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Existing non-verbal ability tests are typically protected by
copyright, preventing them from being freely adapted or
computerized. Working towards an open science framework,

Subject Category: we provide 80 novel, open-access abstract reasoning items, an
Psychology and cognitive neuroscience online implementation and item-level data from 659 participants

aged between 11 and 33 years: the matrix reasoning item bank
Subject Areas: (MaRs-IB). Each MaRs-IB item consists of an incomplete

matrix containing abstract shapes. Participants complete the
matrices by identifying relationships between the shapes. Our
data demonstrate age differences in non-verbal reasoning
accuracy, which increased during adolescence and stabilized in
early adulthood. There was a slight linear increase in response
accuracy trade-off, matrix reasoning times with age, resulting in a peak in efficiency (i.e. a measure
combining speed and accuracy) in late adolescence. Overall, the
data suggest that the MaRs-IB is sensitive to developmental
differences in reasoning accuracy. Further psychometric
validation is recommended.
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1. Introduction

Abstract reasoning is the ability to solve novel problems without
task-specific knowledge and a core mechanism of human
learning [1]. Abstract reasoning is closely related to more
fundamental cognitive functions such as processing speed [2]
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Due to this predictive power and because it is typically neither trained, nor taught, abstract reasoning is [ 2 |
often assessed as part of fluid intelligence tests, including the Wechsler Abbreviated Scale of Intelligence
[6], Cattell Culture Faire Intelligence Test [7] and Raven’'s Progressive Matrices [8]. These IQ tests
provide reliable, and well-validated abstract reasoning items [9] and are extensively used in clinical,
educational, occupational and research settings [10,11]. However, these tasks are not free-to-use, and
copyright usually prevents these pen-and-paper tasks from being adapted into computerized tasks.
Notable exceptions here are the freely available web-based 20-item Hagen Matrices Test [12] and the 11
matrix reasoning items of the public-domain International Cognitive Ability Resource [13]. These tasks
include a very limited number of items, however, and, to our knowledge, are not currently validated in
developmental populations.

This limits the usefulness of existing tasks for research studies requiring large sets of computerized
items, such as online, neuroimaging and longitudinal studies. In addition, the largely analogue task
administration means that existing normative data for these tasks are typically limited to accuracy
data and do not include response times. The latter is an important practical and theoretical limitation
because of the well-known relationship between abstract reasoning and processing speed [2,14,15] and
because of the potential existence of speed—accuracy trade-offs [16].

Speed-accuracy trade-offs were first demonstrated experimentally over a century ago by Woodworth
[17] and Martin & Miiller [18] for simple motor tasks and are ubiquitous in mental computations of all
kinds and across species [16]. According to sequential sampling theories, speed—accuracy trade-offs can
be viewed not as experimental noise but rather as a direct result of sequential sampling of evidence
[19,20]. The more time spent on a mental computation, the more information can be accumulated. The
point at which a decision is made therefore contains rich information about an individual’s internal
goals, as well as external task demands [16,19]. This is particularly pertinent in developmental studies.

Abstract reasoning capacity increases during childhood and adolescence and peaks in early
adulthood [21-23]. These changes in reasoning performance during development have been linked to
the protracted maturation of the frontal cortex [21,24,25]. During the same developmental period,
impulsivity decreases markedly [26,27], raising the possibility that increases in reasoning scores could
reflect either true increases in reasoning capacity, a decrease in impulsivity or both. In other words,
there may be a developmental speed—accuracy trade-off.

To address these gaps in the literature, here we provide a set of 80 abstract reasoning items, each one in three
shape variants, as well as accuracy and response time item-level data from a large sample of 659 participants
aged 11-33 years. These items are freely available for non-commercial purposes (https://osf.io/g96f4/) and
can be selected by researchers to yield age-appropriate tasks of custom difficulty and duration.

The design of the matrix reasoning item bank (MaRs-IB) was similar to Raven’s matrices [8]. The items
consisted of a three-by-three matrix containing abstract shapes in eight out of nine cells. Participants
deduced relationships across the eight shapes, which could vary across four relations: colour, size,
position and shape. Participants then identified the missing shape from an array of four options. See
https://gorilla.sc/openmaterials /36164 for a demonstration of the items. The dimensionality of each
item is linked to the number of relations changing in the matrix. While one-relational changes (e.g. a
colour change, figure 1a) are typically easy to identify, higher-order relational changes become
increasingly difficult (e.g. a three-relational change of shape, colour and position, figure 1b).

The items were originally developed as part of an online training study [28]. Here, we analyse data
collected before training using adolescents and adults (N = 659, aged 11-33 years) to provide accuracy and
response time data at the sample level, age group level and item level. We also assessed age differences in
accuracy, response times, efficiency and productivity in the MaRs-IB to provide insights into
developmental differences in response patterns as well as potential speed—accuracy trade-offs. Our aim
here is to introduce a novel, open-access item bank of abstract reasoning items for studies that include
adolescents and adults, and to provide a preliminary investigation of their psychometric characteristics.
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2. Methods
2.1. Participants

Here, we analysed data from baseline assessments of a larger training study [28]. The research team
recruited 821 participants from 16 schools in the London area and through UCL participant pools and
posters around campus. Of this sample, 659 participants were included in the current analysis (396
females and 263 males, mean age at baseline=16.21, s.e.=0.16, age range =11.27-33.15 years). The
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Figure 1. Example items from the MaRs-IB. (a) A simple item containing a one-relational change (i.e. only the colour changes) and
answer options. The fourth option is the correct solution. (b) A harder item containing a three-relational change (i.e. shape, colour
and position change). The third option is the correct solution.

Table 1. Demographics of the sample.

age group sample size

younger adolescents total: 185
(aged 11.27-13.39) females: 118
males: 67
T
(aged 13.40-15.91) females: 89
males: 95
older édolescents total: 184
(aged 15.93-17.99) females: 108
males: 76
S
(aged 18.00-33.15) females: 81

males: 25

exclusion criteria were: missing relational reasoning data at baseline (N = 5); missing parental consent for
adolescents (N =123) and developmental conditions such as attention-deficit hyperactivity disorder and
dyslexia (N =34). For the training study, adolescents were split into three age groups of equal size and
adults were included as a fourth age group (table 1). We report data for each of these age groups to
provide researchers with guidelines for different age groups. We also replicated our analyses using
age as a continuous variable.

A follow-up study was conducted to assess the convergent validity of the MaRs-IB. A power analysis
suggested that 38 participants are sufficient to detect a correlation of 0.5 at 90% power. For this study, we
thus initially recruited 50 participants, with a further 50 participants tested upon reviewer request (total
N=100, 73 females, 27 males, mean age =23.95, s.e. =0.35, age range 19-35). The results of the initial
analysis (N=50) are available in the electronic supplementary material for transparency (see
supplementary results). Studies were carried out in accordance with UCL Research Ethics Guidelines
and approved by the UCL Research Ethics Committee. Informed assent or informed consent was
obtained from all participants included in this study. The studies were not formally preregistered. All
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materials and item-level data have been made available on a permanent third-party archive (https://osf.
io/g96f4/); requests for the item-level data can be sent via email to sjblakemore@psychol.cam.ac.uk. The
data analysed here were derived from a training study, which was powered to detect small-to-medium
effect sizes [28].

2.2. Testing procedure

The testing procedure was previously described by Knoll et al. [28]. Participants were tested on a battery
of tasks including one containing MaRs-IB items. Testing was delivered via an online platform developed
by the research team and a software company (www.cauldron.sc).

Adolescent participants completed the testing session in groups of 3-48 in school, while adult
participants were tested in groups of 1-15 in a university computer room. Participants used
computers or tablets. Responses were recorded using a mouse or touchpad. The order of the tasks
was counterbalanced between testing groups.

An experimenter gave instructions before the task. Participants then completed practice items until
three were completed correctly. More than three practice items were required by 121 participants. On
average, these 121 participants needed 4.46 (s.e. =0.10) practice items to proceed to the task and never
more than 10. All participants completed three practice items successfully during the testing session
and proceeded to the task. In all items (i.e. both practice and test items), participants were given
visual feedback on their performance.

2.3. MaRs-IB design

Each MaRs-IB item consisted of a 3 x 3 matrix. Eight of the nine resulting cells contained an abstract shape,
while one cell on the bottom right-hand side of the matrix was empty. The participants’ task was to
complete the matrix by finding the missing shape among four possible alternatives (see figure 1 for
examples). To select the correct missing shape, participants had to deduce relationships between the shapes
of the matrix. These shape characteristics varied along four dimensions: shape, colour, size and position in
the matrix.

Items began with a 500 ms fixation cross, followed by a 100 ms white screen. Participants were then
given up to 30 s to complete an item. After 25 s a clock appeared, indicating that 5 s remained before the
next item began. An item ended when participants responded, or after 30 s had elapsed without
response. For each participant, puzzles were taken from one of three test forms of 80 items. These test
forms were created to prevent familiarity effects in future testing sessions of a training study and they
were generated by drawing from one of three shape sets, in a counterbalanced fashion. The items in
each test form thus tested the same abstract reasoning problems and differed only in the exact
shapes used (see electronic supplementary material, figure S1 for examples). These shape set variants
are also available in the online repository (https://osf.io/g96f4/). Items were presented in the same
order for all participants, starting with five simple items intended to familiarize participants with the
task. Participants completed the items for 8 minutes but were not informed of the total number of
items and were not required, or expected, to complete 80 items in 8 min. The only time constraint
stated was to provide a response to each item within 30 seconds. If a participant completed 80 items
within 8 min, the items were presented again in the same order, but responses were not analysed.

Two different algorithmic strategies were employed to generate the target and distractor items in the
answer options: a minimal difference strategy and a paired difference strategy. These strategies were used
to control for the possibility that participants may solve the puzzle in unintended ways. Specifically, the
distractor strategies were used to counterbalance the risk of pop-out effects (where the target “pops out’
and can be identified by reasoning in fewer dimensions than intended) with the risk that participants
could reason from the answer options alone, without looking at the puzzle itself. Note that it is not
possible to prevent both possibilities at the same time for three- or higher dimensional puzzles when
using only four answer options. The minimal difference algorithm created distractors as variations of
the target (see electronic supplementary material, figure S2). This prevented pop-out effects but
theoretically allowed participants to solve the puzzle by looking at the answer options only. A paired
difference algorithm created distractors that had at least one component in common with the target
(electronic supplementary material, figure S2). This could theoretically induce pop-out effects but
prevented participants from reasoning from the answer options alone. To counterbalance these risks,
each item was pseudo-randomly assigned one of these two distractor strategies and we tested whether
the distractor strategies affected MaRs-IB performance in our analyses (see below).
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2.4, Convergent validity study

In the follow-up study, we asked participants to complete the MaRs-IB, as well as an existing task: the
‘International Cognitive Ability Resource’” (ICAR) [29]. The latter includes four main tasks: matrix
reasoning, series completion, spatial rotations and verbal reasoning. The ICAR is relatively novel.
While more traditional tasks are more thoroughly validated, the ICAR is computer-based and has
been tested on a large sample of individuals (more than 90 000). The ICAR has also been indirectly
related (via the Shipley-2) to more traditional tests such as the Wechsler Adult Intelligence Scale. We
particularly focused on the matrix reasoning items of the ICAR, as these most closely resemble the
MaRs-IB items and other tests like Raven’s progressive matrices. The MaRs-IB and ICAR were
administered in counterbalanced order.

2.5. Mars-IB items, data and analyses

All 80 MaRs-IB items in their test forms are freely available for non-commercial use and can be
downloaded from https://osf.io/g96f4/. The repository also contains item-level dimensionality,
accuracy and response time data for each age group, test form and shape set, which can be used by
researchers to adapt the items to tasks of different duration and difficulty. Two further, colour vision
deficiency-friendly sets of stimuli, can also be obtained from the repository.

Here, we provide sample- and age group-level accuracy and median response time data on correct
items. We also analysed the effect of age on accuracy, response times, productivity and inverse
efficiency. Productivity was operationally defined as the number of items completed. Inverse
efficiency was calculated as median response times divided by accuracy [30].

Items with a response time under 250 ms were excluded from all analyses. We modelled each of these
four dependent variables using mixed models because these allowed to accurately partition the error terms
according to the hierarchical structure of the data (e.g. item-level data were clustered by participants, which
were in turn nested in schools) [31]. We used generalized linear mixed models (GLMMs) for accuracy and
response times, and linear mixed models (LMMs) for inverse efficiency using Ime4 [31] in R [32]. GLMMs
were used to model raw item-level data, with participant ID and school or university as nested random
intercepts and item code as crossed random intercept. Accuracy and response times were modelled at
the item level after the removal of incomplete items. Accuracy data were modelled using the binomial
distribution with a logit link function while response times were modelled using the Gamma
distribution with a log link function [33]. Productivity (the number of items completed) was necessarily
an aggregate measure. To calculate inverse efficiency, data also had to be aggregated across items for
each participant. LMMs estimating the number of items completed and inverse efficiency therefore
included only school or university as a random intercept. All models included fixed effects for either
age group as a categorical Helmert-coded variable or orthogonal polynomials of age with the linear,
quadratic and cubic components. In exploratory models, we additionally included Helmert-coded
gender and the interaction between age group and gender as fixed effects.

To assess the equivalency of the forms of the MaRs-IB, we used exploratory GLMMs specified as
described above to investigate the effect of test form (test form 1, 2 or 3) on accuracy and response
times. Moreover, given that test forms were created by pseudo-randomly drawing items from one of
three different shape sets, and solutions were pseudo-randomly generated according to one of two
distractor strategies, we additionally investigated whether such test form constituents might also
independently affect accuracy and response times. This information may be useful for researchers
interested in shaping novel test forms (e.g. by differently combining shape sets and distractor
strategies). As a secondary analysis of equivalency, we thus assessed whether distractor type (minimal
or paired difference) and shape set (shape set 1, 2 or 3) might also affect accuracy and response times.

To assess response processes, we investigated how accuracy and response times were affected by item
dimensionality (a score ranging between 1 and 8, reflecting the number of dimensions changing in a
puzzle), using GLMMs as specified above. For the analysis of dimensionality only, the item-related
random intercept was removed because of multicollinearity between each item and the associated
dimensionality. Main effects and interactions were inspected using omnibus Type Il Wald 4 tests.
Planned and post hoc comparisons were performed using the emmeans package [34] and Bonferroni
corrected for multiple comparisons.

The analyses above were based on completed items. This excludes (i) trials in which participants timed
out and (ii) trials that were not reached. Our data stem from a previous study that aimed to address a
different research question. The data are therefore not optimized for psychometric validation. In
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particular, participants completed varying number of items, and item-level accuracy data are based on a [ 6 |
different number of responses for each item, with completion rates dropping for later items. This may
limit their comparability. To address this issue, we used mixed models (as described above), which are
able to deal with unbalanced data by modelling performance at the trial level, rather than participant
level. Furthermore, to provide preliminary insight into more traditional psychometric approaches to
item functioning (i.e. internal consistency, biserial correlations, p-values and differential item functioning
(DIF)), we focused on a subset of data that involved no variability in completion rate.

To investigate possible DIE we used logistic regression [35], as implemented in the ‘difR’” package in
R [36]. We tested for both uniform and non-uniform DIE correcting for multiple comparisons using the
Benjamini-Hochberg method as recommended by Kim & Oshima [37]. As potential sources of DIE we
focused on age (used as both categorical and continuous) and gender.

*sosi/Jeunof/6106uiysgnd/aposjedos

2.6. Convergent validity analysis

To investigate convergent validity in the follow-up study, we inspected the product-moment correlation
between performance in the MaRs-IB and in the matrix reasoning items of the ICAR. Although the
assumptions for correcting for range restrictions could not be fully assessed, our sample was tested in
a highly selective university. We therefore followed Condon & Revelle [29] and assessed the possible
presence of range restriction by comparing the standard deviations of the matrix reasoning items in
our sample and theirs. We obtained the latter by combining the standard deviations for the ICAR
matrix reasoning items (listed in table 2 of p. 55 of the study by Condon & Revelle [29]). Range
correction was performed with the ‘rangeCorrection” function of the Psych package in R [38].
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3. Results

3.1. Overall performance on the MaRs-IB and preliminary reliability measures

The mean accuracy was 69.15% (s.e. = 0.65%, range = 24.24-100.00%), and the median response time on
correct items was 7914 ms (interquartile range (IQR)=4063 ms). On average, participants completed
32.78 unique items (s.e.=0.41, range=13-80) of the MaRs-IB within 8 min. Timing out occurred in
only 2% of items. To assess the presence of potential ceiling and floor effects, we inspected skew and
kurtosis of response accuracy as well as the rate of chance performance and perfect performance
across participants. A skew of —0.41 and a kurtosis of 2.39 suggested that participants’ scores fell
reasonably close to the normal distribution. Two participants performed below chance (i.e. <25%
correct items), while eight participants responded correctly on all items, suggesting that 98.48% of
participants were above minimum and below maximum accuracy. These results suggest that there
were no obvious floor or ceiling effects.

To assess internal consistency, biserial correlations, p-values and DIE we focused on a subset of items
for which there was no variability in completion rate. Specifically, we focused on the 25 items following
item 5 (since the first five items were deliberately easier and involved virtually no variance in
performance; see MaRs-IB design). For this analysis, we also included trials in which participants had
timed out (labelling them as incorrect), as well as those in which response latencies were shorter than
250 ms (only two of which were correct). This resulted in a subset of 25 items that were completed by
N =349 participants (at least N=70 per age group). To assess internal consistency on this subset of
items, we computed Kuder—Richardson 20 formula, which resulted in a KR-20 of 0.78 (0.95%
confidence interval (CI) [0.78, 0.79]). The mean item-total biserial correlation for the same items was
0.32 (s.e.=0.02) (biserial correlation of each item is available in electronic supplementary material,
table S2). The mean item p-value of this subset of items (i.e. the proportion of participants that
answered correctly to each item) was 0.59 (s.e.=0.04) (p-values of each item are available in the
electronic supplementary material, tables ST and S2). Note that this mean p-value differs slightly from
the mean accuracy value reported above because it refers to the subset of items, not to the full
dataset. None of these items displayed uniform or non-uniform DIF suggesting they are unbiased
relative to the age groups studied here and relative to gender. Researchers may want to preferentially
use this subset of items for which a more in-depth psychometric analysis is available.

To assess the reliability of the items, we inspected its split-half, test—retest reliability in the full dataset.
The Spearman—-Brown split-half reliability coefficient was computed on the raw item-level data and was
0.82 overall (younger adolescents: 0.82, mid-adolescents: 0.81, older adolescents: 0.71, adults: 0.80). To



assess test-retest reliability, we focused on a subset of participants (N =218) who were assessed on the
MaRs-IB twice, 35 days apart on average (s.e. =1 day, range =21-52 days). During this time they trained
in an unrelated face-perception task (see [28] for details). Pearson’s product-moment correlation in
accuracy between the two time points was r=0.71 (¢(183) =13.58, p <0.001), suggesting acceptable test—
retest reliability. The test-retest relationship did not interact with age (x*(3) = 2.20, p=0.531).

To assess the equivalency of the MaRs-IB forms, we inspected accuracy and response times across
different test forms, distractor types and shape sets. The item information of one participant (but not
their performance-related information) was lost due to a technical error. Test forms or distractor types
did not affect accuracy or response times (test form accuracy: x*(2) = 0.62, p=0.733; test form
response times: )*(2) = 4.85, p =0.088; distractor type accuracy: x*(1) = 0.88, p =0.347; distractor type
response times: x*(1) = 0.48, p=0.491), suggesting good equivalency of the test forms and of the
distractor strategies. Shape sets had no significant impact on accuracy (x¥*(2) = 4.85, p=0.088), but
there was a significant effect on response times (¥*(2) =12.25, p=0.002). Post hoc comparisons
suggested that participants showed reduced response times for shape set 1 compared to shape set 2
(z=-3.46, ppont.=0.002), while there were no differences between shape sets 1 and 3 (z=-2.16,
PBont. = 0.091) or shape sets 2 and 3 (z=1.28, ppons. =0.601). These response time differences were
unexpected. We speculate that they may be due to low-level perceptual features of the different shape
sets. See electronic supplementary material, tables S3-S5 for descriptive statistics of the different test
forms, shape sets and distractor types, respectively. For an item-level breakdown of the response
times by test form and shape set, see https://osf.io/g96f4/.

Finally, item dimensionality had a robust impact on performance, both in terms of accuracy
(x*(1) =1786.09, p<0.001) and response times (}*(1)=2878.9, p<0.001). Specifically, item
dimensionality linearly decreased the loglikelihood of responding correctly (b= —0.38, s.e. =0.009), and
increased response times (b=0.18, s.e.=0.003). Taken together, these results suggest that item
properties that were not intended to affect performance (i.e. test forms, shape sets and distractor
strategy) did not, whereas properties that were intended to modulate performance and response
processes (i.e. item dimensionality) reliably did so.

3.2. Convergent validity

To assess convergent validity, we inspected the product-moment correlation between MaRs-IB
performance (at the aggregate level) and matrix reasoning scores in the ICAR [29]. The correlation
was 0.61 (£(98)=7.60, p<0.001, 95% CI=0.47, 0.72) and a linear regression showed that it did not
interact with the order in which participants did the two tasks (p=0.58). Performance standard
deviations of the ICAR matrix reasoning items in our sample and in Condon & Revelle [29] were,
respectively, 0.27 and 0.5, possibly warranting correction for range restriction [29]. This resulted in a
range-corrected correlation of 0.81, to be interpreted with caution, given that the assumptions for
range restriction correction could not be fully tested. To assess the extent of divergent validity, we
further compared the correlation described above to the correlations between the MaRs-IB and the
remaining tasks of the ICAR (table 2), namely letter—number series completion, verbal reasoning and
three-dimensional (3D) rotations. The highest correlation with MaRs-IB performance was indeed with
the ICAR matrix reasoning (table 2). Furthermore, Fischer’s r-z transform suggested that this
correlation was higher than the correlation between the MaRs-IB and the 3D rotations (p=0.03).
However, it was not significantly different from the correlation between the MaRs-IB and letter—
number series completion (p = 0.05), or between the MaRs-IB and the verbal reasoning task (p =0.11).

Taken together, this evidence suggests that the MaRs-IB correlates strongly with the ICAR’s matrix
reasoning task, and more than with another non-verbal reasoning task of the ICAR. However, the
uncorrected correlation size falls slightly short of the correlation size that could be expected from the
positive manifold of fluid intelligence tests [29]. We also observed no clear evidence of divergent
validity with regard to the ICAR’s verbal reasoning task. We thus recommend further psychometric
testing of our items, possibly using more established measures such as Raven’s matrices [8] and larger
samples.

We also inspected the relationship between MaRs-IB and digit span performance, as a measure of
working memory, and found that the two measures were strongly correlated (r =0.45, £(657) =12.74,
95% CI [0.38, 0.5], p<0.001). This is in line with previous meta-analyses, which have demonstrated
an average correlation of p=0.479 between working memory and intelligence [3]. The relationship
between MaRs-IB and digit span performance did not differ between age groups (}*(3) = 4.99,
p=0.172).
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Table 2. Correlations between performance on MaRs-IB items and tasks from the International Cognitive Ability Resource (MR,
matrix reasoning; R3D, 3D rotations; LN, letter and number series completion; VR, verbal reasoning).

ARTOL MR R3D LN
ARTOL
MR 061~
LN 0,447+ 054 045

**¥1 < 0,001, *p < 0.05. Bonferroni corrected.

Table 3. Descriptive statistics of the performance in the MaRs-IB by age group and gender. m, males; f, females. s.e. = standard
error, IQR = inter-quartile range.

age group

accuracy (mean)

younger adolescents mid-adolescents

61 (m=57,f=63)

68(m 67f 68)

older adolescents

RE (m 72f 73)

adults

8 (m 79f 81)

Cawry (&) 1m=2f=1  1(m=2f=2) 1m=2f=1)  1(m=3f=1)
CRT (median) 694 (m=7006, 7552 (m= 7964, 7952 (=8774, 9454 (m=10276,
f=6872) f=6841) f=7582) f= 9304)
RT (IR) 3879 (m = 4301, 373 (M=4629, 3309 (m=3338, 3231 (m=3012,
f=3772) f = 2669) f=2781) f=3297)
items completed 33.68 (m =344, 32.29 (m=32.17, 28.99 (m = 28.24, 33.43 (m =31.96,
(mean) f=3327) f=3242) f=129.52) f=33.89)
items completed 0.74 (m=1.26, 0.76 (m=1.19, 0.75 (m=1.22, 0.93 (m=2.07,
(se) f=092) f=092) f=094) =100
Cinverse effidency 11838 (m=12655, 10937 (m=11557, 11057 (m=12285, 11414 (m=12946,
(median) £=11100) f=10150) =10 694) f=11226)
Cinverse effidency 4031 (m=4821, 3852 (m=4456, 4023 (=3941, 3668 (m=4452,
(IQR) f=3263) f= 3256) f = 4470) f=3248)

3.3. Age differences in performance

3.3.1. Accuracy

MaRs-IB accuracy differed between age groups (x¥*(3) = 10.39, p=0.016) (table 3). Planned contrasts
suggested the age effect was mainly carried by adults performing significantly better than younger
adolescents (figure 2; electronic supplementary material, table S6). The age effect was also evident
when age was modelled as a continuous variable (figure 2). There was a significant, positive linear
effect and a significant negative quadratic trend (table 4). Performance increased with age during
adolescence before tapering off in adulthood (figure 2).

There was no significant effect of gender on accuracy (¥*(1)=3.77, p=0.052) (electronic
supplementary material, figure S3) and no interaction between gender and age group (*(3) = 0.68,
p=0.878).

3.3.2. Response times

There was no significant effect of age group on response times (}?(3) = 1.54, p =0.673) (table 3) and none of
the planned comparisons between age groups were significant (figure 3; electronic supplementary material,
table S7). There was a slight positive linear trend, while the quadratic and cubic trends were non-significant
(figure 3 and table 4). This indicates that there may be some increases in response times with age.
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Figure 2. MaRs-IB accuracy by age group. Accuracy for each participant is shown. (a) Violin plots represent kernel probability density
of the raw data at different values (randomly jittered across the x-axis). Within each age group, the black square represents the fixed
effect estimate of accuracy from the GLMM, and error bars are the corresponding 95% Cls. See electronic supplementary material,
table S6 for statistics of all contrasts. (b) Scatter plot of the relationship between age and accuracy in the MaRs-IB. The black line and
shaded 95% (I show the overall polynomial trend. The coloured lines represent significant linear and quadratic trends. See table 4
for statistics of all trends. ***pgons < 0.001, *pgons. < 0.05.

Table 4. Polynomial trends for the effect of age on MaRs-IB performance.

trend b z p-value

accuracy
T T
responsetlmes et
T
numberofltemscompleted et oud S
Y
mverseefﬁaency OO ouuth U s
e
B quadratlc .......................................... sy g s

There was a significant effect of gender on response times (}*(1) = 8.05, p=0.005) (electronic
supplementary material, figure S3), with females responding faster than males (estimated
MeaNfemales = D923 MS, S.€.Females = 466 ms, estimated meanyyies = 5915 ms, s.€.vares = 502 ms). There was
no significant interaction between gender and age (¥*(3) = 3.58, p=0.311).

3.3.3. Number of items completed

The number of items completed did not differ between age groups (¥*(3) = 0.76, p=0.859) (table 3).
None of the age group comparisons were significant (figure 4; electronic supplementary material,
table S8). When modelling age as a continuous variable there was no significant linear or cubic trend.
There was, however, a significant quadratic trend of age, suggesting that the number of items
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Figure 3. MaRs-IB response times by age group. (a) Violin plots of participants’ raw median response times on correct items and
age group-level fixed effects estimates of response times on correct items. None of the age group comparisons were significant. See
electronic supplementary material, table S7 for statistics of all contrasts. (b) Scatter plot of the relationship between age and
response times in the MaRs-IB. The black line and shaded 95% confidence interval show the overall polynomial trend. The red
line represents the significant linear trend (table 4). *p < 0.05.
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Figure 4. Number of MaRs-IB items completed by age group. (a) Violin plots of participants’ raw number of items completed
(correct and incorrect) and age group-level fixed effects estimates. None of the age group comparisons were significant. See
electronic supplementary material, table S8 for statistics of all contrasts. (b) Scatter plot of the relationship between age and
the number of items completed in the MaRs-IB. The black line and shaded 95% Cl show the overall polynomial trend. The
green line represents the significant quadratic trend (table 4). *p < 0.05.

completed was somewhat lower in late adolescence and early adulthood than before late adolescence or
after early adulthood (figure 4). This is in line with the decrease in response times observed above and
indicates a slight decrease in productivity during late adolescence and early adulthood.

There was no effect of gender on the number of items completed (x*(1) = 1.07, p=0.300), nor an
interaction between gender and age (*(3) = 2.96, p = 0.398) (electronic supplementary material, figure S3).

3.3.4. Inverse efficiency

There was no significant main effect of age group on inverse efficiency (x*(3) = 3.76, p = 0.288) (table 3)
and none of the planned comparisons between age groups survived Bonferroni-correction (figure 5;
electronic supplementary material, table S9). There was no linear or cubic effect of age on inverse
efficiency (table 4). There was, however, a significant quadratic trend (figure 5 and table 4). This
quadratic trend may indicate a peak in efficiency around late adolescence, consistent with the age-
related nonlinear increases in accuracy and linear decreases in speed observed above.

There was a significant effect of gender on inverse efficiency (y*(1) = 24.45, p <0.001), with females
responding more efficiently than males (estimated meangemaies =11222, estimated s.e.pemates = 398;
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Figure 5. Abstract reasoning inverse efficiency by age group. (a) Violin plots of participants’ raw inverse efficiency and age group-
level fixed effects estimates. None of the age group comparisons were significant. See electronic supplementary material, table S9 for
statistics of all contrasts. (b) Scatter plot of the relationship between age and inverse efficiency in the MaRs-IB. The black line and
shaded 95% (I show the overall polynomial trend. The green line represents the significant quadratic trend (table 4). *p < 0.05.

estimated meanyaies = 12522, estimated s.e.pjates = 416.58) (electronic supplementary material, figure S3).
This effect matched the pattern in accuracy and response times reported above: accuracy was comparable

between genders but females responded faster. There was no interaction between gender and age group
(¥*(3) = 3.56, p=0.314).

4. Discussion

Here, we provide a large bank of novel, open-access abstract reasoning items that show acceptable internal
consistency and convergent validity, and reasonable test-retest reliability. We propose that the MaRs-IB can
be used for research purposes to complement existing, well-validated but copyrighted pen-and-paper tests
[6,7], as well as computerized public-domain tests containing a small number of items tested in adults
[12,13]. We provide a set of 80 items, as well as corresponding descriptive developmental data from
adolescents and adults (aged 11-33 years). The MaRs-IB items can be implemented in computer-based
experiments, allowing for flexible use ranging from online experiments to neuroimaging studies. The
computerized implementation also allows for the measurement of response times, in addition to the
standard accuracy measures. We further provide items in three shape variants to allow for repeated
measures in longitudinal studies. We report performance and item-level statistics for different age
groups to allow researchers to form item sets of custom difficulty and duration for developmental and
non-developmental studies using information on accuracy, response times and efficiency.

The data analysed here suggest that accuracy in the MaRs-IB increases robustly until late adolescence,
after which gains taper off. This is in line with previous research showing that reasoning capacity increases
during childhood and adolescence, and into adulthood [21-23]. We extend the current literature by
showing that response times increased slightly over the same developmental period and the number of
items attempted decreased, resulting in a peak in efficiency in late adolescence. Overall, this suggests
that accuracy increases past late-adolescence may be conveyed, in part, by response time slowing.

Two independent, but complementary lines of inquiry may provide insights into possible mechanisms
of these developmental differences. First, developmental theories emphasize reductions in impulsivity
over adolescence, which are linked to the protracted development of prefrontal regions over the same
developmental period [26,27,39,40]. Second, computational theories of speed-accuracy trade-offs
highlight that the time to arrive at a cognitive solution gives insights into the amount of evidence
participants sample before deciding upon a solution [19,20]. The results obtained here suggest that
participants increasingly sample evidence over the course of adolescence, resulting in more conservative
decision thresholds at older ages. The peak in efficiency in late adolescence suggests that both accuracy
increases and response time slowing drive developmental gains in abstract reasoning up until late
adolescence, after which response time slowing may be a major driver of further improvements into
adulthood. On a more general level, this finding highlights the value of collecting response time, as well
as accuracy data, for providing insights into the developmental mechanisms of abstract reasoning.
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We believe that the advantages of providing items open-access, including flexibility of use and equity [ 12 |
of access, ultimately outweigh potential costs of open-access provision. Such costs include the possibility
that participants may become familiar with or train on the items. This problem is not unique to open-
access items—participants are already able to access many matrix reasoning tasks if they wish to. For
now, some of the gold-standard abstract reasoning tests, which have been used for decades, also
arguably carry a higher likelihood of familiarity than novel items like MaRs-IB. We cannot rule out
the possibility that this might change in the long run, however. To address this issue, researchers may
wish to implement pre- and post-screening procedures to identify (and possibly exclude) participants
familiar with the MaRs-IB. The post-screening procedure may include using outlier detection methods
such as examining person-fit statistics [41] or applying DIF analyses to identify participants behaving
unusually on MaRs-IB items [42].

Despite strengths of the MaRs-IB, including the large number of items and developmental data, we
note several limitations. First, we observed gender differences in response times and efficiency, but not
accuracy, with females responding faster than males, resulting in overall higher levels of efficiency. We
hypothesize that this effect may be due to low-level perceptual properties of the stimuli, particularly
colour-choices. Females generally show more acute colour discrimination [43] and are less likely to
present with colour-blindness than males [44]. This may have resulted in faster response times overall.
To allow researchers to address colour-decimation as a potential confound in future studies, we provide
a separate set of colour vision deficiency-friendly stimuli here: https://osf.io/g96f4/. Second, the data
analysed here were originally collected as part of a cognitive training study [28] and were therefore not
optimized for psychometric validation. In particular, we did not have enough observations to assess the
psychometric properties of some of the later items of the MaRs-IB (which few participants reached).
While we were able to provide evidence for acceptable internal consistency in a subset of earlier items
that involved no variability in completion rate, further psychometric validation of the MaRs-IB is
recommended. We also do not have data on our sample’s distribution and representativeness in terms
of demographic variables such as socio-economic status and ethnicity, and particular age brackets (e.g.
between 18 and 20) are under-sampled. We therefore recommend a more extensive validation of these
items with a representative sample in the future. While we encourage the use of the items in measuring
non-verbal reasoning in development samples, our item bank should not be considered a normative
measure of intelligence until further psychometric testing has been completed.
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5. Conclusion

Complementing existing, mostly copyrighted, reasoning tasks, we here present a large set of abstract
reasoning items which can be used and adapted, free-of-charge, for computerized research studies
requiring large sets of stimuli. The MaRs-IB is sensitive to age differences in accuracy, which suggests
that further psychometric validation will make the item bank a useful resource for researchers
interested in abstract reasoning.
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