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Objective: The study was to investigate the effects of creatine (Cr) supplementation on oxidative stress
markers and anaerobic performance in rats.
Methods: Sixty-four rats (Wistar) were divided into two groups: C, anaerobic exercised group (n= 32) and Cr,
anaerobic exercised group supplemented with creatine (n= 32). Cr supplementation consisted of
the addition of 2% Cr monohydrate to the diet. After 28 days, the rats performed acute exercise
(6 × 30 seconds of vertical jumps in the water with 30 seconds rest and 50% of total body weight load
attached in the back). The animals were euthanized before (pre) and at 0, 2, and 6 hours (n= 8) after
acute exercise.
Results: Acute exercise induced an increase in plasma malondialdehyde (MDA) and advanced oxidation
protein products (AOPP), as well as increased total lipid hydroperoxides and AOPP in gastrocnemius
muscle. Cr supplementation inhibited the formation of MDA and lipid hydroperoxides in plasma. However,
the antioxidant action of Cr was observed only against AOPP in gastrocnemius muscle. Cr supplementation
also increased (P< 0.05) anaerobic performance compared to the C group.
Conclusion: Cr supplementation is able to inhibit the increase in plasma lipid peroxidation markers induced
by high-intensity and short-duration exercise in rats; equivalent actions, however, were not observed fully in
muscle tissue.
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Introduction
Since Harris et al.1 demonstrated for the first time that
creatine (Cr) supplementation increases intramuscular
concentration of Cr and phosphocreatine (PCr), Cr
monohydrate has become a popular dietary sup-
plement among athletes and individuals practizing
physical exercise. The concept of Cr supplementation
improving performance is based on the fact that Cr
plays an important role in energy metabolism during
muscle contraction through the ATP-Cr/CP system.2

Over the past few years, the use of Cr supplementation
has been extended to the medical area in view of the
results obtained for the treatment of myopathies and
neurodegenerative diseases.3–5 More recently, studies
have shown the beneficial effects of Cr supplemen-
tation on metabolic disorders such as diabetes6 and
non-alcoholic fatty liver disease.7 The recent review

of Gualano et al.8 provides comprehensive infor-
mation about the therapeutic effects of Cr
supplementation.
Over the past decade, studies have shown that Cr

exerts antioxidant activity.9 Lawler et al.10 using in
vitro techniques were the first to demonstrate that Cr
acts as a primary antioxidant. Subsequent studies
demonstrated the protective effect of Cr against oxi-
dative stress in cell cultures,11,12 against DNA and
RNA damage,13,14 and in in vivo experiments using
rats.15,16 These emerging data from in vitro methods
and experiments on rodents suggest a protective anti-
oxidant potential of Cr in different situations.
However, few studies have demonstrated this protec-
tive capacity against oxidative stress induced by
high-intensity exercise. Therefore, we hypothesized
that supplementation with Cr would exert protective
effects against oxidative stress in the plasma and
muscle of rats submitted to acute high-intensity exer-
cise. The main objective of the study was to investigate
the effects of Cr supplementation on markers of
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oxidative stress and anaerobic performance of rats
after acute anaerobic exercise.

Methods
Sixty-four male Wistar rats (120–130 g) were obtained
from the Animal Care Unit at the Faculty of Medicine
of Ribeirão Preto after approval by the institution’s
Committee on Animal Care. The animals were kept
in individual cages on a 12/12 hour light/dark cycle
at a mean temperature of 22°C and were divided at
random into two groups: C, control group (n= 32)
and Cr, creatine-supplemented group (n= 32). The
animals received fresh food and water every 2 days
and had free access to food during the entire exper-
imental period. Food intake was measured daily to
assess total food intake and creatine consumption.
Creatine supplementation was performed by adding
2% w/w monohydrate creatine (Acros Organics,
New Jersey, NY, USA) to the control AIN-93
powder diet17 for 28 days. Two percent Cr supplemen-
tation to the diet was chosen because it previously has
been shown to increase plasma and total muscle Cr
content.15

After 28 days of Cr supplementation the animals
were submitted to an acute bout of intense exercise.
Ten microliters blood samples were taken from a tail
vein for lactate assay with a portable Accusport
Accutrend Lactate analyzer (Boehringer Mannheim,
Castle Hill, Australia). Accusport Accutrend Lactate
analyzers have demonstrated reliable results when
compared to standard enzymatic photofluorome-
try.18,19 All rat groups were euthanized by decapitation
before (n= 8) and at 0 hour (n= 8), 2 hours (n= 8),
and 6 hours (n= 8) after acute exercise. Blood was col-
lected into heparinized tubes, centrifuged at 1000g for
10 minutes and plasma was separated and stored at
−80°C. The gastrocnemius muscle was removed; the
white portion was anatomically separated and
rapidly frozen in liquid nitrogen and stored at −80°C.

Acute exercise protocol
The acute exercise protocol was performed as
described by Deminice et al.20 After 1 week of water
immersion (keeping the animal in 10 cm deep water
for 20 minutes, 5 days/week for 1 week) the animals
were adapted to the exercise protocols. The adaptation

to exercise protocol consisted in adding weight to the
body progressively (20% per week) using a adapted
elastic backpack attached to the chest to induce the
rats to jump into in a 50 cm deep cylinder tank
(25 cm in diameter) for 30 seconds, 2 days/week for
2 weeks. Both water immersion and exercise
adaptation was performed to reduce stress without
promoting exercise training adaptations.

After 28 days of Cr supplementation all rats
performed an acute bout of high-intense exercise,
using the water tank described above. Rats were
induced to jump for 6 minutes (30 seconds exercise

Table 1 Final weight, weight gain, diet, and creatine intake
for both control (C) and creatine-supplemented group (Cr)
after 4 weeks of creatine supplementation

C Cr

Body weight (g) 286.2± 7.3 290.4± 7.5
Body weight gain (g/4 weeks) 167.3± 7.1 168.9± 5.8
Food intake (g/day) 20.8± 1.1 21.3± 1.8
Creatine intake (g/day) – 0.42± 0.03

Values are mean ± SEM, n= 32.

Figure 1 Number of jumps in each set (A); blood lactate
concentration (B); and total muscle creatine determined pre
and 0, 2, and 6 hours after acute exercise in the control (C)
and creatine-supplemented (Cr) groups. Values are
mean ± SEM, n= 8. abMeans of the same group followed by
different letters were significantly different; *Significant
difference in relation to the control at the same time of
euthanasia (P< 0.05 by linear mixed effects model).
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interrupted by a 30 seconds rest) carrying a load of
50% body weight. In all cases, the temperature of the
water was set at 31± 1 °C.

Biochemical analyses
Frozen muscle samples were homogenized in ice-
cold 50 mM sodium phosphate, pH 7.0, and the hom-
ogenates were centrifuged at 13 000g for 10 minutes at
4°C. The supernatants were utilized for the determi-
nation of muscle malondialdehyde (MDA) and total
lipid hydroperoxide as parameters of lipid peroxi-
dation by the methods of Spirlandeli et al.21 and

Costa et al.,22 respectively. Advanced oxidation
protein products (AOPP) were determined by the
method of Witko-Sarsat et al.23 Reduced (GSH) and
oxidized glutathione (GSSG) were determined in
muscle according to Rahman et al.24 Plasma and
total muscle Cr were assayed by the Jaffe reaction
using a method described by Deminice et al.15

Total blood hematocrit and hemoglobin were
measured to correct for plasma volume shifts.25

Assays were carried out in duplicate. The coefficient
of variation for each measurement was less than 5%
for all assays.

Statistical analysis
Data are reported as mean± standard error of mean.
A linear mixed effects model was used to detect poss-
ible differences between groups at the time of euthana-
sia and possible differences in relation to time of
euthanasia (pre and 0, 2, and 6 hours after exercise)
in the same group. The level of significance was set
at P< 0.05 in all analyses.

Results
No significant differences in final body weight, body
weight gain, or food intake were observed after 4
weeks of the experiment. As expected, the Cr sup-
plemented diet provided a significantly higher
amount of Cr compared to the C diet (Table 1).
The number of jumps in each of the six sets is shown

in Fig. 1. Supplementation with Cr led to an increase
in the number of jumps after the fourth set in the Cr
group compared to the C group. These results demon-
strate the capacity of Cr supplementation to improve
repeated jump performance. Blood lactate concen-
tration increased significantly (P< 0.05) immediately
after the repeated jump series in both groups,
without a significant difference between them. The
high blood lactate concentration of 10–12 mmol/l
demonstrates the high-intensity of the effort proposed
in this study (Fig. 1). As expected, total muscle Cr con-
centration was significantly higher (P< 0.05) in the Cr
group compared to C at all times of euthanasia
(Fig. 1). Cr supplementation also increased plasma
Cr concentration (C: pre 82.7± 3.5, 0 hour 112.9±
4.0, 2 hours 72.2± 4.9, and 6 hours 71.7± 3.0; Cr:
pre 243.6± 9.8, 0 hour 425.4± 23.8; 2 hours 221.9±
5.8, and 6 hours 255.6± 10.3, μmol/l).
Figure 2 and Table 2 present plasma and white gas-

trocnemius muscle oxidative stress markers before and
after (0, 2, and 4 hours) acute exercise for the C and Cr
groups studied, respectively. Acute exercise promoted
increased plasma MDA (28% at 0 hour) and AOPP
(42% at 0 hour) (Fig. 2). Increased AOPP (42% at 0
hour) and lipid hydroperoxide (98% at 2 hours) were
observed in gastrocnemius muscle. Decreases in
GSH and GSH/GSSG ratio also were observed in

Figure 2 Plasma oxidative stress markers determined pre
and 0, 2, and 6 hours after acute exercise in the control (C)
and creatine-supplemented (Cr) groups. Values are
mean ± SEM, n = 8. abMeans of the same group followed by
different letters were significantly different; *Significant
difference in relation to the control at the same time of
euthanasia (P< 0.05 by linear mixed effects model).
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gastrocnemius muscle (Table 2). Supplementation with
Cr inhibited the formation of lipid peroxidation
markers, MDA, and total peroxides in plasma
(Fig. 2). However, an antioxidant action of Cr was
observed only against AOPP in gastrocnemius
muscle. Cr supplementation did not change GSH
muscle levels (Table 2).

Discussion
The main results of the present study were: (1) an acute
session of repeated jumps increased plasma and
muscle oxidative stress markers; (2) supplementation
with Cr was able to inhibit the increases in the
plasma lipid peroxidation markers MDA and lipid
hydroperoxides induced by acute exercise; (3) inhi-
bition was not observed in the muscle tissue, with
the exception of the protein oxidation marker AOPP;
(4) Cr supplementation improved repeated jump
performance in the animals studied.
Oxidative stress is the condition that reflects an

imbalance between the cellular production of pro-oxi-
dants and the physiological capacity of the cells to
remove it through the endogenous and exogenous anti-
oxidant system.26 The generation of ROS occurs
during normal cellular metabolism, but is increased
under conditions of physical stress.27 Studies have indi-
cated different mechanisms that underlie the gener-
ation of ROS induced by anaerobic exercise, such as
the increased production of catecholamines, pro-
duction of lactic acid and late inflammatory
responses,26 elevated intracellular calcium concen-
trations that activate the xanthine oxidase and phos-
pholipase pathway,28 and conditions of hypoxia and
activation of phagocytic cells.28 In the present study,
we chose an acute exercise protocol consisting of
repeated jumps adapted to rodents to test the antioxi-
dant capacity of Cr. This protocol was chosen since the
capacity of repeated sprint exercise to promote oxi-
dative stress is already known.26,28,29 Indeed, our
data demonstrated that the acute exercise significantly
increased (P< 0.05) plasma MDA at 0 hour (28%)

and muscle lipid hydroperoxides at 2 hours (98%) as
well as plasma at 0 hour (31%) and muscle AOPP at
0 hour (42%). Acute exercise also promoted decreased
muscle GSH and GSH/GSSG ratio. This protocol is
suitable for studies on Cr supplementation since it
involves short-duration interval exercise (6× 30 seconds
of effort that generated 10–12 mmol/l of blood lactate
concentration; Fig. 1), a type of exercise that requires
significant contribution of the ATP-Cr/CP system.

Although a reasonable number of studies have
demonstrated the antioxidant property of Cr using in
vitro techniques10–14 and rodent studies in different
situations,15,16 the present study demonstrate the pro-
tective antioxidant activity of Cr supplementation
against increased lipid peroxidation induced by acute
high-intensity exercise. Lawler et al.10 and Sestili
et al.12 demonstrated that Cr exerts a significant
direct antioxidant effect using in vitro techniques and
cell cultures exposed to different oxidants, respectively.
Recent studies also demonstrated the protective effect
of Cr on mitochondrial DNA14 and RNA13 exposed
to oxidants. Those authors concluded that the protec-
tive effect of Cr against DNA and RNA damage
resulted from the capacity of Cr to directly remove
free radicals.13,14 More recently, studies have demon-
strated the protective effect of Cr in animal
models.15,16,20 In studies conducted at our laboratory,
Deminice et al.15 demonstrated the capacity of Cr to
reduce homocysteine concentration and lipid peroxi-
dation in rats. The same results were observed when
hyperhomocysteinemia and lipid peroxidation were
induced by acute aerobic/moderated exercise.16,20

Guimarães-Ferreira et al.30 shown reduced generation
of muscle ROS in rats after short-term Cr supplemen-
tation (5 g/day for 6 days), without changes in the
activity of antioxidant enzymes. According to these
authors, this result indicates the capacity of Cr to
directly remove ROS. Those data together indicate
that Cr exerts an antioxidant effect in different situ-
ations using in vitro and in vivo methods. However,
the antioxidant activity of Cr against oxidative stress

Table 2 Muscle oxidative stress markers determined pre and 0, 2, and 6 hours after acute exercise in the control (C) and
creatine-supplemented (Cr) groups

Pre 0 hour 2 hours 6 hours

MDA (μmol/g tissue) C 0.16± 0.02 0.13± 0.03 0.12± 0.03 0.15± 0.04
Cr 0.17± 0.02 0.14± 0.02 0.16± 0.03 0.14± 0.02

Lipid hydroperoxide (μmol/g tissue) C 23± 2.0a 32.8± 3.4b 49± 4.6c 26.2± 2.8a

Cr 22.9± 2.8a 36.8± 4.5b 44.8± 5.2c 22.1± 3.8a

AOPP (μmol/g tissue) C 0.62± 0.12a 0.84± 0.14b 0.65± 0.11a 0.34± 0.07c

Cr 0.38± 0.10*a 0.63± 0.11*b 0.65± 0.08b 0.50± 0.18ab

GSH (mmol/g tissue) C 3.2± 0.7a 2.7± 0.4ab 2.4± 0.3b 2.2± 0.3b

Cr 3.7± 0.6a 3.2± 0.6ab 3..0± 0.4b 2.8± 0.2b

GSH/GSSG C 7.1± 0.7a 5.4± 1.0ab 5.0± 0.4a 4.6± 0.6a

Cr 7.3± 0.8a 5.1± 0.8b 5.3± 0.5b 4.7± 0.4b

Values are mean ± SEM, n= 8.
abcMeans in a row followed by different letters were significantly different.
*Significant difference in relation to the control at the same time of euthanasia (P< 0.05 by linear mixed effects model).
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induced by acute high-intensity physical exercise is still
poorly understood.
Although numerous studies have demonstrated the

protective antioxidant effects of Cr, the exact mechan-
ism whereby this compound exerts these effects is still
a matter of discussion.9 Lawler et al.10 reported the
capacity of Cr to directly scavenge radical molecules;
according to these authors, however, such capacity is
lower than that of vitamin E and GSH and may be
selective for specific radical molecules. Young et al.31

and Deminice and Jordao,16 demonstrated the
capacity of Cr to promote up-regulation of the thiol
redox system, improving GSH antioxidant capacity.
As a methylated compound, Cr supplementation
could suppress Cr synthesis causing a sparing effect
on cysteine, a GSH precursor in the transsulfuration
pathway.16 Improved hydration status, membrane
stabilization and increased energetic pool of the cell
are also speculated to be indirect antioxidant mechan-
isms.2 However, increased and/or normalized energy
cell status mediated by Cr supplementation have
been the most promising mechanisms among those
cited.32,33 Meyer et al.32 demonstrated that increased
Cr availability could normalize the PCr/Cr ratio and
activate ADP recycling by mitochondrial creatine
kinase, a mechanism by which it regulates oxygen
uptake and reduces the generation of free radicals.
Santiago et al.,33 studying the modulation of mito-
chondrial kinases by free radical generation, con-
cluded that mitochondrial creatine kinase actively
participates as an antioxidant system. Despite the
different explanations and speculations, the exact
mechanism whereby Cr exerts antioxidant activity
still needs to be determined.
Although extensively studied, there is no consensus

regarding the effect of antioxidant supplementation
on athletic performance. Consistent data exist that anti-
oxidant supplementation attenuates exercise-induced
oxidative stress.29 However, the data showing antioxi-
dant supplementation as the responsible factor for
improvement in sports performance are inconsistent.
Regarding Cr supplementation, its role in energy
metabolism through the ATP-Cr/CP system is
undoubtedly the most widely accepted explanation in
the literature for the ergogenic activity of this substance.
Indeed, recent studies have demonstrated the capacity
of Cr to modulate the mitochondrial energy pool,32,33

a function that might be related to both the improve-
ment in sprint performance and the reduction of free
radicals. Therefore, further studies must consider the
effects of Cr exposure on the mitochondrial ATP-Cr/
CP system to understand the true contribution of the
antioxidant capacity of Cr to sports performance.
In conclusion, Cr supplementation is able to inhibit

the increase in plasma lipid peroxidation markers
induced by high-intensity and short-duration exercise

in rats; such actions, however, are not fully observed
in muscle tissue. These results are original and
confirm in vitro data showing that Cr exerts antioxi-
dant activity. Furthermore, our data confirm the ergo-
genic activity of Cr supplementation by improving
anaerobic performance in rats. These results support
the practical use of Cr supplementation in high-
intense repeated bout exercises. However, the relation-
ship between the antioxidant capacity attributed to Cr
and sports performance still needs to be elucidated.
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