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Objective: Pentoxifylline has previously been shown to increase haemoglobin levels in patients with chronic
kidney disease (CKD) and erythropoietin-stimulating agent (ESA)-hyporesponsive anaemia in the HERO
multi-centre double-blind, randomized controlled trial. The present study evaluated the effects of
pentoxifylline on oxidative stress in ESA-hyporesponsive CKD patients.
Methods: This sub-study of the HERO trial compared 15 patients in the pentoxifylline arm (400 mg daily) and
17 in the matched placebo arm on oxidative stress markers: plasma total F2-isoprostanes, protein carbonyls,
glutathione peroxidase (GPX), and superoxide dismutase (SOD) activities.
Results: Pentoxifylline did not significantly alter total F2-isoprostanes (adjusted mean difference (MD)
35.01 pg/ml, P= 0.11), SOD activity (MD 0.82 U/ml, P= 0.07), GPX activity (MD −6.06 U/l, P= 0.09), or
protein carbonyls (MD −0.04 nmol/mg, P= 0.52). Replicating results from the main study, pentoxifylline
significantly increased haemoglobin concentration compared with controls (MD 7.2 g/l, P= 0.04).
Conclusions: Pentoxifylline did not alter oxidative stress biomarkers, suggesting that alternative mechanisms
may be responsible for the agent’s ability to augment haemoglobin levels in CKD patients with ESA-
hyporesponsive anaemia.
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Introduction
Anaemia is a common complication of chronic kidney
disease (CKD), especially in patients with end-stage
renal disease (ESRD). A recent cross-sectional analy-
sis of participants in the US National Health and

Nutrition Examination Survey (NHANES) showed
that the prevalence of anaemia in CKD patients
during 2007–2010 was 15.4%, rising from 8.4% in
stage 1 CKD to 53.4% in stage 5 CKD.1 Although ery-
thropoiesis-stimulating agents (ESA) are widely rec-
ommended for anaemia management in CKD,2

approximately 10% of patients demonstrate ESA
hyporesponsiveness,3 which in turn is associated with
a greatly increased mortality risk.4
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Among the factors associated with ESA hypore-
sponsiveness, oxidative stress has recently attracted
significant attention,5 contributing to increased
patient morbidity and mortality.6 It results from
imbalance between increased pro-oxidant and
decreased antioxidant activity and is measured by oxi-
dative markers of peroxidation of lipid, protein, and
nucleic acid. In addition, it has been shown to
promote inflammation and vice versa,7 thereby accent-
uating ESA hyporesponsiveness.7,8

Recently, the Handling Erythropoietin Resistance
with Oxpentifylline (HERO) trial, a multi-centre,
double-blind, randomized, placebo-controlled trial
involving 53 adult participants with stage 4 or 5
CKD (including dialysis) and ESA-resistant
anaemia, demonstrated that patients randomly allo-
cated to oral pentoxifylline 400 mg daily had signifi-
cantly increased haemoglobin concentrations relative
to a placebo control group after 4 months (MD
7.6 g/l, 95% CI: 1.7–13.5, P= 0.01).9 Although pre-
vious non-randomized studies have reported that pen-
toxifylline-associated improvements in haemoglobin
concentration in ESA-hyporesponsive patients might
be related to inhibited production of pro-inflammatory
cytokines,10–12 the HERO trial found no significant
interactions for treatment group by C-reactive
protein sub-group, suggesting that the observed ben-
eficial effects of pentoxifylline may not be related to
anti-inflammatory actions. No prior studies have
examined the effects of pentoxifylline on oxidative
stress.
In this pre-specified sub-study of the HERO trial,

the impact of pentoxifylline on plasma concentrations
of oxidative stress biomarkers (F2-isoprostanes,
protein carbonyls, glutathione peroxidase (GPX),
and superoxide dismutase (SOD)) was further evalu-
ated in patients with ESA hyporesponsiveness.

Methods
Study design
The HERO trial was registered with the Australian
New Zealand Clinical Trials Registry (registration
number 12608000199314) and was approved by
ethics committees at all participating centres. All
patients provided written informed consent prior to
trial participation. The trial protocol has been pub-
lished previously.13 Briefly, the trial included adult
patients with stage 4 or 5 CKD (including dialysis
patients) on a stable dose of either erythropoietin or
darbepoetin for at least 8 weeks who had ESA-hypor-
esponsive anaemia for which there was no identifiable
cause (such as iron deficiency, bleeding, inadequate
dialysis, hyperparathyroidism, malignancy, or haema-
tologic disorder). ESA-hyporesponsive anaemia was
defined as a haemoglobin concentration ≤120 g/l
and an ESA resistance index (ERI; calculated as

weight-adjusted weekly ESA dose divided by haemo-
globin concentration) ≥1 IU/kg/week/g/l for ery-
thropoietin-treated patients and ≥0.005 μg/kg/
week/g/l for darbepoetin-treated patients.9

Participants were randomized in a 1:1 ratio across
three variables (study site, CKD stage, and ESA
class) to pentoxifylline (Trental®, Sanofi-Aventis,
Sydney, Australia) 400 mg daily orally or identical
matching placebo for a period of 4 months. All other
management, including iron supplementation, was
provided according to local unit protocols. Vitamin
B, folic acid, and vitamin C supplementation were per-
mitted, provided daily doses were kept constant
throughout the study period.
Of the 53 participants in the HERO trial (26 pentox-

ifylline, 27 control), 32 consented to participate in the
oxidative stress sub-study (15 pentoxifylline, 17
control). Plasma concentrations of four oxidative
stress biomarkers (F2-isoprostanes, protein carbonyls,
GPX, and SOD) were measured at baseline and 4
months and compared with changes in the outcome
variables (particularly haemoglobin level).

Total F2-isoprostanes
Samples were analysed in duplicate using a method
developed in our laboratory.14 Total F2-isoprostanes
were extracted from plasma after saponification with
methanolic NaOH. Samples were spiked with 8-iso-
PGF2α-d4 (Cayman Chemicals, USA) as an internal
standard and incubated at 42°C for 60 minutes.
Samples were then acidified to pH 3 with hydrochloric
acid (HCl), and hexane added and samples mixed for
10 minutes before centrifugation. The supernatant was
removed and the remaining solution extracted with
ethyl acetate and dried under nitrogen. Samples were
reconstituted with acetonitrile, transferred into vials
with silanized glass inserts and dried. Derivatization
with pentafluorobenzylbromide and diisopropylethy-
lamine and incubation at room temperature for 30
minutes followed. Samples were then dried under
nitrogen before pyridine, bis(trimethylsilyl) trifluoroa-
cetamide 99% and trimethylchlorosilane 1% were
added and incubated at 45°C for 20 minutes. Finally,
hexane was added and samples were mixed, then 1 μl
was injected for analysis using gas chromatography
tandem mass spectrometry (Varian, Australia) in
negative chemical ionization mode. The laboratory
coefficient of variation for this assay was 4.5%.

Protein carbonyls
Protein carbonyls were analysed using an adapted
version of the methodology from Levine et al.15

Duplicate plasma samples were incubated with 2,4-
dinitrophenylhydrazine in 2.5 M HCl for 1 hour in
the dark. Plasma blanks were incubated in 2.5 M
HCl only. All samples were then precipitated with
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20% trichloroacetic acid (TCA) on ice and centrifuged
at 10 000g for 10 minutes. Supernatants were dis-
carded and the pellets resuspended in 10% TCA and
again centrifuged as above. Supernatants were
removed and the pellets resuspended in 1:1 ethano-
l:ethylacetate solution. After centrifugation as above
the pellets were washed twice more with the ethano-
l:ethylacetate solution. Pellets were then resuspended
in 6 M guanidine hydrochloride solution and 220 μl
of samples and blanks were transferred to microplate
wells and absorbance read at 370 nm with correction
at 650 nm using a microplate reader (Fluostar
Optima, BMG Labtech, Offenburg, Germany).
Protein carbonyl concentration was normalized to
plasma protein content measured using a Pierce
BCA protein assay kit (Thermo Scientific,
Australia). The laboratory coefficient of variation for
this assay was 11.9%.

Superoxide dismutase
Plasma SOD activity was quantified by modifying a
method that measures the ability of the enzyme to
inhibit reduction of the tetrazolium dye, 3-(4,5-
dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide
(MTT).16 Samples were analysed in duplicate with
300 μl of either a 4:1 or a 5:1 plasma sample (this
depends on which dilution will give inhibition in the
range of between 40 and 60% – see below) added to
120 μl of a 3:5 chloroform/ethanol solution. This
was vortexed for approximately 90 seconds and then
centrifuged for 5 minutes at 4000g. 50 μl of the top
layer containing ethanol/water and SOD was
removed and added to 750 μl buffer. The solution
(diluted extract) was vortexed and left on ice until
assay. The assay mixture consisted of 25–40 μl of the
diluted extract (depending on obtaining inhibition in
the range of between 40 and 60% – see below), 75 μl
of 1 mM hypoxanthine, 50 μl of 1.25 mM MTT,
150 μl of 15 mU/ml of xanthine oxidase (XO) and a
volume of potassium phosphate monobasic/borate/
EDTA buffer (20.8 mM phosphate, 15.6 mM sodium
borate, and 0.5 mM EDTA, pH 8.2) in an eppendorf
tube. The volume of potassium phosphate monoba-
sic/borate/EDTA buffer was selected to obtain a
final volume of 750 μl (for example if 25 μl of the
diluted extract was used, then 450 μl of the buffer
would be used). This was incubated for 20 minutes
at 37°C and then the reaction was terminated with
the addition of 750 μl of isopropyl alcohol, which
also helped to dissolve the MTT formazan crystals
formed. The eppendorf tubes were then vortexed and
300 μl aliquots were loaded into wells on a 96-well
microplate and absorbance measured at 540 nm on a
microtitre plate reader (FLUOstar Optima, BMG
Labtech, Germany). One unit of SOD was defined
as the amount of SOD required to inhibit the MTT

reduction by 50%. Inhibition was calculated based
on the absorbances of the two blanks (0 and 100%
superoxide production – corresponding to 100 and
0% inhibition, respectively). Zero% superoxide pro-
duction was prepared in the same manner as the
samples with the XO enzyme and sample eliminated
and the total volume adjusted to 750 μl with buffer.
The 100% superoxide production tube was prepared
as per the 0% tube with the inclusion of the XO
enzyme. The laboratory coefficient of variation for
this assay was 7.6%.

Glutathione peroxidase
Plasma GPX activity was measured via the oxidation
of NADPH to NADP+ by modifying methods.17

Samples were analysed in duplicate. Plasma was
diluted to 200:1 with HPLC grade water. The main
reagent was made by mixing 9.25 ml of 100 mM
KH2PO4 buffer containing 1 mM EDTA (pH 7.0),
250 μl of 100 U/ml glutathione reductase, 500 μl of
23 mM glutathione and 1.25 ml of 2 mM NADPH
in 11 mM NaHCO3. The main reagent and sample
(24 μl of 1:200 hemolysate plus 30 μl of deionized
H2O added by the Cobas) were added to the cuvette
and the absorbance monitored at 340 nm for 200 s
on a Cobas Mira automated spectrophotometer
(Roche Diagnostics, Switzerland). 18.5 μl of mM
tert-butyl hydroperoxide plus 16 μl of deionized H2O
were then added as start reagent and the absorbance
was monitored for another 225 seconds. The difference
in absorbance per minute between the two steps was
used to calculate the enzyme activity. The laboratory
coefficient of variation for this assay was 2.4%.

Erythropoietic outcomes
ERI, the primary outcome from the main study, was
calculated as the weight-adjusted weekly ESA dose
divided by haemoglobin concentration. ERI for dar-
bepoetin-treated patients was converted to an erythro-
poietin-equivalent value using a dose conversion
factor of 200:1.18 Secondary outcomes from the main
study were: (1) haemoglobin concentration; (2) ESA
dose; (3) serum ferritin; (4) serum transferrin satur-
ation; and (5) reticulocyte count.

Statistical analysis
Results are expressed as frequencies for categorical
variables, mean ± SD for continuous normally dis-
tributed variables and median (inter-quartile range)
for continuous non-normally distributed variables.
All outcomes were analysed in accordance with the
intention-to-treat principle. Treatment groups were
compared on plasma levels of oxidative stress bio-
markers and other outcomes at 4 months, adjusted
for baseline values of each outcome of interest, using
analysis of covariance. Associations between baseline
measurements of oxidative stress markers and
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changes in haemoglobin and ERI were assessed using
a Pearson’s correlation test. P values <0.05 were con-
sidered statistically significant.

Results
Patients
The baseline characteristics of the oxidative stress sub-
study participants, including levels of oxidative stress
markers, ESA and ERI, were comparable between
the pentoxifylline and control groups (Table 1) and
with those of the main HERO trial study groups.19

All patients, except one in the control group, were in
stage 5 CKD and undergoing haemodialysis.

Oxidative stress markers
At the end of the 4-month study period, baseline
adjusted mean plasma total F2-isoprostanes and
SOD activities were higher in the pentoxifylline
group compared with controls, while baseline adjusted
mean protein carbonyls and plasma GPX activities
were lower. However, these differences were not stat-
istically significant (Table 2). Changes in plasma
total F2-isoprostanes, GPX, SOD, and protein carbo-
nyls from baseline to month 4 in the pentoxifylline and
control groups are shown in Figs. 1–4, respectively.

Erythopoietic outcomes
Baseline adjusted mean haemoglobin concentration at
the end of the 4-month study period was significantly
higher in the pentoxifylline group compared with con-
trols (adjusted mean difference 7.2 g/l, 95% CI:
0.3–14.2, P= 0.04; Table 3). No significant differences
were observed between the two groups with respect to
ERI, ESA dose, serum ferritin, serum transferrin sat-
uration, or reticulocyte count after adjustment for
their baseline levels (Table 3).

Correlation between baseline oxidative stress
markers and outcomes
Baseline measurements of oxidative stress markers
were correlated with haemoglobin and ERI measured
at baseline, 4 months, and the change from baseline to
4 months. All correlations were relatively small and
mostly not statistically significant (Table 4).

Discussion
This pre-specified sub-study of the HERO randomized
controlled trial demonstrated that oral administration
of pentoxifylline in a dose of 400 mg daily for 4
months did not significantly modify plasma concen-
trations of the oxidative stress biomarkers, total F2-
isoprostanes, protein carbonyls, GPX, or SOD. This
is the first examination of oxidative stress in the
setting of CKD and ESA-hyporesponsive anaemia.
Previous studies have demonstrated evidence of

increased oxidative stress in CKD progression.20 For
example, F2-isoprostanes, which are considered the gold
standard measure of lipid peroxidative damage, are sub-
stantially elevated in patients with CKD,21 especially
those receiving chronic haemodialysis (HD),22 related to
healthy people. Indeed, they may be a more reliable
marker of oxidative stress in HD, since they are not
removed by HD.23 Protein carbonyls, a measure of
protein oxidation, are also increased in CKDpatients20,24

and are negatively correlated with estimated glomerular
filtration rate (eGFR).25 On the other hand, the activities
of the antioxidant enzymes, SOD (which converts super-
oxide to hydrogen peroxide) and GPX (which is

Table 1 Baseline characteristics by treatment group

Characteristic Control (n= 17)
Pentoxifylline
(n= 15)

Age at randomization
(year)

65.1±15.8 58.7±15.1

Gender (%)
Male 9 (53) 5 (33)
Female 8 (47) 10 (67)

Ethnicity (%)
Caucasian 13 (76) 13 (87)
Aboriginal or Torres

Strait Islander
1 (6) 0 (0)

Maori or Pacific
Islander

1 (6) 0 (0)

Asian 1 (6) 2 (13)
Other 1 (6) 0 (0)

Weight (kg) 79.5± 17.6 72.3± 14.7
Body mass index (BMI) 29.5± 6.6 28.8± 6.0

Obesity (%)
BMI <30 kg/m2 10 (59) 10 (67)
BMI ≥30 kg/m2 7 (41) 5 (33)

Smoking status* (%)
Never 5 (29) 7 (47)
Former 10 (59) 7 (47)
Current 1 (6) 1 (7)

Chronic kidney disease stage* (%)
Stage 4 1 (6) 0 (0)
Stage 5 15 (88) 15 (100)

Dialysis status* (%)
Haemodialysis 15 (88) 15 (100)
Peritoneal dialysis 0 (0) 0 (0)
Predialysis 1 (6) 0 (0)

Systolic blood pressure
(mm Hg)

143± 22 144± 27

Diastolic blood pressure
(mm Hg)

70± 14 75± 16

Haemoglobin (g/l) 106.59± 9.91 106.47± 9.81
Reticulocyte count (109/l) 59.35± 25.26 59.33± 27.51
Serum ferritin (μg/l) 473.35± 316.98 601.47± 274.59
Serum transferrin

saturation (%)
24.76± 6.45 28.27± 10.69

ESA type (%)
Darbepoetin 5 (29) 6 (40)
Erythropoietin (alpha

or beta)
12 (71) 9 (60)

ESA dose (IU/kg/
week)†

258.82± 107.92 223.53± 80.02

ERI (IU/kg/week/g/l) 2.43± 0.95 2.15± 0.90
Total F2-isoprostanes

(pg/ml)
159.17± 84.51 125.13± 61.30

Plasma GPX (U/l) 177.7± 11.78 173.29± 14.65
Plasma SOD (U/ml) 2.2± 2.0 2.59± 1.72
Protein carbonyls

(nmol/mg)
0.53± 0.21 0.71± 0.20

*One missing value in control group.
†Patients on darbepoetin were converted to an erythropoietin-
equivalent dose using a conversion factor of 200:1.
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responsible for the conversion of hydrogen peroxide and
other organic peroxides to water and oxygen),26 are
lower in HD patients than healthy controls.27

Enhanced oxidative stress in CKD patients may
result in ESA-hyporesponsive anaemia,5,7,10 by med-
iating alterations in cellular iron homeostasis, leading

Table 2 Oxidative stress markers at 4 months by treatment group (mean values and mean differences adjusted for baseline
values)

Outcome Control (n= 17) Pentoxifylline (n= 15)
Difference (pentoxifylline-control)

(95% CI) P-value

Total F2-isoprostanes (pg/ml) 134.32 (105.20–163.44) 169.33 (138.28–200.38) 35.01 (−8.12 to 78.15) 0.11
Plasma GPX (U/l) 178.81 (174.09–183.54) 172.75 (167.71–177.78) −6.06 (−13.0 to 0.89) 0.09
Plasma SOD (U/ml) 2.17 (1.56–2.78) 2.99 (2.33–3.64) 0.82 (−0.08 to 1.71) 0.07
Protein carbonyls (nmol/mg) 0.63 (0.55–0.71) 0.59 (0.50–0.68) −0.04 (−0.16 to 0.08) 0.52

Figure 1 Plasma total F2-isoprostane concentrations at baseline and 4 months in the pentoxifylline and control groups.

Figure 2 Plasma GPX concentrations at baseline and 4 months in the pentoxifylline and control groups.
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to functional iron deficiency,5 and reduction of eryth-
rocyte life span28 and erythropoietin (EPO) syn-
thesis.29 Decreased SOD and GPX activities were
both correlated with lower haemoglobin, higher EPO
requirements,8 and poorer ESA response in haemodia-
lysis patients.30 However, the results of the present
study suggest that pentoxifylline increased haemo-
globin levels in ESA-hyporesponsive, anaemic CKD
patients with decreased ESA dose and ERI by mech-
anisms other than mitigation of oxidative stress.
Similar to these findings, Rusu et al.30 reported that

antioxidant treatment with vitamin E 400 mg/day for

8 weeks improved ESA responsiveness, increased hae-
moglobin levels, and decreased EPO dosage in patients
with an ERI greater than 200 U/week/haematocrit.
Moreover, a meta-analysis of six randomized con-
trolled trials (n= 326, range 18–153) of ascorbic acid
administration in addition to standard anaemia man-
agement found that ascorbic acid resulted in an
increase in haemoglobin concentration and a decrease
in EPO requirements.31 However, these studies were
limited by short duration and generally suboptimal
methodological quality related to unclear randomiz-
ation process, unclear allocation concealment, lack of

Figure 4 Plasma protein carbonyl concentrations at baseline and 4 months in the pentoxifylline and control groups.

Figure 3 Plasma SOD concentrations at baseline and 4 months in the pentoxifylline and control groups.
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Table 3 Primary and secondary outcomes at 4 months by treatment group (mean values and mean differences adjusted for baseline values)

Outcome Control (n = 17) Pentoxifylline (n= 15) Difference (pentoxifylline − control) (95% CI) P-Value

ERI (IU/kg/week/gHb)* 2.38 (2.03–2.73) 2.16 (1.78–2.53) −0.22 (−0.74 to 0.29) 0.39
Haemoglobin level (g/l) 106.26 (101.52–111.00) 113.50 (108.46–118.55) 7.2 (0.3–14.2) 0.04
ESA dose (IU/kg/week* 250.00 (210.71–289.29) 237.00 (195.12–278.87) −13 (−71 to 45) 0.65
Serum ferritin (μg/l) 465.96 (338.43–593.50) 503.71 (367.73–639.69) 37.74 (−150.90 to 226.39) 0.69
Serum transferrin saturation (%) 23.50 (18.66–28.34) 27.30 (22.14–32.46) 3.80 (−3.35 to 10.95) 0.29
Reticulocyte count 65.82 (51.13–80.51) 52.20 (36.56–67.84) −13.62 (−35.08 to 7.84) 0.20

*Patients on darbepoetin were converted to an erythropoietin-equivalent dose using a conversion factor of 200:1.

Table 4 Correlation between baseline oxidative stress markers and haemoglobin, ESA dose, and ESA resistance index

Oxidative stress marker

Haemoglobin (Hb) ESA dose ESA resistance index (ERI)

Baseline 4 months Change Baseline 4 months Change Baseline 4 months Change

Baseline
Total F2-isoprostanes −0.10 0.17 0.27 −0.27 −0.01 −0.31 −0.25 −0.07 0.21
Plasma GPX 0.04 0.08 0.04 −0.18 −0.35 0.29 −0.19 −0.35 −0.32
Plasma SOD 0.20 0.26 0.09 0.12 0.08 0.03 0.06 0.03 −0.03
Protein carbonyls −0.14 0.18 0.31 −0.04 −0.06 0.03 0.00 −0.06 −0.10

Change
Total F2-isoprostanes −0.06 0.18 0.24 0.20 0.29 −0.17 0.19 −0.30 −0.17
Plasma GPX 0.01 0.34 0.35 −0.44* −0.33 −0.07 −0.42† −0.02 0.27
Plasma SOD 0.28 0.11 −0.14 0.06 0.18 −0.18 0.00 −0.17 0.39‡

Protein carbonyls −0.10 0.33 0.45* 0.38‡ 0.30 0.04 0.41† −0.28 0.00

*P= 0.01
†P= 0.02.
‡P= 0.03.
The other P values > 0.05.
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blinding, heterogeneity among trial populations, and
poor reporting of adverse events. Furthermore, none
of these studies examined changes in plasma levels of
oxidative stress markers so it is uncertain whether
the observed effects of ascorbic acid were mediated
by reduced oxidative stress or by other mechanisms.
In this respect, it should be noted that previous

studies have not observed effects of ascorbic acid and
vitamin E on oxidative stress biomarkers in patients
with CKD. In one study reported by Kamgar
et al.,32 plasma F2-isoprostane and protein carbonyls
levels in ESRD patients remained unchanged after 8
weeks of treatment with combination antioxidant
therapy (including vitamin E 800 IU and vitamin C
250 mg daily), compared with placebo. Furthermore,
in a randomized, double-blind, placebo-controlled,
clinical trial, Himmelfarb et al.33 reported that treat-
ment of haemodialysis patients with gamma-toco-
pherol (vitamin E) and docosahexaenoic acid
(vitamin C) for 8 weeks did not significantly change
plasma levels of F2-isoprostane and protein carbonyls
compared with placebo. Similar to these results, the
present sub-study did not observe any significant
difference in these oxidative stress markers between
groups.
A strength of this sub-study was the fact that it used

optimized methods for quantifying oxidative stress
markers that have been shown to be reliable, sensitive,
and reproducible.14 The study was also performed
within the context of multinational, multi-centre ran-
domized controlled trial, such that the internal and
external validity of the findings were high. Balanced
against these strengths, the study was limited by a rela-
tively small sample size, such that the possibility of a
type 2 statistical error cannot be discounted. The
other limitation was that not all participants had com-
plete samples for oxidative stress analyses, raising the
possibility of ascertainment bias. Furthermore,
although four key biomarkers of oxidative stress
were examined, it is possible that different results
may have been obtained if erythrocytes rather than
plasma were used or if other oxidative stress markers
had been examined, such as F2-isofurans, malondial-
dehyde or 4-hydroxynonenal. Finally, the conversion
of darbepoetin dose to an erythropoietin-equivalent
value using the recommended conversion factor of
200:1 is not exact and potentially introduced variabil-
ity, although this was mitigated by the inclusion of
ESA class in the adaptive randomization allocation
algorithm, which balanced erythropoietin and darbe-
poetin use between each group.

Conclusions
In conclusion, pentoxifylline did not alter oxidative
stress biomarkers, suggesting that alternative mechan-
isms may be responsible for the agent’s ability to

augment haemoglobin levels in CKD patients with
ESA-hyporesponsive anaemia. Further research into
the possible mechanisms by which pentoxifylline cor-
rects ESA-hyporesponsive anaemia, including larger
trials to ascertain the influence of oxidative stress on
haemoglobin response, are warranted.
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