Skip to main content
. 2014 Jun 30;19(6):221–231. doi: 10.1179/1351000214Y.0000000099

Table 1.

Rate constants of some relevant reactions involved in peroxynitrite biochemistry and tyrosine nitration

Reaction k (M−1 s−1) Reference
NO + O2 → ONOO 0.4–1.6 × 1010 3032
ONOO + CO2 → ONOOCO2 5.8 × 104 16,33
ONOOH + Prx5(-S) → NO2 + Prx5(-SOH) 7 × 107 34
ONOOH + GS → NO2 + GSOH 1.4 × 103 35
ONOOH + MPO(Fe3+) → NO2 + MPO(Fe4+ = O) 6.2 × 106 36
ONOOH + Hb(Fe2+)O2 → Hb(Fe3+) + O2 + NO3 + H+ 1.04 × 104 37
ONOO + Mn3+TE-2-PyP → NO2 + O = Mn4+TE-2-PyP 3.4 × 107 38
MPO(Pπ+Fe4+ = O) + NO2 → MPO(PFe4+ = O) + NO2 2.0 × 106 39
OH + NO2NO2 + OH 6.0 × 109 40
Tyr + CO3 → Tyr + HCO3 4.5 × 107 41
Tyr + OH → Tyr(OH) 1.2 × 1010 42
Tyr + NO2 → Tyr + NO2 + H+ 3.2 × 105 43
Tyr + MPO(Fe4+ = O) → Tyr + MPO(Fe3+) + OH 1.6 × 104 44
Tyr + LOO → Tyr + LOOH 4.8 × 103 25
Tyr + LO → Tyr + LOH 3.5 × 105 26
Tyr + NO2 → NO2Tyr 3.0 × 109 43
Tyr + Tyr → DiTyr 2.3 × 108 45

Experimental conditions used for rate constant determination (e.g. temperature, pH) can be found in each specific reference.

The homolysis of ONOOH to yield OH and NO2 in a first order process is described in the text and shown in Fig. 1. The reactions of peroxynitrite with peroxiredoxins, glutathione and oxyhemoglobin inhibit tyrosine nitration by reduction or isomerization of peroxynitrite.

Prx5, peroxiredoxin 5; GS, glutathione; MPO, myeloperoxidase; HbO2, oxyhemoglobin; Mn3+TE-2-PyP, manganese (III) meso-tetrakis ((N-ethyl)pyridinium-2-yl) porphyrin; MPO(Pπ+Fe4+ = O), myeloperoxidase compound I.