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Objective: The aim of this study was to evaluate serum paraoxonase-1 (PON1) activity and its association with
oxidative stress in autoimmune thyroid disease (AITD).
Methods: A total of 50 patients with AITD, including 25 with Hashimoto’s thyroiditis and 25 with Graves’
disease were enrolled. The control group comprised 27 healthy subjects. Blood samples were obtained in
the euthyroid period and 3 months after initiation of medical treatment. Serum samples from patients with
AITD and the healthy control group were analyzed for basal PON1, salt-stimulated PON1, and arylesterase
(ARE) activities, along with lipid hydroperoxide (LOOH) and total free sulfhydryl (–SH) levels.
Results: Serum PON1 activities and –SH levels were significantly lower (P< 0.001, for each), whereas LOOH
levels were significantly higher (P< 0.001, for each) in patients with AITD, compared to the control group. We
observed no significant differences in ARE levels between the patient and healthy control groups (P> 0.05).
PON1 activity was positively correlated with –SH (r= 0.522, P< 0.001) and negatively correlated with LOOH
(r=−0.487, P< 0.001). PON1 phenotype distribution of the subjects was not significantly different among
the three groups (P= 0.961).
Conclusions: Serum PON1 activity is decreased in patients with AITD, and correlated positively with –SH, a
well-known antioxidant, and negatively with LOOH, an index of lipid oxidation.
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Introduction
Oxidation of iodide to iodine is an important step for
thyroid hormone synthesis. This reaction is catalyzed
by thyroid peroxidase and involves hydrogen peroxide
(H2O2) and oxidized iodine. Therefore, a certain oxi-
dative load level in the thyroid gland is required for
thyroid hormone synthesis. Strong antioxidant
systems exist to protect thyroid cells against increased
levels of oxidants, such as glutathione peroxidase, per-
oxiredoxin, and catalase.1,2

Oxidative stress occurs when production of reactive
oxidant species (ROS) is not controlled by antioxidant
systems. Excessive oxidative stress increases inflam-
mation, causes proapoptotic effects, and impairs
immune tolerance, thereby contributing to the patho-
genesis of various autoimmune diseases, including
autoimmune thyroid disease (AITD).3,4

Lipid hydroperoxide (LOOH) is a well-known
marker of oxidative stress. The basic form of LOOH
is the oxidized low-density lipoprotein (LDL).5,6

Increased levels of lipid peroxidation products have
been reported in AITD.7,8

Paraoxonase1 (PON1) is an antioxidant enzyme with
paraoxonase (PON) and arylesterase (ARE) activities.
PON1 protects LDL from oxidation by binding to
high-density lipoprotein (HDL).9 PON1 activity has
been shown to be reduced in several autoimmune dis-
eases, including rheumatoid arthritis (RA), mixed con-
nective tissue disease, Sjögren’s syndrome, and systemic
lupus erythematosus (SLE).10,11,12,13 However, PON1
activity in AITD has not been investigated to date. In
the present study, we evaluated PON1 activity in
AITD and its association with antioxidant total free
sulfhydryl (–SH) and oxidant LOOH levels.

Materials and methods
The study was approved by the Ethics Committee of
Gaziantep University Faculty of Medicine. Informed
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consent was obtained from all subjects prior to the
study.

Patient groups and study protocols
This prospective study was conducted in the
Department of Endocrinology at the Medical School
of Gaziantep University. A total of 50 patients with
autoimmune thyroid disease, including 25 with
Graves’ disease (GD) (mean age: 44.00± 14.36
years; 17 females, 8 males) and, 25 with Hashimoto’s
thyroiditis (HT) (mean age: 43.92± 12.78 years; 16
females, 9 males) as well as 27 healthy controls
(mean age: 41.44± 9.53 years; 16 females, 11 males)
were enrolled.
Thyroid ultrasonography was performed in all

patients by the same physician, regardless of labora-
tory results (LOGIQ p6, GE Healthcare, USA). Size,
nodularity, and paranchymal echogenicity of the
thyroid gland were evaluated.
Diagnosis of HTwas based on thyroid function tests

(low/normal serum free triiodothyronine (T3) and free
thyroxine (T4), high thyroid stimulating hormone
(TSH) levels), heterogeneous appearance of the
thyroid parenchyma in ultrasound, and increased
levels of antithyroid peroxidase (anti-TPO) and antith-
yroid thyroglobulin (anti-TG) antibodies.
Levothyroxine therapy was initiated in these patients.
Serum samples were obtained during the euthyroid
period in month 3 of the treatment.
Diagnosis of GD was based on thyroid function

tests (high/normal serum free triiodothyronine (T3)
and free thyroxine (T4), low TSH levels), increased
levels of TSH receptor antibody (anti-TRAB), anti-
TPO, and anti-TG antibodies, heterogeneous appear-
ance of the thyroid parenchyma in thyroid ultrasound,
increased diffuse radioactive iodine uptake in thyroid
scintigraphy, and the medical history of the patients.
Methimazol therapy was initiated in these cases.
Serum samples were obtained during the euthyroid
period in month 3 of treatment.
Subjects had infectious diseases, inflammatory dis-

eases, hypertension, liver failure, cardiovascular dis-
eases, malignancies, neurodegenerative diseases, renal
failure, cerebrovascular diseases, diabetes mellitus,
obesity, and metabolic syndrome. Patients from both
study and control groups on antioxidant treatments,
such as antihypertensive and, lipid-lowering medi-
cations, and vitamin E, and smokers were excluded.

Measurements
Age, weight, height, and body mass index (BMI: body
weight (kg)/height (m2)) of all subjects were recorded.
Blood samples were collected in the morning after an 8
hours fasting period. Serum samples were stored at
−80°C until measurement of PON, ARE, –SH, and
LOOH. Fasting plasma glucose (FPG), high-density

lipoprotein-cholesterol (HDL-C), low-density lipopro-
tein-cholesterol (LDL-C), total cholesterol, triglycer-
ide (TG), free T3, free T4, TSH, anti-TPO, and anti-
TG levels were measured in all subjects.

Free T3, free T4, and TSH levels were measured
with the electrochemiluminescence method, using a
Cobas Integra 800 model auto-analyzer. The reported
reference ranges were as follows: free T3: 2–4, 4 pg/ml,
free T4: 0.7–1.48 ng/dl, TSH: 0.35–4.94 uIU/ml
(Roche Diagnostics, Germany).

Measurement of LOOH levels
Serum LOOH levels were measured with the ferrous
ion oxidation–xylenol orange assay. The principle of
the assay depends on oxidation of the ferrous to
ferric ion through various oxidants, and the produced
ferric ion is measured with xylenol orange. LOOH
is reduced by triphenyl phosphine (TPP), a specific
reductant for lipids. LOOH levels are determined
from the difference with and without TPP
pretreatment.14

Measurement of serum –SH levels
Free sulfhydryl serum levels were measured using the
method of Ellman.15 For determination of –SH
groups, 1 ml of buffer containing 0.1 M Tris, 10 mM
EDTA, pH 8.2, and 50 μl serum were added into
cuvettes, followed by 50 μl of 10 mM 5,5’-dithio-bis-
(2-nitrobenzoic acid) (DTNB) in methanol. Reagent
blanks were run for each sample, substituting metha-
nol alone for DTNB in methanol. Following incu-
bation for 15 minutes at room temperature, sample
absorbance was read at 412 nm on a Cecil 3000 spec-
trophotometer. Sample and reagent blanks were sub-
tracted. Sulfhydryl group concentrations were
calculated using reduced glutathione as the free sulfhy-
dryl group standard, and the results expressed as milli-
molar (mM).

PON1 and ARE activities
PON1 and ARE activities were measured with
commercially available kits (Relassay, Gaziantep,
Turkey). PON1 measurement was performed either
in the presence (salt-stimulated) or absence of NaCl.
The paraoxon hydrolysis rate (diethyl-p-nitrophenyl
phosphate) was measured by monitoring increased
absorption at 412 nm at 37°C. The amount of p-nitro-
phenol generated was calculated from the molar
absorption coefficient at pH 8.5, which was 18.290/
M/cm.16 PON1 activity was expressed as U/l serum.
The coefficient of variation (CV) for individual
samples was 1.8%. ARE activity was measured using
phenyl acetate as the substrate. Enzymatic activity
was calculated from the molar absorption coefficient
of the phenol produced, 1310/M/cm. One unit of
ARE activity was defined as 1 mmol phenol generated
per minute under the above conditions, and expressed
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as U/l.17 The CV for individual serum samples was
4.1%. Sensitivities of both tests were over 98%.

PON1–Q192R phenotyping
PON1–Q192R phenotype distributions were deter-
mined using both paraoxon and phenylacetate as sub-
strates according to the method of Eckerson et al.18 To
determine the phenotype of a given participant as QQ
(homozygous low activity) or QR (heterozygous mod-
erate activity), the ratio of salt-stimulated PON1 to
ARE activity was used to assign phenotypes to indi-
viduals. After frequency analysis, subjects with salt-
stimulated PON1 to ARE ratio <2.90 were classified
as the homozygous AA group (PON1–192QQ; n=
21 for GD, n= 21 for HT, n= 22 for healthy
control), those with ratios between 2.90 and 5.07 as
the heterozygous AB group (PON1–192QR; n= 4
for GD, n= 4 for HT, n= 5 for healthy control),
and those with ratios >5.08 (PON1–192RR; n= 0
for each) as the homozygous BB group.

Statistical analysis
The Shapiro-Wilk test was used to test continuous
variables for normality. Measurements of normally
distributed variables (BMI, FPG, total-C, HDL-C,
LDL-C, TG, free T3, free T4, TSH) are presented as
mean± standard deviation. Variables with non-
normal distribution (PON1, ARE, LOOH, –SH) are
presented as median and interquartile range (IQR).
Student’s t-test was used to compare two independent
groups of normally distributed variables. For non-nor-
mally distributed variables, the Mann–Whitney U test
was used to compare two independent groups.
Spearman correlation analysis was conducted to

identify the associations between the parameters. The
statistical significance of differences in phenotype fre-
quency between the groups was tested using the chi-
square (χ2) test. SPSS for Windows version 15 software
was applied for statistical analyses. The level of signifi-
cance was set at P≤ 0.05.

Results
The mean ages of the GD, HT, and healthy control
groups and gender distribution were similar (P=
0.970 and P= 0.806, respectively). BMI, free T3,
free T4, TSH, FPG, total cholesterol, HDL-C, LDL-
C, and TG levels were not significantly different
among the groups (P= 0.363, P= 0.208, P= 0.825,
P= 0.400, P= 0.785, P= 0.325, P= 0.491, P=
0.070, P= 0.295, respectively; Table 1).
Serum PON1 activity was markedly lower in the

GD and HT groups, compared to the healthy
control group (P< 0.001). PON1 activity was not sig-
nificantly different between the GD and healthy
control groups (P= 0.143). Serum salt-stimulated
PON1 activities were significantly lower in patients,
compared to the healthy control group (P= 0.035
for GD, P= 0.024 for HT), whereas serum ARE
levels were not significantly different among the
groups (P> 0.05).
PON1 phenotype distribution of the subjects was

not notably different among the three groups (P=
0.961).
Serum LOOH levels were significantly higher in the

GD and HT groups, compared to the healthy control
group (P< 0.001, for each). Moreover, the HT group
displayed markedly higher LOOH levels than the
GD group (P= 0.008).

Table 1 Demographic and laboratory parameters of HT, GD, and healthy control groups

GD HT Healthy controls P

Age (year) 44.00± 14.36 41.44± 9.53 43.92± 12.78 0.811
Gender (F/M) 17/8 16/11 16/9 0.806
BMI (kg/m2) 25.59± 3.06 26.64± 2.16 25.78± 2.01 0.375
FBG (mg/dl) 87.72± 6.47 86.96± 6.47 88.92± 8.15 0.760
Total-C (mg/dl) 175.00± 30.44 179.04± 30.53 173.48± 28.64 0.889
HDL-C (mg/dl) 47.92± 6.71 47.68± 6.59 46.74± 6.34 0.558
LDL-C (mg/dl) 112.44± 22.64 116.04± 29.26 105.25± 25.30 0.354
TG (mg/dl) 130.00± 29.32 129.80± 26.94 137.85± 46.26 0.624
Free T3 (pg/ml) 2.54± 0.38 2.82± 0.52 2.69± 0.48 0.075
Free T4 (ng/dl) 1.14± 0.23 1.08± 0.17 1.06± 0.14 0.189
TSH (uIU/ml) 2.15± 0.52 2.05± 0.99 2.29± 0.59 0.541
PON1 (U/ml)* 106.32± 14.38a 92.15± 28.75b 125.45± 26.18 <0.001
Salt-stimulated PON (U/ml)* 175.05± 102.27 161.23± 116.93 215.76± 93.76 0.035
ARE (U/ml)* 101.09± 48.51 109.47± 25.49 102.07± 34.69 0.241
LOOH (mol H2O2 equiv./l)* 11.30± 4.88a,c 13.11± 4.07b 5.98± 3.08 <0.001
–SH (mmol/l)* 0.16± 0.05a 0.18± 0.09b 0.45± 0.12 <0.001

Data were expressed as mean± SS and *median (IQR). P< 0.005 was regarded as statistically significant. Graves’ disease, GD;
Hashimoto thyoriditis, HT; body mass index, BMI; fasting blood glucose, FBG; high-density lipoprotein-cholesterol, HDL-C; low-
density lipoprotein-cholesterol, LDL-C; triglyceride, TG; triiodothyronine, T3; tetraiodothyronine, T4; thyroid stimulating hormone, TSH;
lipid hydroperoxide, LOOH; paraoxonase-1, PON1; arylesterase, ARE; total free sulfhydryl, –SH.
aP<0.001 GD versus healthy control.
bP<0.001 HT versus healthy control.
cP<0.01 GD versus HT.
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Serum –SH levels were significantly lower in the GD
and HT groups, compared to the healthy control
group (P< 0.001, for each). We observed no notable
differences between the GD and HT groups in terms
of –SH levels (P= 0.869).
In correlation analysis, PON1 activity was positively

correlated with –SH (r= 0.522, P< 0.001) and nega-
tively correlated with LOOH in patients with AITD
(r=−0.487, P< 0.001; Figs. 1 and 2).

Discussion
In our experiments, PON1 activity was significantly
reduced in AITD patients, compared to the control
group (P< 0.001). Additionally, PON1 activity was
positively correlated with the antioxidant –SH and
negatively correlated with the oxidant LOOH (r=
0.522, P< 0.001, r=−0.487, P< 0.001). To our

knowledge, the present study is the first to report
reduced PON1 activity in AITD.

H2O2 is required for thyroid hormone biosynthesis
in thyrocytes.19 Thyroglobulin fragmentation is
observed upon exposure of thyroid cell culture to
high concentrations of H2O2. Extended exposure of
thyrocytes to H2O2 and/or impaired antioxidant
systems are suggested to alter the antigenicity of thyr-
oglobulin and thyroid peroxidase, in turn, contributing
to AITD development.20

Lipids are the most sensitive molecules to the effects
of free radicals. Free radicals react with polyunsatu-
rated fatty acids in the cell membrane, causing oxi-
dative degradation known as lipid peroxidation, a
process of self-sustaining chain reactions.21,22 A
number of studies in the literature have demonstrated
increased lipid peroxidation products in AITD.4,7

LOOH, a product of lipid peroxidation, is used as
an indicator of the lipid peroxidation level.21,23 Data
from the present study revealed increased LOOH
levels in AITD patients and decreased levels of the
antioxidant –SH (P< 0.001, for each), compared to
healthy controls.

PON1 contributes significantly to the antioxidant
capacity of HDL.23 Activity of the enzymes reduced
in several autoimmune diseases, such as RA, mixed
connective tissue disease, SLE, and primary antipho-
spholipid syndrome.10,11,13 To date, PON1 activity
has not been evaluated in AITD. Here, we observed
significantly lower PON1 activity in AITD patients,
compared to the healthy control group (P< 0.001).
The comparable lipid levels among the groups in our
study suggest that reduction of PON1 in AITD
occurs independently of HDL. We propose that the
reduced levels of PON1 may be attributable to use of
the enzyme by thyrocytes for protection from
increased oxidative stress. A study by Deakin et al.
on hamster ovaries and human endothelial cells
demonstrated that PON1 passes through the cell mem-
brane and outer environment easily, reduces oxidative
stress of the target cell to a significant extent, and
facilitates cells to gain function. The group suggested
that PON1 is not fixed to HDL and may be used by
cells exposed to oxidative stress.24

PON1 levels in our study were significantly lower in
AITD, compared to the healthy control group,
whereas no differences among groups were observed
in ARE levels. Previously, we showed reduced PON
activity in Sjögren’s syndrome, compared to the
control group, but no differences in ARE activity,
which was suggested to result from PON1 gene poly-
morphisms.12 PON1 activity was higher in individuals
with the Q192R polymorphism resulting in a gluta-
mine to arginine substitution at position 192,
whereas ARE activity was higher in the QQ geno-
type.25 The ratio of salt-stimulated PON1 to ARE

Figure 1 Correlation between serum basal PON1 and LOOH
levels.

Figure 2 Correlation between serum basal PON1 levels and
–SH.
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activity is used to define phenotypes.26 We observed no
significant differences between PON1 192Q and R
polymorphism distribution among the GD, HT, and
healthy control groups. Based on these data, we
propose that the use of PON1 to prevent oxidative
stress-induced thyroid cell damage is the underlying
cause of low PON1 activity.
In conclusion, serum activity of PON1 is decreased

in AITD. Additionally, reduced activity of PON1 is
positively correlated with levels of the antioxidant,
–SH, and negatively correlated with the oxidant,
LOOH. Our results collectively suggest that PON1
contributes to the pathogenesis of AITD. Extensive
longer-term studies are required to validate the
current findings.
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