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Caloric restriction and redox state: Does this
diet increase or decrease oxidant production?
Alicia J Kowaltowski

Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Brazil

Calorie restriction (CR) is well established to enhance the lifespan of a wide variety of organisms, although the
mechanisms are still being uncovered. Recently, some authors have suggested that CR acts through
hormesis, enhancing the production of reactive oxygen species (ROS), activating stress response
pathways, and increasing lifespan. Here, we review the literature on the effects of CR and redox state. We
find that there is no evidence in rodent models of CR that an increase in ROS production occurs.
Furthermore, results in Caenorhabditis elegans and Saccharomyces cerevisiae suggesting that CR
increases intracellular ROS are questionable, and probably cannot be resolved until adequate, artifact
free, tools for real-time, quantitative, and selective measurements of intracellular ROS are developed.
Overall, the largest body of work indicates that CR improves redox state, although it seems improbable
that a global improvement in redox state is the mechanism through which CR enhances lifespan.
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Introduction
It is well recognized that, overall, aged animals present
higher levels of oxidatively modified proteins, lipids,
and nucleic acids.1–4 However, many genetic interven-
tions (such as removing antioxidants) leading to
overall enhanced oxidative damage have little or no
effect on lifespan. In addition, antioxidant supplemen-
tation does not generally have a beneficial lifespan-
enhancing effect. Furthermore, many long-lived
organisms present significant oxidative modifications.
Overall, these findings, lead to the conclusion that
accumulation of oxidative damage to biomolecules
per se is not sufficient to limit lifespan.5,6

On the other hand, some specific genetic interven-
tions that affect redox modifications of biomolecules,
such as the removal of specific DNA repair enzymes,
promote lifespan limitation, and premature aging.7 In
addition, at least one specific intervention that prevents
oxidative modifications, the expression of catalase in
mitochondria, increases animal lifespan.8 This leads
to the hypothesis that specific and yet unidentified
modifications of biomolecules may be determinant in
aging, although overall redox state seems not to be.
Caloric restriction (CR), or the limitation of

ingested calories without malnutrition,9,10 is well
documented to extend lifespans in a wide variety of

organisms, ranging from yeasts to rodents. The litera-
ture produced up to 10 years ago examined the effects
of CR on redox state in quite a detailed manner, and
came to the conclusion that this dietary intervention
decreased age-associated oxidative damage, as will
be detailed below. This conclusion was based on a
variety of observations, including measurements of
oxidized protein, DNA, and lipids in aged rodents
on ad libitum versus CR diets, measurements of iso-
lated mitochondrial release of oxidants from these
animals, and the quantification of high- and low-mol-
ecular-weight antioxidants.
On the other hand, a group of researchers recently

proposed a radically different idea: that CR enhances
the generation of oxidants, therefore activating stress
response pathways that lead to a prevention of
aging.11–15 Indeed, it has been proposed that increased
oxidative stress, by promoting hormetic responses,
mechanistically integrates a large number of interven-
tions capable of extending lifespans.15 While this view
is well in line with the growing recognition of the
importance of reactive oxygen species (ROS) as signal-
ing molecules, it is difficult to reconcile with the
massive experimental evidence that CR decreases
oxidative damage to biomarkers with age and the
generation of oxidants from isolated mitochondria in
animals, as described below.
Many factors differ between the experimental

evidence cited by these newer studies suggesting that
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CR increases oxidation and earlier studies suggesting
that CR improved redox state: (1) initial studies
focused mostly on rodents, while more recent studies
include CR models in a variety of model organisms,
including Caenorhabditis elegans and Saccharomyces
cerevisiae; (2) dietary interventions have varied
greatly in more recent years in rodent models10 and
also vary significantly between different organisms;
(3) early studies used mostly modified biomolecules
as tissue markers of redox state, while today many
groups attempt to measure ROS levels within cells
and tissues, often using fluorescent probes as a meth-
odological approach. We will examine each of these
points in an attempt to clarify the current understand-
ings regarding the effects of CR on redox state.

Effects of CR on redox state in less complex
model organisms
Using C. elegans, Schulz et al.12 determined that an
intervention that mimics CR, the presence of the
inhibitor of glycolysis deoxy-glucose, promoted an
increase in lifespan accompanied by enhanced respir-
atory activity. In parallel, the formation of ROS in
the tissues was monitored using dichlorofluorescein
(DCF, see discussion below), which showed enhanced
fluorescence in the presence of deoxy-glucose. This
evidence, added to the observation that antioxidants
prevented the effect of deoxy-glucose, led the authors
to propose that CR enhanced lifespan in C. elegans
by increasing oxidative stress.
Ralser and Benjamin16 have argued that the dama-

ging antioxidant effects observed in this publication
could be a result of reductive stress, and that further
experiments are necessary to clarify the effects of
deoxy-glucose on C. elegans lifespan.
Even if dietary restrictions do indeed enhance

oxidant production in C. elegans, this is far from
strong evidence that similar mechanisms are present
in more complex animals. Indeed, aging in C.
elegans is quite unique. A hallmark of a restrictive
diet in this organism is the acquisition of the metabo-
lically depressed dauer form, which extends survival.17

Furthermore, many genetic interventions that inhibit
mitochondrial respiration in C. elegans extend life-
span,18–20 while even partial respiratory inhibition is
causative of age-associated disease in vertebrates
(reviewed in Lin and Beal21).
Drosophila melanogaster is an organism in which

antioxidant interventions have an impact on survival,
and even overall redox state seems to be more related
to lifespan.5 In D. melanogaster, dietary restriction
does not change isolated mitochondrial ROS
release,22 but decreases lipid oxidation23 and age-
related accumulation of oxidized proteins.24

In S. cerevisiae, the effects of CR on redox state are
controversial. Lin et al.25 found that glucose

restriction in this yeast did not increase the expression
of a panel of antioxidant enzymes or result in
increased resistance against exogenous oxidants, and
we also find26 that resistance to exogenous H2O2 is
unaltered by CR. On the other hand, the expression
of specific antioxidants is enhanced: the highly effec-
tive H2O2-removing peroxiredoxin27 and superoxide
dismutases.14,28,29

Some authors14,28,29 have proposed that CR
enhances cellular oxidant production in S. cerevisiae,
resulting in a hormetic response that promotes protec-
tion against aging. Mesquita et al.29 have specifically
proposed that CR increases H2O2, enhancing antioxi-
dant defenses, and protecting against the effects of
more reactive superoxide radicals. This hypothesis is
largely based on intracellular ROS measurements
using dihydrorhodamine 123 (DHR29) and DCF,28,29

which unfortunately present very serious methodologi-
cal caveats, in particular in the S. cerevisiae model, as
will be described in detail below.

Indeed, this idea is in direct opposition to measure-
ments of H2O2 release from isolated mitochondria or
permeabilized cells26,30 that found that CR in yeast
decreases H2O2. In addition, CR in S. cerevisiae sig-
nificantly protects against glutathione oxidation in
young cells26,31,32 and also decreases protein cabonyla-
tion.32,33 Altogether, these data suggest CR in yeast
prevents ROS accumulation, leading to lower levels
of protein oxidation during chronological aging.

Overall, some data using simpler eukaryotic model
systems exist suggesting that CR may increase ROS
production and lead to a hormetic response;
however, an equal body of work suggests the opposite.
As a result, the overall effect of CR on redox state in
these organisms is still far from reaching a consensus.
A critical problem in this respect is the lack of metho-
dologically sound in vivo measurements of real-time
production of specific oxidants, as will be discussed
subsequently.

Effects of CR on redox state in vertebrates
Avast number of publications demonstrate that CR in
laboratory rodents decreases tissue levels of oxidatively
modified lipids,34–40 proteins,41–46 and DNA.47–50 A
pronounced effect of CR is to decrease oxidative
damage of mitochondrial components that occur as
animals age.51–53

Another large body of work demonstrates that ROS
release from mitochondria or tissues from CR animals
is decreased.37,53–67 Other publications found no
changes in ROS production with CR46,68–71 and
many propose that CR-induced decreases in ROS
release depend on tissues examined, time on the diet,
animal age when the diet was initiated, and gender.
No experimental publication was located

Kowaltowski Caloric restriction and redox state

Redox Report 2011 VOL. 16 NO. 6238



demonstrating that CR in rodents enhances ROS gen-
eration in non-inflammatory tissues.
It should be noted that the evidence listed above is

specific to CR, or the limitation of dietary calories
without malnutrition. In more recent years, many
dietary interventions that are not identical to CR
have been adopted, and are often called ‘caloric
restriction’.10 Many of these diets are in fact the restric-
tion of total food, incurring malnutrition, and may
lead to a loss of tissue antioxidant capacity.67 Other
researchers have adopted intermittent or every other
day feedings as ‘caloric restriction’ protocols.72 We
recently found that this feeding pattern very signifi-
cantly increases ROS release from skeletal muscle
and adipose tissue, while CR prevents this release.67

Indeed, unlike CR, fasting has previously been
shown to increase ROS release.73 Thus, from a redox
standpoint, it is critical to consider the specific diet
adopted.
Some publications have found increments in the

activities of specific antioxidant pathways with
CR,35,74–79 although determining the effects of CR
on tissue antioxidant capacity is complicated by the
vast diversity of these systems in rodents, and by the
fact that expression of antioxidant enzymes is often
not directly related to their activity.
Overall, in rodents there is strong evidence that CR

prevents oxidative modification to tissues, some evi-
dence that antioxidant capacity may be increased
and multiple reports of decreases in the release of oxi-
dants from mitochondria or tissues.

Measuring ROS levels in cells and tissues –

methodological issues
To understand how CR prevents oxidative damage to
tissues in view of the two proposed mechanisms
(decreased ROS production versus increased ROS pro-
duction leading to a hormetic response), measuring
levels of specific ROS in situ within cells and tissues
is critical. Unfortunately, this necessity is marred by
methodological difficulties in measuring ROS, which
present enormous chemical diversity and intricate
reactivity within the biological complexity of the intra-
cellular environment.
The studies in model systems that measured

increases in ROS release with CR used DCF as a
probe to measure oxidants within cells or organ-
isms.12,28,29 DCF is a non-selective fluorescent probe
that reacts with nitric oxide (NO.) and peroxynitrite,
in addition to H2O2 and other ROS.80,81 This lack of
selectivity is critical, since CR has been recently
shown to increase NO. signaling, a central regulator
of mitochondrial biogenesis.72,82 Furthermore, DCF
is very sensitive to changes in pH within the physio-
logical range,83 and fluorescence increases in more
alkaline environments. This is especially important

in the S. cerevisiae CR model, since these cells are
grown in poorly buffered media, and undergo a large
metabolic shift when incubated under control or CR
conditions. S. cerevisiae is a Crabtree-positive yeast
that, when cultured in high glucose, presents predomi-
nantly fermentative metabolism and undergoes respir-
atory de-repression when cultured under CR, an effect
central toward lifespan expansion.84 As a result of
lower fermentative activity, CR cells present pro-
nounced increases in pH compared to control cells
(up to 3 pH points, Tahara and Kowaltowski, unpub-
lished results), which can, alone, explain large
increases in DCF fluorescence in this model even in
the absence of changes in redox state.
Another probe used to measure ROS in situ in

S. cerevisiae CR was DHR.29 The oxidized product
of DHR is positively charged, and used as a mitochon-
drial membrane potential marker.85 Since CR in
S. cerevisiae significantly increases mitochondrial
activity,25,26,84 the accumulation of this dye in CR
cells may be attributable to enhancement of mitochon-
drial density and membrane potentials, and not to
increased H2O2. In addition, DHR is not a selective
probe for H2O2,

80 as claimed by the authors.29 As a
result, the conclusion that CR increases ROS, specifi-
cally H2O2, based on the use of these probes is
questionable.

Conclusion
Although it seems clear that hormetic responses exert
a variety of positive cellular effects, the evidence that
CR promotes an increase in intracellular ROS trigger-
ing a hormetic response and resulting in enhanced life-
span is unconvincing.
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