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The extraction of desirable heritable traits for crop improvement from high-throughput phenotyping (HTP) observations remains
challenging. We developed a modeling workflow named “Digital Plant Phenotyping Platform” (D3P), to access crop architectural
traits from HTP observations. D3P couples the Architectural model of DEvelopment based on L-systems (ADEL) wheat (Triticum
aestivum) model (ADEL-Wheat), which describes the time course of the three-dimensional architecture of wheat crops, with
simulators of images acquired with HTP sensors. We demonstrated that a sequential assimilation of the green fraction derived from
Red–Green–Blue images of the crop into D3P provides accurate estimates of five key parameters (phyllochron, lamina length of the first
leaf, rate of elongation of leaf lamina, number of green leaves at the start of leaf senescence, and minimum number of green leaves) of the
ADEL-Wheat model that drive the time course of green area index and the number of axes with more than three leaves at the end of the
tillering period. However, leaf and tiller orientation and inclination characteristics were poorly estimated. D3P was also used to optimize
the observational configuration. The results, obtained from in silico experiments conducted on wheat crops at several vegetative stages,
showed that the accessible traits could be estimated accurately with observations made at 0° and 60° zenith view inclination with a
temporal frequency of 100 °Cd (degree day). This illustrates the potential of the proposed holistic approach that integrates all the available
information into a consistent system for interpretation. The potential benefits and limitations of the approach are further discussed.

Crop genetic improvement consists in selecting or cre-
ating the best performing genotypes under a set of envi-
ronmental and management conditions (Bustos-Korts,
2017). Performances are mainly based on the quantity
and quality of the harvested organs. Yield results from
complex interactions between the genotype and the
environment that makes direct selection based on yield
very inefficient. It is preferred to identify an ensemble of
structural and functional traits that are less dependent
on the environment, explain part of the yield, and are
strongly related to the genome (Hammer et al., 2006;

Tardieu and Tuberosa, 2010; Rutkoski et al., 2016;
Bustos-Korts, 2017). High-throughput phenotyping
(HTP) is expected to provide such structural traits
over a large collection of genotypes under contrasting
climate and management scenarios. Further, the nonin-
vasive nature of HTP techniques allows repeat observa-
tions over time to possibly access functional traits.
HTP (Paproki et al., 2012) accesses structural traits

including lamina shape in wheat (Triticum aestivum;
Dornbusch and Andrieu, 2010), plant height (Hartmann
et al., 2011;Madec et al., 2017), leaf angle (Cabrera-Bosquet
et al., 2016), plant density (Liu et al., 2017c), ear density
(Madec et al., 2019), or leaf area index (Liu et al., 2017a).
Three-dimensional (3D) reconstruction of the canopy
may provide more details to access canopy structural
traits and the functioning of the canopy (Gibbs et al.,
2017). This technique has been applied on individual
plants under well-controlled illumination conditions
by Duan et al. (2016), who used multiview images to re-
construct 3D wheat structure at early stages and extract
morphological traits. Its transposition to field conditions,
where observations are generally only possible from the
top, is still challenging as they provide an incomplete
description of the 3D plant structure because of the oc-
clusions inherent to vision techniques (Gibbs et al., 2017).
A detailed and explicit description of the characteristics of
each organ to better understand the crop functioning is
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still a pending question. Nevertheless, monitoring the
plants from the topwould allow us to progressively build
a description of the whole plant and infer the whole plant
or stand characteristics. A dynamic plant architecture
model will be very useful to keep a high degree of con-
sistency betweenmultidate observations,while providing
sound assumptions on the fate of the organs at the bottom
of the canopy that are partly occluded.

Functional structural plant models (FSPMs) describe
the detailed evolution of plant architecturewith relatively
simple environmental inputs, mainly air temperature
and sowing patterns and a set of parameters describ-
ing organ size, extension rate, and topology (Vos et al.,
2010). They can be coupled to radiative transfer models
(RTMs) such asRaytran (Govaerts andVerstraete, 1998) or
LuxCoreRender (https://luxcorerender.org/) to simulate
the corresponding 2D images acquired under a given
observational geometry and waveband. The 3D nature
of the FSPMs allows also simulating accurately the light
detection and ranging (LiDAR) signal. The FSPMs are
thus able to link 2D (camera) or 3D (LiDAR) measure-
ments by HTP techniques with plant level architectural
traits corresponding to FSPM parameters. These pa-
rameters are expected to be more strongly associated
to genomic regions than direct HTP measurements.
This approach applied to single date observations cor-
responds to an advanced RTM inversion (Baret and
Buis, 2008). It has been applied by Liu et al. (2017a) to
estimate the Green Area Index (GAI) over wheat crops
from the combination of Red–Green–Blue (RGB) cam-
eras and LiDAR observations. However, it did not ex-
ploit the temporal dimension that is described within
FSPMs. Alternatively, comprehensive exploitation of
multidate and/or multisensor observations to access
FSPM parameters corresponds to a data assimilation
approach that has been successfully applied to satellite
observations (Moulin et al., 1998; Weiss et al., 2001;
Bacour et al., 2015; Zhang et al., 2016). Data assimilation
allows us to integrate consistently into a single model-
ing workflow all information available including the
phenotyping observations, environmental variables,
and the knowledge on the physical and biological
processes integrated into FSPM and RTM. This ap-
proach benefits from the use of accumulated observa-
tions from several sensors and dates, which adds
constraints in the parameter estimation process to get
the set of optimal values (Combal et al., 2003; Baret and
Buis, 2008). Consequently, more parameters of the
FSPM can be estimated with increased accuracy. The
resulting estimated parameters can then be used to
derive emerging properties of the plant or the canopy
such as the radiation interception efficiency.

The objective of this article is to describe the poten-
tials of such an assimilation approach for retrieving
detailed plant and canopy characteristics from multi-
date observations of the Green Fraction (GF) that can be
measured from RGB or multispectral imageries. The
study focuses on wheat crops monitored from emer-
gence to the end of the tillering period and is based on
in silico experiments to demonstrate the feasibility of

the proposed approach, avoiding possible limitations
due to the realism of the models used, particularly the
FSPM. It is based on the digital plant phenotyping
platform (D3P) that was specifically developed to sim-
ulate phenotyping measurements by coupling the Ar-
chitectural model of DEvelopment based on L-systems
(ADEL) wheat model (ADEL-Wheat; Fournier et al.,
2003) to the RTM, Persistence of Vision Raytracer
(POV-Ray 3.7; https://www.povray.org/download/).
The D3P is first presented and then exploited to assimi-
late GF observations made at several dates and under
several view directions to estimate 10 parameters of
ADEL-Wheat. Finally, the approach is repeated for
several temporal and directional samplings to select the
optimal measurement configuration.

RESULTS

Assimilation of GF into the D3P

In silico experiments were conducted using five view
directions and five dates before tillering to estimate the
five parameters of ADEL-Wheat (c, L, aleaf, Dw, and Du;
Table 1) andGAI.We obtained very good estimates of c
and L, even considering a noise of 10% on GF (Figs.
1 and 2). The parameter aleaf was retrieved with ac-
ceptable performances (Fig. 2). However, leaf orienta-
tion and inclination described by Dw and Du appeared
difficult to retrieve from the dynamics of the directional
GF before tillering (Figs. 1 and 2). The parameter Dw
determines the clumping of neighboring leaves with
potentially substantial impact on the canopy light in-
terception (Maddonni et al., 2001). The first three leaves
are very small with few interactions between leaves of
the same plant and almost no interactions between
neighboring plants. This may explain why the azi-
muthal orientation pattern of leaves is not accessible
from observations at the canopy scale during this early
development phase.

The good retrieval performances of parameters
driving the development of leaf area (c, L, and aleaf)
explains the good estimation of GAI (Fig. 1). The re-
trieval performance of GAI is little affected by the noise
associated with GF observations.

The sequential assimilation scheme proposed ex-
ploits observations before and during the tillering pe-
riod to estimate five new parameters (Nsen, Nmin, Ntil,
util, and atil; Table 1) while refining the five parame-
ters estimated before tillering (c, L, aleaf, Dw, and Du;
Table 1). Results show that adding the five observation
dates during the second subperiod improves substan-
tially the estimation of the first set of parameters (Fig. 3).
The improvement was very large for c and aleaf. For the
parameters describing canopy architecture (Dw andDu),
the relative root mean squared error (rRMSE) was also
drastically improved, particularly for the larger noise
levels, but it was still higher than 0.5. The improvement
was marginal for L, which was already well estimated
using the first five dates before tillering. The impact of
noise affecting GF observations on rRMSE for the first
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set of parameters was much reduced (Fig. 3). This was
probably due to the multiplicity of the observations
(10 dates, five directions) that smoothed out the ran-
dom noise associated with GF.
Among the second set of parameters,Nsen that drives

leaf senescence dynamics was relatively well estimated
with rRMSE , 0.1 (Fig. 3). Conversely, Nmin was more
difficult to retrieve accurately with rRMSE � 0.2
(Fig. 3). This can be explained by the fact that the in-
fluence ofNmin on the dynamics of leaf senescence does
not show up until the end of the tillering period, when
the size of tillers is relatively small and partly hidden by
the first leaves. The parameters driving the orientation
of tillers (utiller, atiller) were not retrieved accurately
(Fig. 3). These parameters apply on tillers that are rel-
atively small and partly hidden by the older leaves of
the main stem. GAI was very well estimated, in

agreement with the observations before tillering. In
addition, d3l (the number of axes with more than three
leaves) was very well estimated.

Optimization of Measurement Configuration

The optimal measurement configuration is defined by
the combination of dates and directions that provides the
best retrieval performances for the three parameters (c, L,
and aleaf) accessible before tillering in addition to GAI.
Results showed that the average rRMSE on parameters
(c, L, and aleaf) varies between 0.23 for GF observations
from a single direction on a single date, down to 0.09 for
the most comprehensive set of observations including the
five dates and the five directions (Fig. 4). Best perfor-
mances were obtained when at least three observation
dates were used and when they were sufficiently distinct
in time with the optimal case being dates [50, 150, 250]
°Cd (degree day) after crop emergence (Fig. 4). The
multiplication of observation directions improved mar-
ginally the estimation of the parameters. For these early
stages, Baret et al. (2010) already demonstrated that GF
observed under 57° zenith angle provides an accurate
estimate of GAI. Our results agree well with these find-
ings, the best configurations always including a GF
measurement at 60° zenith angle. The improvementwhen
adding more directions might be mainly due to the re-
duction of the noise associated to the GF pseudo-
measurements. Optimal performances were obtained
when using two directions (0° and 60°) and three dates
evenly distributed during the tillering period (Fig. 4).
Adding more dates or directions improved only mar-
ginally the retrieval performances.

DISCUSSION

Assimilation of GF Observations Provides Accurate
Estimates of a Few Pertinent Wheat Architectural Traits

The GF is one of the most common canopy properties
that can be derived from several HTP sensors including

Figure 1. rRMSE for five parameters of ADEL-Wheat and GAI estimated
with the D3P using the GF observations under five view directions for
five dates before tillering. Three levels of noise were considered (0%,
5%, and 10%) for the evaluation dataset. The five parameters are: c; L,
rank from the bottom; aleaf; Dw; and Du.

Table 1. Influential parameters of the simplified ADEL-Wheat model estimated in the D3P

The range of variation as observed in field experiments is indicated from Abichou (2016).

Growth Period Name Descriptions
Value

Unit
Minimum Maximum

Before tillering c Phyllochron 80 120 °Cd
L Laminae length of leaf 1, rank from the bottom 4 8 Centimeters

aleaf Increase rate of lamina length 23 3 Centimeters of
phytomer21

Dw SD of the leaf azimuth compared to the previous one with mean 180° 0 90 Degree
Du Shift of leaf basal inclination 215 15 Degree

During tillering Nsen Number of green leaves at the start of leaf senescence on the
mainstem

3.5 6.5 Leaves

Nmin Minimum number of green leaves on the mainstem 1.5 3.5 Leaves
Ntil Final number of tillers per plant 0 5 Tillers
util Inclination of the base of tillers relative to mainstem inclination 10 85 Degree
atil Change of tiller inclination angle with the number of emerged

leaves
10 50 Degree of Haun stage21
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RGB high-resolution cameras (Guo et al., 2013), multi-
spectral cameras based on vegetation indices (Comar
et al., 2012), and RTM inversion (Li et al., 2015), as well

as LiDAR systems (Liu et al., 2017a). These devices can
be installed aboard a range of possible vectors includ-
ing fixed sensors at the ground level (Guo et al., 2013),

Figure 3. rRMSE for 10 parameters of
ADEL-Wheat, GAI, and the number of
tillers with d3l estimated with the D3P
using the GF observations under five
view directions for 10 dates between
crop emergence and the beginning of
stem elongation. Three levels of noise
were considered (0%, 5%, and 10%) for
the evaluation dataset. The 10 parame-
ters include: c; L, rank from the bottom;
aleaf; Dw; Du, shift of leaf basal inclina-
tion Nsen; Nmin; Ntil; util; atil.

Figure 2. Comparison of the estimated and pseudo-observation values of the five parameters of ADEL-Wheat and the GAI
computed for the five dates of GF measurements with the reference values for the first growth period (between crop emergence
and ligulation of leaf 3). Synthetic GF data were obtained from five view directions with 5% noise. The five parameters are: c; L,
rank from the bottom; aleaf; Dw; and Du.
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semiautomatic light carts (White and Conley, 2013) or
tractor-based systems (Comar et al., 2012), fully auto-
matic rover robots (Madec et al., 2017) running on the
ground with active measurements, and unmanned ae-
rial vehicles (Schirrmann et al., 2016). Our results
clearly demonstrated that the assimilation of GF ob-
servations provide accurate estimates of the fewADEL-
Wheat parameters that drive the dynamics of GAI: the
phyllochron, c; the lamina length of the first leaf, L; the
rate of elongation of leaf lamina, aleaf; the number of
green leaves at the start of leaf senescence,Nsen; and the
minimum number of green leaves, Nmin. The phyllo-
chron that varies among cultivars (Hay and Kirby,
1991; He et al., 2012) is of high interest. The phyllo-
chron describing leaf appearance rate responds non-
linearly to multienvironmental factors. When it is
modeled using only temperature, residual environ-
mental effects are often observed (Cao and Moss, 1989;
Baumont et al., 2019). This can be partly removed using
the photothermal time corresponding to temperatures
accumulated during the light time period only
(Masle et al., 1989). Environmental factors may have
also substantial effects on the final length of leaves,
L. Therefore, the influence of the environmental con-
ditions on c and L should be explicitly modeled into
ADEL-Wheat to characterize the early plant vigor that
is a very pertinent trait to be selected (Blum, 1997;
Monneveux et al., 2012). Parameter aleaf that drives the
lamina length of successive leaves may be also a good
proxy of the early plant vigor. Parameters Nsen and

Nmin are traits of potential interest for drought toler-
ance (Araus et al., 1997; Hafsi et al., 2007). Con-
versely, parameters related to leaf or tiller orientation
were poorly retrieved either because they vary within
relatively narrow ranges or because they apply to
organs with limited area or hidden by other organs.
Nevertheless, the good estimates of c, L, aleaf, Nsen,
and Nmin parameters that drive the dynamics of GAI
allows simulating accurately GAI continuously with
an rRMSE , 0.05. Baret et al. (2010) demonstrated
that GAI could be estimated with an rRMSE 5 0.12
using single GF measurements from 57.5° zenith an-
gle when leaves are assumed randomly distributed in
the canopy. The improved performances shown here
comes from the additional information used in the
assimilation scheme, with more directions and more
dates of observations. Further, our assimilation
method ensures us to get a consistent time course of
GAI before tillering using the temporal constraints
provided by the dynamic ADEL-Wheat model. In
addition to GAI, d3l was accurately computed from
the estimated parameters (c, L, aleaf, Nsen, and Nmin).
This trait is commonly used as a proxy of ear density
and thereby of potential yield as tillers having three
leaves at the start of stem elongation continue to grow
and generally complete their development and pro-
duce an ear (Nerson, 1980; Whaley et al., 2000).
Conversely, the other tillers generally regress due to
the competition between neighboring tillers and
plants (Masle, 1985).

Figure 4. Average rRMSE for the three
estimated ADEL-Wheat parameters (c,
L, and aleaf) and GAI obtained from the
961 combinations of one to five direc-
tions and one to five dates before
tillering.
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Assimilation Exploits Consistently All the Available
Information into a Single Workflow

The assimilation approach that integrates multidate
remote sensing observations into process models was
originally developed for satellite observations (Moulin
et al., 1998; Weiss et al., 2001; Bacour et al., 2015; Zhang
et al., 2016). It was applied here to HTP measurements.
Data assimilation offers several advantages as com-
pared to the more classical crop characteristics retrieval
approaches. First, it integrates into a single and con-
sistent workflow all the available information including
phenotyping observations, environmental variables,
and knowledge on the physical and biological pro-
cesses embedded in the FSPM and RTM. Second, it
capitalizes on the accumulation of observations from
several sensors and dates and thereby facilitates the
parameter estimation process (Combal et al., 2003;
Baret and Buis, 2008). Third, data assimilation within
such a modeling workflow permits us to access plant
and canopy level architectural properties that cannot be
directly measured in the field at high throughput. Fi-
nally, the combination of ADEL-Wheat with simulators
of several phenotyping measurements allows assimi-
lating concurrently observations coming from different
sensors. This will allow adding more information in the
interpretation system to provide more accurate pa-
rameter estimates or new traits.

Optimizing of the Measurement Configuration

The proposed approach allows defining the optimal
measurement configuration that provides a trade-off
between the accuracy of trait estimation and the cost/
time associated to the multiplication of measurements
and devices. This was demonstrated here by selecting
the more parsimonious combination of dates and

directions of observations. Results show that observa-
tions made at 0° and 60° and repeated every 100 °Cd
provide the best estimates of the accessible traits. The
optimization process allows playing on additional ele-
ments of the measurement configuration including the
uncertainties associated to the measurements, the spa-
tial resolution, or the interest of additional devices.

Potential Benefits and Limitations of the
Assimilation Technique

The sequential assimilation scheme proposed here
splits the retrieval problem into subproblems. It grad-
ually adds parameters to be estimated as soon as they
are required, limiting the complexity of the problem
(Baret and Buis, 2008). Further, the values of the pa-
rameters needed for the first stages can be refined when
exploiting later observations because they affect the fate
of the canopy for the later growth stages. For the sake of
simplicity, we focused on early growth stages that are
recognized to be critical for the implantation of the crop
and the competition with weeds. The traits estimated
are therefore considered crucial to identify cultivars
with higher early vigor and competitiveness with
weeds or other crops/genotypes (Araus et al., 1997;
Hafsi et al., 2007). However, the approach could be also
applied to later stages to capture additional traits. This
will be achieved at the expense of increased complexity
because of the growing number of parameters to be
considered. Additionally, our simulations are based on
fixed thermal time and directions under which the GF
are observed. However, the dynamics of GF is smooth
because it results from incremental growth and senes-
cence processes. Therefore, it would be possible to in-
terpolate the GF values between the fixed dates
simulated in this exercise to match the actual dates.

Figure 5. Schema of the D3P that simulates phenotyping observations from environmental variables, crop management, and
meteorological information.
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Similar smooth variations of GF are expected as a
function of the directions of GF observations. Therefore,
it would also be possible to interpolate between the
fixed directions to match the actual ones under which
GF is observed.
The results presented here were based on in silico

experiments where pseudo-observations were used
instead of actual measurements. This probably boosts
artificially the retrieval performances because the con-
sistency of the ADEL-Wheat model with the actual
canopy structure development was not challenged. The
assimilation approach should therefore be further
evaluated using actual observations to ensure that the
possible systematic error on the description of the dy-
namics of canopy structure by the ADEL-Wheat model
is limited. Nonetheless, the noise added on the GF ob-
servations demonstrates that the approach is relatively
robust to random error thanks to the multiplicity of the
observations.
The performances of the proposed approach when

applied to actual observations rely on the realism of the
FSPM, ADEL-Wheat in our case. In a previous work,
we pointed out the limits of ADEL-Wheat to get real-
istic GF values acquired close to nadir directions be-
cause of the possible interactions between leaves at
early growth stages that were not always accurately
described (Liu et al., 2017b). However, it is possible to
use only inclined observations for these early stages,
which would limit the impact of model approximations
on the estimation of the model parameters. Besides,
ADEL-Wheat assumes that tillering ceases when the
first internode starts to elongate (Kirby et al., 1985).
However, the end of tillering can be strongly affected
by external factors including light quality within the
canopy (Evers et al., 2006) and photoperiod (Miralles
and Richards, 2000). Although simplifications and

assumptions on the description of some processes are
always necessary, phenotyping observations will con-
tribute to provide the required information for im-
proving the realism of FSPMs.
As in many FSPMs, ADEL-Wheat incorporates very

little functioning in terms of ecophysiological processes,
which limits the type of traits that can be extracted
by assimilating phenotyping observations into D3P.
The next step should be to retrieve crop growth model
parameters describing canopy response to envi-
ronmental factors, i.e. truly functional traits, from
the assimilation of the structural parameters re-
trieved from the proposed combination of HTP ob-
servations and D3P. Some wheat crop growth models
such as “SiriusQuality” (Martre and Dambreville, 2018)
describes the leaf area dynamics from the growth of
individual leaves and tillers using an approach similar
to that of ADEL-Wheat. To feed a crop model such as
SiriusQuality with the FSPM parameters, they should
be reparameterized so that the retrieved parameters
have the same meaning in both models. Parameters
determining the short-term responses of physiological
processes to environmental factors are now also acces-
sible in HTP platforms (Prado et al., 2018), which can
limit the number of parameters that need to be retrieved
by data assimilation.

MATERIALS AND METHODS

Description of the D3P

The D3P includes two components: a 3D canopy structure model and sim-
ulators of the phenotyping observations fromLiDARs andmultispectral or RGB
cameras (Fig. 5). Three-dimensional canopy structureswere simulated using the
FSPM modeling platform “OpenAlea” (http://openalea.gforge.inria.fr/
dokuwiki/doku.php; Pradal et al., 2008). OpenAlea is used in D3P to create 3D

Figure 6. Diagram showing the se-
quential scheme of GF assimilation. The
assimilation was done in two consecu-
tive steps: between crop emergence and
the start of tillering (before tillering); and
between crop emergence and the be-
ginning of stem elongation (i.e. before
stem elongation). In each step, an NN
was first trained using the training GF
dataset, GF(t,V). The trained NN was
then used to estimate ADEL-Wheat pa-
rameters and GAI using the GF valida-
tion dataset, GF(t,V). The distribution of
ADEL-Wheat parameters estimated in
the first step (before tillering) were used
as prior information when training the
NN in the second step (before stem
elongation). Finally, the tiller number
with d3l was computed from the esti-
mated set of parameters.

Plant Physiol. Vol. 181, 2019 887

High-Throughput Plant Traits Estimation Using D3P

http://openalea.gforge.inria.fr/dokuwiki/doku.php
http://openalea.gforge.inria.fr/dokuwiki/doku.php


meshes of virtual canopies. LiDAR data are simulated using the 3D crop
modeling library “Plantgl” (Pradal et al., 2009). Multispectral and RGB images
are simulated with multispectral/RGB simulator using the software “POV-Ray
3.7” (https://www.povray.org/download/), which renders complex 3D
scenes for a range of camera specifications. Optical properties of plant organs
are simulated with the “PROSPECT” model (Jacquemoud and Baret, 1990)
using the Python library “PyProSAIL” (https://pyprosail.readthedocs.io/en/
latest/). By defining the sensor properties and the observational configuration
(Supplemental Table S1), we can mimic with a very high realism any pheno-
typing measurement (Supplemental Video S1).

The accuracy of the LiDAR simulator has been previously evaluated through
comparison with LiDAR measurements (Liu et al., 2017a). The performance of
POV-Ray–based radiative transfer simulation was evaluated through RTM
intercomparison using an on-line model checker, ROMC (Widlowski et al.,
2008). The evaluation of “POV-Ray” (Supplemental Fig. S1) shows satisfac-
tory results.

D3P is programmed in the software Python (http://www.python.org). All
D3P dependencies are open-source and their code is accessible from the code
repositories and websites given in Supplemental Table S2. The code and user
manual of D3P is freely available on GitHub (https://github.com/lsymuyu/
Digital-Plant-Phenotyping-Platform). D3P is distributed under the free soft-
ware open-source MIT license.

Simplification of ADEL-Wheat FSPM

Virtual wheat (Triticum aestivum) canopies were simulated with the wheat
FSPM ADEL-Wheat implemented in the modeling platform “OpenAlea”
(Fournier and Andrieu, 1999; Abichou et al., 2013; Liu et al., 2017b). Plant de-
velopment is primarily driven by temperature and the thermal time between
the appearance of two successive leaf tips, i.e. the phyllochron. The phyllochron
is considered constant from seedling to flag leaf expansion (Hokmalipour,
2011). The current version of ADEL-Wheat needs more than 50 parameters to
describe explicitly the dimension, orientation, and inclination of each organ (for
a detailed presentation of ADEL-Wheat, see http://openalea.gforge.inria.fr/
doc/alinea/adel/doc/_build/html/user/manual.html). Therefore, a reduced
number of parameters was required to estimate them from HTP observations.
We reparameterized the leaf dimension representation in ADEL-Wheat using a
large dataset covering 28 winter wheat experiments conducted over several
years in Grignon, France, with a range of sowing dates, cultivars, and nitrogen
levels (Abichou, 2016). The modifications proposed are detailed in the
Supplemental Methods and Supplemental Figure S3. A total of 10 influential
parameters controlling the canopy development from emergence to the be-
ginning of stem elongation was finally necessary to drive the simplified version
of ADEL-Wheat model.

Before tillering starts, i.e. before ligulation of the third leaf on the main stem
(Masle, 1985), five parameters drive the plant structure dynamics (Table 1). The
phyllochron, c, controls the time of leaf appearance and the rate of leaf exten-
sion. The lamina length of the first three leaves is assumed to change linearly
with leaf rank. It is parameterized by the lamina length of the first leaf L and the
slope, aleaf, of the relationship between lamina length and leaf rank. Leaf ori-
entation is initialized from the seedling stage depending on seed orientation.
Seeds are assumed to be sownwith a random azimuth (Ledent andMoss, 1977).
Evers et al. (2005) found that the azimuth of successive leaves ismainly opposite
for the first three leaves. The azimuth angle of a leaf relative to the previous one
was drawn from a Gaussian distribution with mean angle of 180° and SD Dw
accounting for the plasticity of the cultivar. The leaf inclination was described
based on experimental observations (Abichou, 2016). Variations of leaf incli-
nation is controlled by the basal inclination, Du.

During the tillering phase, i.e. between ligulation of the third leaf on the
mainstem and the beginning of stem elongation (Abichou et al., 2018), five
additional parameters drive tiller development and leaf senescence (Table 1).
Leaf senescence is described by the number of green leaves on the mainstem
when senescence starts, Nsen, and the minimum number of green leaves on the
mainstem, Nmin (Abichou et al., 2013); the final number of tillers is Ntil, leaf
inclination is util, and change of tiller inclination angle with the number of
visible leaves is atil.

Simulation of Synthetic Datasets

We simulated RGB images of wheat canopies using D3Pwith our simplified
version of ADEL-Wheat. We rendered 23 2 m scenes containing 11 rows with
an inter-row spacing of 17.5 cm and a sowing density of 250 seeds∙m22. Note

that plant density was not considered as an unknown parameter because high-
resolution RGB imagery techniques have been developed to accuratelymeasure
it and document the associated sowing pattern (Jin et al., 2017; Liu et al., 2017b).
A total of 2,500 combinations of the five influential parameters of ADEL-Wheat
before tillering (Table 1) were randomly drawn using a “Latin Hypercube”
sampling scheme. The parameters were assumed to follow a uniform distri-
bution within their range of variation (Abichou, 2016; Table 1). During tillering,
a similar sampling strategy was used for the five influential parameters during
that period (Table 1). The canopies were simulated every 50 °Cd before tillering
(between 50 and 250 °Cd after crop emergence) and every 100 °Cd during til-
lering (between 300 and 700 °Cd after crop emergence).

GF in a given direction is defined as the fraction of green elements viewed in
this particular direction. It is computed from the classification of RGB images.
The RGB camera with a 610° field of view was placed at 1.5 m above the
canopy, providing a footprint of 50 3 50 cm. The images had a resolution of
500 3 500 pixels with a 1-mm spatial resolution, which appears to be a good
compromise between computation time and performances. Marginal classifi-
cation errors were expected in the calculation of GF from our simulations. Noise
was thus added to the simulated GF values to mimic the actual GF measure-
ments where possible classification errors may be observed due to confusions
between green vegetation and nongreen elements or the soil surface, depending
on illumination conditions and camera spatial resolution. We assumed that the
noise followed a Gaussian distribution with a mean of zero and SD of 0.05 and
0.10, which are typical values (Baret et al., 2010; Liu et al., 2017b). We then
rendered the 3D scenes using the software “POV-Ray” every 15° between 0°
and 60°. View azimuth was perpendicular to the row to maximize the sensi-
tivity to canopy structure (López-Lozano et al., 2007, 2009).

GFwas computed for the 10 dates and the five view directions for each of the
2,500 combinations of ADEL-Wheat parameters (Table 1). The 125,000 simu-
lated RGB images and corresponding GF values will be called “pseudo-
observations” in the following (illustrated in Supplemental Fig. S2). Each of
the 2,500 input parameter combination were also associated to two additional
traits: the GAI at each of the 10 dates and the number of axes with d3l at the end
of the tillering period. Training and validation processes were conducted with
85% and 15% of the synthetic dataset, respectively.

GF Assimilation

The assimilation process was conducted sequentially for the two growth
periods as illustrated in Figure 6. The five parameters involved before tillering
(c, L, aleaf,Dw, andDu) were first estimated. Then the five additional parameters
required for the tillering period (Nsen, Nmin, Ntil, util, and atil) were estimated
while the first five parameters were fine-tuned because they also influence the
architecture of canopies during tillering. In the second assimilation step, GF
data from crop emergence to beginning of stem elongation were also
assimilated.

For eachof the twoperiods, theassimilationprocess consisted inadjusting the
ADEL-Wheat parameters (Table 1) to get a good agreement between the sim-
ulated GF and the GF pseudo-observations for the 10 dates and five directions
considered. Parameter adjustment was completed using a neural network (NN)
machine learning approach, which is well adapted to our case where the sim-
ulations are time-consuming, preventing us from using iterative optimization
approaches (Kimes et al., 2000; Baret and Buis, 2008). We used a one-layer feed-
forward network with tangent sigmoid transfer functions in the first layer and a
linear transfer function in the output layer. The number of neurons in the
hidden layer is based on the geometric pyramid rule proposed by Masters
(1993). The optimal number of neurons in the hidden layer should be close to
ffiffiffiffiffiffiffi

nm
p

, with n andm being the number of inputs and outputs, respectively. Then
the synaptic weights and biases are tuned using the Levenberg–Marquardt
optimization algorithm (Marquardt, 1963) to best match the output values over
the training database. The accuracy of the estimated parameters was assessed
with the rRMSE.

Defining the Optimal Observational Configuration

The optimalmeasurement configuration for the retrieval of plant and canopy
architectural traits was investigated using D3P. We analyzed, among the 961
possible combinations of five dates and five directions, the ones providing the
best retrieval performances for the ADEL-Wheat parameters and GAI. Pseudo
measurements of GFwere assimilated intoD3P using the trainedNN for each of
the 961 configurations considered the same way as described above, the section
“GF Assimilation,” for the five dates and five directions. A 5% Gaussian noise
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was applied on GF values simulated by D3P. Retrieval performances were
quantified as the average rRMSE computed on the targeted traits and GAI for
validation dataset (375 among the 2,500 combinations of the parameters pre-
sented in Table 1). For GAI, the rRMSEwas computed for the five dates before
tillering.

Supplemental Data

The following supplemental materials are available.

Supplemental Methods. Description of the simplified ADEL-
Wheat model.

Supplemental Figure S1. Comparison between the reflectance simulations
(named “Canray”) and the corresponding reference values.

Supplemental Figure S2. RGB and the corresponding binary imagery of
virtual wheat canopies simulated with the D3P.

Supplemental Figure S3. Reparameterization of leaf dimension represen-
tation in ADEL-Wheat model.

Supplemental Video S1. D3P mimicking unmanned aerial vehicle flight
over wheat canopies.

Supplemental Table S1. Input parameters of LiDAR and multispectral/
RGB simulators for the D3P.

Supplemental Table S2. Name and code repository of the D3P software
and library dependencies.
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