included in the dataset. MICROCHECKER indicated higher
than 0.05 null allele frequencies for the loci Hcms22Co3,
Hems27 and Hems40 (f = 0.18, 0.29 and 0.20, respectively,
Van Oosterhout et al.’s estimator, [78]). In addition, 28% of

the sampled individuals failed to be genotyped at the Hcms27
locus which was thus excluded from the dataset. The five
remaining loci considered in subsequent analyses showed a rel-
atively high level of genetic diversity (Table 1). For all loci, the
Fis value was 0.16 and significant (p = 0.01), suggesting overall
deviation from Hardy—Weinberg equilibrium likely attributed to
the high null allele frequencies observed for some loci [19].

The sPCA revealed no significant global (p = 0.97) or local
(p = 0.32) spatial genetic structures when considering the first
positive and negative axes (Supplementary Data 3). Accord-
ingly, in the 10 independent GENELAND runs, the maximum
posterior density was obtained for K = 1 (Supplementary
Data 3), indicating an absence of spatial genetic structure in
the study area.

Discussion

In the present study, we hypothesized the socio-spatial
behavior of Mediterranean mouflon (Supplementary Data 1,
[32, 57, 66]) to limit H. contortus gene flow, resulting in a sig-
nificant genetic structure in the parasite population. We, how-
ever, did not evidence any spatial patterns in the distribution
of parasite genetic variability. An absence of genetic differenti-
ation, even at large spatial scales, has already been described for
nematodes in wild host populations [1, 72]. Several explana-
tions can be proposed to explain such a result in the study area.

First, gene flow of parasite species such as H. contortus
having an environmental phase in their life cycle might be max-
imized even if their hosts are only slightly mobile, because this
allows for parasite exchanges without a need for the hosts to
encounter one another, but just to share feeding areas. In addi-
tion, male mouflon perform reproductive excursions during the
rutting period (Marchand et al., unpublished data [66]) and,
even though this is not systematic, young males might disperse
[26] and act as super-spreaders [51, 79] due to higher shedding
rates than adults (e.g., Bourgoin et al. unpublished data, [80]).
Finally, although Mediterranean mouflon are spatially struc-
tured, some overlap persists between socio-spatial unit home
ranges (see Fig. 1 in [56], Supporting information G in [66]).
Taken together, these host behavioral characteristics might
favor step by step parasite exchanges between sub-populations
of hosts, and be sufficient to ensure parasite gene flow across
the entire study area.
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Second, H. contortus is a generalist parasite of small rumi-
nants [75], and roe deer (Capreolus capreolus) inhabit our
study area. Although roe deer are present at much lower
densities than those for Mediterranean mouflon [4], they may
contribute to H. contortus gene flow by having different
socio-spatial behaviors such as territoriality [43], attraction for
forest edges [70], or marked dispersal abilities [21], linked to
their parasitic infestation [22]. In addition, while currently only
low numbers of domestic ruminants (~300 sheep and 300 cattle,
French Ministry of Agriculture and Food 2000) are reared in
the massif, mainly in the outlying areas of the mouflon range
[5, 17, 18], domestic sheep and cattle were historically present
at high densities in the study area before Mediterranean mou-
flon introduction (60 years ago). H. contortus might thus also
have been present before the mouflon introduction, and the cur-
rent spatial genetic structure of H. contortus could result from
the historical and contemporary interactions between these three
different hosts’ spatial structures and behaviors.

We encountered methodological issues with null alleles that
may also raise questions about our statistical power for
detecting spatial genetic structure in the parasite population.
However, null alleles tend generally to induce an overestima-
tion of genetic structure rather than the opposite, and only
interfere slightly with assignments of individuals to genetic
clusters [7, 10]. Since we observed no genetic structure, we
were therefore confident that the presence of null alleles here
led to conservative results. In addition, the sPCA uses allele
frequencies as variables [47] and numerous alleles were identi-
fied in the five loci studied here (see Table 1), consequently
increasing the statistical power to detect genetic structure, even
though only a limited number of loci are involved. The rela-
tively high null allele frequencies observed reflected the high
genetic diversity reported in H. contortus worldwide and in
the present study, in which the number of alleles by locus is
even higher than the number observed in other populations
(see e.g., [68, 81]). Null alleles have frequently been reported
in other studies on H. contortus (e.g., [12, 13, 46, 68]) and more
generally on parasitic nematodes (e.g., [38, 73]). This can be
explained by the high effective population sizes (one host can
carry thousands of worms) characterizing parasitic worms,
favoring rapid evolution of DNA sequences and thus mutation
in the flanking region of microsatellite loci [10, 63].

Conclusions and perspectives

Contrary to our expectations, we did not detect any spatial
genetic structure in H. contortus parasitizing Mediterranean
mouflon of the Caroux-Espinouse massif. This result highlights
that studying both sides of host-parasite interactions is crucial to
fully understand and predict the sanitary evolution of popula-
tions, since parasite dispersal is often the result of more than
one ecological factor [58]. It also reveals that results about
the impacts of host spatial behavior on parasite transmission
(e.g., [41]) might be difficult to generalize to diverse host-para-
site systems. Specific studies on given host-parasite systems are
thus needed to conclude about parasite population ecology and
impacts of host ecology on their evolution. It is especially
important for parasites having an indirect transmission process

such as H. contortus or for wild hosts being in contact with
domestic animals since these biological characteristics might
interact with host ecology and increase the spatial scale at
which parasite transmission occurs (e.g., [8]). In the current
global context of habitat fragmentation [30], which has the
potential to impact host population structures, genetic diversity
and thus fitness [31, 67], the results of the present study also
demonstrate how the overall impact of changes on populations
should be assessed at the community level, since different
species, such as hosts and parasites, might be differently
impacted. To go further in the understanding of H. contortus
population ecology, an interesting perspective could be to
resample H. contortus in the different host species (mouflon,
roe deer and domestic ruminants) present in the study area to
determine whether the panmictic population we detected in
Mediterranean mouflon also extends to other sympatric species.
Such a comparison would help us to understand how parasites
spread in the Caroux-Espinouse massif and give supplementary
information to wildlife managers when defining management
and conservation planning.
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