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Abstract

Unobtrusive and accurate ambulatory methods are needed to monitor long-term sleep patterns for 

improving health. Previously developed ambulatory sleep detection methods rely either in whole 

or in part on self-reported diary data as ground truth, which is a problem since people often do not 

fill them out accurately. This paper presents an algorithm that uses multimodal data from 

smartphones and wearable technologies to detect sleep/wake state and sleep onset/offset using a 

type of recurrent neural network with long-short-term memory (LSTM) cells for synthesizing 

temporal information. We collected 5580 days of multimodal data from 186 participants and 

compared the new method for sleep/wake classification and sleep onset/offset detection to (1) non-

temporal machine learning methods and (2) a state-of-the-art actigraphy software. The new LSTM 

method achieved a sleep/wake classification accuracy of 96.5%, and sleep onset/offset detection 

F1 scores of 0.86 and 0.84 respectively, with mean absolute errors of 5.0 and 5.5 min, respectively, 

when compared with sleep/wake state and sleep onset/offset assessed using actigraphy and sleep 

diaries. The LSTM results were statistically superior to those from non-temporal machine learning 

algorithms and the actigraphy software. We show good generalization of the new algorithm by 

comparing participant-dependent and participant-independent models, and we show how to make 

the model nearly realtime with slightly reduced performance.
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I. INTRODUCTION

HEALTHY sleep requires adequate duration, good quality, appropriate timing, and 

regularity [1]. Inadequate sleep increases appetite and food intake [2], decreases insulin 

sensitivity and glucose tolerance [3], impairs immune function [4], disturbs mood [5], leads 

Akane.Sano@rice.edu.
*Both authors contributed equally to this work

HHS Public Access
Author manuscript
IEEE J Biomed Health Inform. Author manuscript; available in PMC 2020 July 01.

Published in final edited form as:
IEEE J Biomed Health Inform. 2019 July ; 23(4): 1607–1617. doi:10.1109/JBHI.2018.2867619.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



to slowed reaction time [6] and attentional failures [7], [8], and compromises memory and 

learning [9]. Unfortunately, an estimated ~30% of adults have a sleep disorder [10], and 

most people who have sleep disorders remain undiagnosed [11].

There are two tools that are commonly used in diagnosing and treating sleep-related 

problems: bedtime sleep monitoring, and ambulatory sleep detection. The former, which 

includes polysomnography (PSG), is usually applied only during sleep at night, and usually 

involves coarse or fine detection of sleep stages. Its equipment is either too obtrusive to wear 

during the daytime or restricted in bed so is not used in studies that continuously monitor 

participants for 24 hours/day for multiple days or weeks. The latter, ambulatory sleep 

detection, is typically used 24-hours/day to estimate sleep episode onset/offset times and 

sleep duration from continuous behavioral and physiological data.

PSG is the gold standard for bedtime sleep monitoring and diagnosis of sleep disorders [12], 

recording electroencephalogram (EEG), heart rhythm, respiratory effort, eye and leg 

movements and oxygen saturation over multiple nights in a sleep laboratory to produce a 

detailed picture of a patient’s sleep patterns [12]. Home unattended polysomnography (H-

PSG) is a lower cost option than in-clinic PSG. Collecting data at home is likely to have 

more validity for understanding a person’s typical sleep patterns since a person’s sleep is 

impacted by their environment [13]. However, both PSG and H-PSG tend to involve bulky 

equipment that requires significant time to put on properly and to interpret; the systems tend 

to be cumbersome, and might themselves interact with the sleep behavior, which make them 

impractical for long-term sleep/wake detection. More recent methods involve less 

cumbersome equipment such as using a smartphone placed on the bed to track movement 

via accelerometers [14], using contact [15] and non-contact microphones [16], short-range 

doppler radar [17] and WiFi [18].

Clinical sleep studies use two standard instruments for performing ambulatory sleep 

detection: actigraphy and diaries. Actigraphy [19], [20] is based on the observation that there 

is less movement during sleep and more movement during wake [21], [22]. Since actigraphs 

are typically small and comfortable to wear, actigraphy can conveniently be recorded 

continuously for 24-hours/day for weeks or longer. However, it has been shown to fail in 

special populations and to be unreliable for detecting wakefulness during motionless 

periods. Sleep diaries and questionnaires [23] also have several drawbacks, namely users’ 

adherence and reporting bias [23], [24]. Significant effort is required by users to maintain 

accurate diaries, and by researchers to check their entries for anomalies. Today’s best 

ambulatory studies combine diaries and actigraphs in a labor-intensive human-validation 

process to merge their combined measures [25]. There is thus a need for better automated 

tools to enable accurate long-term evaluation of sleep timing and duration in daily life. In 

this paper, we focus on ambulatory sleep detection.

Smartphones and wearables that measure acceleration, light, heart rate, skin conductance, 

skin temperature, phone usage, and other behaviors and physiology offer a low-cost, easy-to-

use possibility for ambulatory long-term sleep detection; for example accelerometer [26], 

smartphone [27], [28], or biosensor [29] data alone have been used to achieve ambulatory 
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sleep/wake detection. However, none of these have compared their results with the current 

best ambulatory detection that merges actigraphy and sleep diaries [25].

In this paper, we present a novel automated method to detect sleep/wake state and sleep 

onset/offset times using recurrent neural networks with long short-term memory (LSTM) 

cells [30] applied to multimodal data from a smartphone and a wrist-worn sensor, and 

labeled by both actigraphy and sleep diaries. The proposed method combines multimodal 

ambulatory physiological and behavioral data and improves upon our team’s earlier work 

showing that refining sleep onset/offset times can help improve sleep characterization [31].

This paper makes several novel contributions:

• We develop a fully automated machine learning algorithm for (i) sleep/wake 

classification and (ii) sleep onset/offset detection, using physiological and 

behavioral data from a mobile phone and a wearable sensor. This automated 

algorithm requires much less human effort than the actigraphy + sleep diary 

method.

• The algorithm achieves higher performance in real-life ambulatory settings than 

actigraphy + an existing fully automated sleep detection algorithm (actigraphy 

software: Action4).

• We compare the effectiveness of different physiological and behavioral 

modalities and determine the best combination for sleep/wake detection.

• The new bidirectional LSTM model is shown to outperform three other machine 

learning models.

• We show the new model generalizes well to people not included in its training 

data.

• We show that the new algorithm, with minor adjustments, can give near real-time 

sleep/wake estimates.

II. RELATED WORK

A. Ambulatory Sleep detection systems

The most common ambulatory method for sleep evaluation is actigraphy, in which 

movement detectors (typically accelerometers) are placed on the wrist, ankle or trunk, and 

used to sample movement several times per second to derive sleep/wake parameters such as 

total sleep time, percent of time spent asleep, total wake time, percent of time spent awake, 

number of awakenings and sleep efficiency [32]. Watch-sized, consumer-oriented, wearable 

sensors such as the wrist-worn FitBit are able to record actigraphy and perform sleep 

detection [33], [34]. While actigraphy has reasonable validity and reliability in assessing 

sleep-wake patterns in normal individuals with average or good sleep quality [35] and has 

been shown to be more reliable than subjective or self-reported sleep diaries and behavior 

logs [36], it may fail in special populations (e.g., elderly people, individuals with other 

major health problems or individuals with poor sleep quality, such as patients with 

movement disorders [37] and shift workers [38] [39]). The main problem associated with 
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actigraphic sleep-wake detection is the false labeling of sleep when people are awake but 

relatively motionless [39], [40].

Smartphone usage patterns (e.g., the time and length of smartphone usage or recharge 

events) and environmental observations (e.g., prolonged silence and darkness) have also 

been used to infer periods of likely sleep [27], [28], [41]. Chen et al. automatically inferred 

sleep duration with ±42 minute error using smartphone data (light sensor, phone lock, off 

and charge logs, activity and audio features) and regression models [27].

Min et al. used sound amplitude, acceleration, light intensity, screen proximity, app usage, 

battery and screen status and detected sleep episodes with 93% accuracy and showed ±44 

minute, ±42 minute, and ±64 minute errors for bedtime, waketime, and duration compared 

with sleep diaries, using a Bayesian Network [28]. Saeb et al. used random forest classifiers 

to develop both personalized and global self-reported sleep detection models state from the 

phone sensor data (location, motion, light, sound, and in-phone activity data from Android 

phone). They obtained 88.8% accuracy to detect sleep segments and 91.8% after correcting 

missing sensor data and sleep diaries with an average median absolute deviation (MAD) of 

38 min for sleep episode onset detection and 36 min for sleep episode offset detection [41]. 

These previous studies used self-reported sleep diaries as ground truth and did not use 

temporal machine learning models, which we show can improve the accuracy of sleep/wake 

detection and sleep onset/offset timing.

B. Recurrent neural networks for sleep data

A recurrent neural network (RNN) is a type of artificial neural network where connections 

between units form a directed cycle. This allows it to exhibit dynamic temporal behavior and 

process arbitrary sequences of inputs. A significant limitation of vanilla RNN models, which 

strictly integrate state information over time, is known as the “vanishing gradients” effect, 

where the gradient signal gets so small that learning either becomes very slow or stops 

working altogether. Long-short-term memory networks (LSTMs) are a special kind of RNN, 

capable of learning long-term dependencies [42]. They contain gate functions that determine 

when the input is significant enough to remember and when it should continue to remember 

or forget the value, and when it should output the value. LSTMs have recently shown great 

success in temporal sequence tasks such as speech recognition [43] and machine translation 

[44], [45].

RNNs, especially LSTMs, have been successfully used in sleep studies. They have been 

applied to actigraphy during awake time to predict sleep quality (good/poor binary 

prediction), performing with 79.6 % accuracy and 0.85 F1 score [46]. In combination with 

deep belief networks (DBN), they have also been applied to a single channel of EEG and 

EOG data for classifying 5 sleep stages (Wake, non-REM1/2/3 and REM) with the best 

performance of overall accuracy 85.92 % and macro F1 score 80.50 [47]. In another study, 

DBN and LSTM have been applied to EEG, EOG, and EMG data for classification of the 5 

sleep stage classification (overall accuracy 98.8 % and F1 score 0.99) [48].

In this paper, we aim to develop an LSTM-based detector of sleep/wake and sleep episode 

onset/offset timing using multimodal data from a wearable sensor and mobile phone.
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III. METHODS

A. Data acquisition

186 undergraduate students in 5 cohorts participated in an ~30-day study (120 males, 66 

females, age: 18–25) that produced 5580 days of data. The study protocol was approved by 

the Massachusetts Institute of Technology (# 1209005240). Participants were recruited 

through email. During the ~30-day experiment, participants (i) wore a wrist sensor on their 

dominant hand (Q-sensor, Affectiva, USA) to measure 3-axis acceleration (ACC), skin 

conductance (SC), and skin temperature (ST) at 8 Hz; (ii) installed an Android phone 

application using the funf open source framework [49] to measure timing of calls, timing of 

short message service (SMS), location, and timing of screen-on; (iii) wore a wrist actigraphy 

monitor on their non-dominant hand (Motion Logger, AMI, USA) to measure activity and 

light exposure levels every 1 minute; and (iv) completed a sleep diary every morning to 

record bed time, sleep latency, wake time, and the number and timing of awakenings. The 

sleep diary was inspected by an experimenter every day to check completion and to obtain 

corrections or clarifications from the student if there were any clear errors or missing data.

To obtain the ground truth of sleep/wake epochs and sleep onset and offset, we used a 

method previously established by Harvard Medical School sleep experts to score sleep from 

diaries and actigraphy data [25]. An experienced investigator first reviewed the data and 

selected analysis windows for potential sleep episodes based on the combined diary and 

activity data. Actigraphy software (Action4, AMI, USA) set the sleep episode onset/offset 

times and classified each epoch as sleep or wake. Based on the sleep episode time and 

duration, the investigator labeled each sleep episode as either a main sleep or a nap based on 

sleep diaries. From this procedure, we obtained (1) a classification of sleep or wake for 

every 1-min epoch, (2) sleep episode onset/offset times, (3) whether a sleep episode was 

from main sleep or a nap. These labels were used as “ground truth”. Fig. 1 shows an 

exemplary day of raw data collected in our study in which the first stage labels are 

superimposed. These assessments were used to train and test results from the Q-sensor and 

phone data. The diaries and actigraphy data were not used as inputs for sleep/wake and sleep 

episode onset/offset detection because they were used to generate the ground truth labels.

B. Feature preparation

Table I shows the features we computed for each time window. A window length of 20 or 30 

seconds is the convention for PSG sleep scoring [50], while other studies using ambulatory 

data adopt 10-min [28] or 5-min [27] windows. In this study, we used a window length of 1 

minute without overlap to match the scale of our ground truth labels.

There were several reasons why we chose these feature variables. First, it has been shown 

that SC is more likely to have periods of high frequency activity called “storms” during deep 

sleep [51]; we used algorithms developed to automatically detect storms in SC data [52]. 

Therefore, for the SC modality we computed mean, standard deviation, and frequency-

domain features, including powers for five frequency bands (0–0.5 Hz, in 0.1 Hz intervals), 

and three storm features according to [53], including the number of SC responses, storm flag 

(whether we observe a storm in that minute), and the elapsed time since a storm started. 
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Also, ST rises during sleep in individuals in living environments similar to those in our 

experiment [54]. Second, our phone app recorded time stamps both when phone users sent a 

SMS and also when they received a SMS. Since receiving a SMS is a passive behavior that 

could happen during sleep, we only kept SMS-sending events as a feature variable. Third, 

the raw location data acquired in our experiments were the latitude and longitude of phones, 

whose absolute numbers are nearly meaningless for sleep estimation across subjects. Hence, 

we developed a movement index for each minute, formulated as the arithmetic mean of the 

variances of the latitude and the longitude, to indicate whether a user was actively changing 

location in that minute.

We had missing data lasting from a few minutes to several hours due to phone and sensor 

charging, and activities such as removal for a shower. We used a two-step strategy to solve 

this problem. First, a 25% missing tolerance threshold was applied to the wrist-worn sensor 

data: if any modalities had a missing rate higher than 25% within a day, the whole day’s data 

were dropped. This rule was not adopted on the phone data for sporadic events such as 

sending a SMS, because we cannot discriminate if such events did not happen or were 

missed. Second, for the remaining days, we filled minutes with missing data using the 

average of the same feature variable over the remaining part of the same day. (We also tried 

linear interpolation for filling in missing data, but obtained consistently slightly worse 

performance.) After dealing with the missing data, we had 3439 days of data (average sleep 

onset time: 2:45AM (SD 1:49), sleep offset time: 9:50AM (SD 1:50), sleep duration: 7.3 

hours (SD 1.8), sleep efficiency [32]: 95.7 (SD 5.1), sleep data:wake data=1:2.5). Note that 

the class ratio between sleep and wake is not extreme and we have abundant samples 

belonging to the minority class (wake), so we did not balance the two classes using 

oversampling or undersampling. To equalize features and help with gradient descent 

optimization, every feature variable was also normalized to the [0, 1] range within each day.

Fig. 2 shows two ways to split the data for training and testing — by days or by participants. 

The latter ensures that a person who is in the test data is not in the training data. An LSTM 

trained this way is considered to be participant-independent. While such a model is less 

likely to perform as well as a participant-dependent model, its performance is more likely to 

reflect realistic future performance on new people whose data have not helped train the 

model.

The simplest way to make a participant-dependent model is shown in Fig. 2 (a) where the 

data are split by days. However, because sleep can overlap multiple days we want to be 

careful how this is done and not simply assign the days in randomized order. For example, if 

we assign two consecutive days to the training and test sets respectively, the first period of 

the second day will lose its past information. Therefore, we connected consecutive days of 

each subject into chunks, and then randomly cut the first or last 20% of each chunk as the 

test set. Our process resulted in 2772 days assigned to the training set, and 667 days to the 

test set (a roughly 80–20 split of the 3439 days). For the participant-independent model 

(splitting the data by participants), we randomly assigned 80% of the participants as the 

training set and the remaining 20% as the test set.
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C. Sleep/wake detection

Our goal is to automatically classify every minute of data as sleep or wake, which is a binary 

sequential classification problem. We wish to use a model that exploits how current feature 

variables can depend on both past and future ones. For example, if a participant turned on 

her phone screen at 11:01pm, it would be highly likely that she was still awake at 11:00pm.

Fig. 3 shows the structure of the bidirectional LSTM we used for sleep detection. The vector 

xt contains all the features at time t, and yt ∈ [0, 1] is the estimated sleep probability for each 

minute. The activation function used in the fully-connected layer is rectified linear units. The 

bidirectional neural network was trained using RMSprop [55] with binary cross-entropy 

loss. The optimizer parameters were adopted from [56]. We set the past- and future-looking 

sequence lengths to 30 min each based on the work of Min et al. [28]. We also ran 

experiments to verify that 30 min is an appropriate choice, which were introduced in the 

supplementary Fig. A.1. The other hyper-parameters including the number of hidden units in 

LSTM, the number of LSTM layers, and the drop-out rate were tuned and selected on the 

training set using 5-fold cross-validation. The whole algorithm was implemented using deep 

learning frameworks Theano 0.8.2 and Keras 1.0.5.

D. Sleep episode onset/offset estimation

After sleep/wake detection, we estimated sleep episode onset/offset points. In the proposed 

sleep detection model (Fig. 3), information from both the past and the future contribute to 

the estimation of sleep probabilities. A high sleep probability yt can be achieved, only when 

the past feature matrices xt − 29, ⋯, xt − 1, xt  and the future feature matrices 

xt, ⋯, xt + 1, xt + 29  both show sleep patterns. Note that sleep patterns and awake patterns in 

feature matrices generally make opposite contributions to the final output of the model. Thus 

if we want to output sleep offset probability instead of sleep probability, an inverter can be 

inserted between the backward network and the concatenation layer, as shown in Fig. 4(a). 

In this way, a high yt will be triggered when the past features show sleep patterns and the 

future features show awake patterns. We call this new yt, corresponding to waking up, yt
W. 

Likewise, if an inverter is inserted at the output of the forward network (Fig. 4(b)), the final 

output will be sleep episode onset probability yt
S indicating falling asleep.

Fig. 5 (b) displays an exemplary output of the sleep onset estimation model (yt
S), in which 

the peaks are sleep episode onset point candidates. To localize them, we applied the 

findpeaks function in MATLAB R2015b to the signal to find local maxima satisfying two 

conditions: First, to eliminate potential false positives, the height of a detected peak needs to 

be higher than a threshold, which was optimized on the training set towards a higher F1 

score (introduced below) and applied to the test data. Second, the distance between two 

peaks needs to be longer than 30 min. This rule was set to avoid false positives, since the 

shortest time interval between two neighboring sleep episode onset/offset points was 45 min 

in our data.
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The detected peaks in yt
S and yt

W of the test set were then compared to the ground truth 

quantitatively. If the distance between a peak and its closest sleep episode onset/offset point 

in the ground truth was less than 30 min, then we defined the peak as a true positive. Based 

on this, we computed the precision, recall, and F1 score (the harmonic mean of precision and 

recall) of our estimation. For all the true positive points, we also reported the average of their 

distances to the ground truth as the estimation errors.

IV. EXPERIMENTS

In this paper, we conducted the following experiments to evaluate performance of the 

proposed algorithm.

A. Sleep detection and sleep episode onset/offset detection using the participant-
dependent bidirectional LSTM model: Determine the best combinations of features

We compared performance of sleep detection and sleep episode onset/offset detection using 

the proposed bidirectional LSTM model and different combinations of features from a 

wearable sensor and a mobile phone. We compared (i) wrist sensor (ACC, EDA, ST), (ii) 

phone (screen, SMS, Call, location), (iii) wrist sensor + phone and (iv-ix) all combinations 

of wrist sensor features. We also compared performance using time feature.

B. Sleep detection: Compare the LSTM model to other machine learning models using 
the same participant-dependent setup

We compared the proposed temporal LSTM model and three other machine learning models: 

(i) a vanilla artificial neural network (ANN, a feed forward neural network with one hidden 

layer), (ii) a logistic regression model with ridge regularization, and (iii) a regularized linear 

support vector machine model (SVM).

As described in the Methods/feature preparation subsection, we split our data into training 

set (80%) and test data (20%). For ANN, we used the training data for optimizing the 

number of neurons and training the model (using 70/15/15 % of the training data for 

training, validation and testing respectively) and used the test data for testing the model. For 

Logistic Regression and SVM, we applied 10-fold cross validation to the training dataset for 

tuning hyper-parameters and training the models, and tested the models on the test data.

C. Sleep detection: Participant-dependent LSTM model vs existing fully automated sleep 
detection algorithm (Actigraphy software (Action4))

We compared our proposed LSTM model with an existing fully automated sleep/wake 

detection algorithms: Actigraphy software (Action4). The actigraphy device is bundled with 

their own software (Action4, AMI, USA) for sleep scoring. We computed the sleep/wake 

classification performance of the Action4 software by comparing sleep/wake output from the 

Action4 Software using actigraphy data (using ZCM and UCSD zero-crossing algorithm) 

(without diaries or human assessment) and the ground truth.
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D. Sleep detection: participant-dependent LSTM model vs participant-independent LSTM 
model

We compared the performance of participant-dependent LSTM models and participant-

independent LSTM models for sleep detection.

E. Bidirectional LSTM model vs real-time LSTM model (participant-dependent)

We compared the performance of bidirectional LSTM models that use both past and future 

30-min sequences of data with LSTM models that use only the past 30 mins of data (real-

time implementation, Fig. 6). We hypothesized that a model using both past and future data 

would have higher performance; however, a model that only requires the past data would be 

useful for real-time sleep detection. Thus, we compare if the performance from the two 

models differs significantly.

F. Sleep episode onset/offset detection: template-matching-based method vs differential 
bidirectional LSTM model (participant-dependent)

In our previous paper [31], we proposed a sleep episode onset/offset detector using cross-

correlation-based template matching. Specifically, we first computed the sleep probability 

patterns (for both sleep onset and offset) from the sleep detection results within the training 

set. We denoted these training set patterns as templates. The cross-correlation between the 

templates and sleep probabilities in the test set were then computed. The time points with 

the highest similarities to the templates were then labeled as sleep onsets or sleep offsets.

In this paper, we compared the performance of differential bidirectional LSTM based sleep 

episode onset/offset detection (Fig. 4) with the template-matching based algorithm.

V. RESULTS

A. Sleep/wake detection using the participant-dependent bidirectional LSTM model: 
modality comparison

We summarize sleep detection performance of the proposed bidirectional LSTM model 

(participant-dependent) in Fig. 7 (Supplementary Material Table A.1 ), comparing two cases: 

whether the algorithm used the clock time as an input feature (“with time”) or not (“without 

time”). This quantifies how much the algorithm is biased by sleep being more likely to occur 

at night. The detection accuracy of using only the time feature, 86.7 % is also shown in the 

figure as a baseline. Among all feature combinations, ACC + ST showed the best 

performance, 96.2% and 96.5% accuracy without and with time, respectively, and phone 

features showed the worst performance.

To show the relative importance of different features, we visualized the mean absolute 

weights of each feature across all connected nodes in the input layer of LSTM, as shown in 

Fig. 8. In the visualization, a higher weight indicates that the feature has a stronger influence 

sleep detection. In descending order, the most important feature are the standard deviation of 

acceleration, whether a phone call was missed, and the movement index calculated from the 

GPS data. Note that the estimated importance is affected by the collinearity of features. For 
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example, we observed that the five frequency bands of EDA were sometimes correlated with 

each other, which dispersed their importance.

We also computed the percentages of main sleep and naps that were successfully detected. 

Our results showed that with ACC + ST and time features, 93% of epochs within main sleep 

were correctly classified (3% sleep was misrecognized as wake, 4% wake was 

misrecognized as sleep) and 65% of epochs within naps (33% sleep was misrecognized as 

wake, 2% wake was misrecognized as sleep) were successfully detected. As expected, given 

the irregular timing of naps, the performance in detecting naps was lower when using time 

features.

B. Sleep episode onset/offset detection using the participant-dependent differential 
bidirectional LSTM model: modality comparison

Table II shows a summary of sleep episode onset/offset detection using the differential 

bidirectional LSTM RNN. We obtained the best F1 score and smallest mean absolute errors 

with ACC + ST features both for sleep episode onset/offset without and with time features. 

F1 scores are 0.84–0.86 and mean absolute errors are 5.0–5.6 minutes. Sleep episode offset 

detection performed slightly worse than sleep episode onset detection. The details about the 

error distributions for each feature combination are shown in Supplementary Material Fig. 

A.2.

C. Sleep detection performance: the participant-dependent bidirectional LSTM models vs 
other machine learning models

Fig. 9 shows the results comparing participant-dependent LSTM to other models that did not 

include temporal information (neural networks, logistic regression, SVM). The LSTM 

models showed higher accuracy in sleep detection (see detailed numbers in Supplementary 

Material Table A.1). We applied the McNemar test and found that LSTM models with any 

combinations of features (both with time and without time) showed higher accuracy than 

neural networks, logistic regression and SVM models (p < 0.05).

D. Sleep detection performance: the participant-dependent bidirectional LSTM vs the 
actigraphy (Action4) algorithm

We compared the performance between the LSTM models (participant-dependent) and the 

actigraphy (Action4) algorithm. We obtained accuracy 93.5% (SD: 5.1%) and F1 score 0.94 

(SD: 0.1) for the actigraphy algorithm. We tested if the proposed LSTM model performs 

better than the actigraphy algorithm using the McNemar test. Feature combinations such as 

ACC and ACC + ST showed statistically higher accuracy than the actigraphy algorithm 

(ACC: 95.5 % without time, 96.3 % with time, ACC + ST: 96.2 % without time, 96.5 % with 

time). The 3.2 % accuracy difference is equivalent to 46 mins per day (24 hours). Stars on 

the bars indicates that the result is significantly better than that of the actigraphy algorithm at 

the 5% significance level even after Bonferroni correction (Fig. 7). We also compared false 

positive rates for actigraphy and our algorithm. The false positive rate for actigraphy was 

7.8 % and the one for LSTM with ACC data was 3.7 %; therefore our proposed method 

reduced false positives which are the main weakness of actigraphy.
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E. Sleep detection performance: participant-dependent bidirectional LSTM models vs 
participant-independent bidirectional LSTM models

The models with data split by days and the models with data split by participants were very 

similar in terms of sleep detection accuracy, with very small differences (−0.4–0.5%: −6–7 

mins per day(24 hours)). The detailed accuracy is shown in Supplementary Material Table 

A.3).

F. Sleep detection performance: the bidirectional LSTM models vs the realtime LSTM 
models

Fig. 10 shows the accuracy comparison between bidirectional LSTM models and realtime 

LSTM models (participant-dependent models), both also using time as a feature. The 

bidirectional models showed 0.2–1% higher accuracy then the realtime LSTM models (3–14 

mins per day (24 hours), See Supplementary Material Table A.3 for the detailed results). The 

McNemar test was conducted to examine if the bidirectional model was statistically superior 

to the realtime model. In all combinations of features (both with time and without time), the 

bidirectional models showed statistically higher performance than the realtime models (p < 

6.3 × 10−23), confirming our hypothesis that it would be better.

G. Sleep episode onset/offset detection performance: Differential bidirectional LSTM 
model vs cross-correlation-based template matching method

Fig. 11 shows the results comparing sleep episode onset/offset detection using the LSTM 

model vs using cross-correlation-based template matching. Here, both methods used the 

ACC+ST+time feature combination, which allows us to compare the best performances for 

both. Red lines from the proposed LSTM models are above the black ones over almost the 

whole recall range, which indicates that the proposed LSTM-based sleep episode onset/

offset detection performs better than the previous cross-correlation-based template matching 

method. Due to the way we defined a true positive in onset/offset detection, the precision-

recall curves were undefined when recall was very close to 1. As a result, we were unable to 

calculate the area under curve (AUC) values for these curves.

VI. DISCUSSION

Results show that statistically significantly better performance in sleep/wake detection can 

be achieved using LSTM models applied to wearable sensor and smartphone data than when 

using the Action4 software or non-temporal machine learning models. The LSTM models 

further showed superior performance in sleep episode onset/offset detection than our 

previously proposed cross-correlation based template matching method. When comparing 

features measured from a wrist sensor and a phone, the combination of ACC + ST + time 

features performed the best. The ST boosts the sleep detection performance along with the 

ACC. Previous studies have shown that ST increases during sleep (e.g. [57]). Our finding 

also replicates previous sleep detection work that showed that ST on the wrist coupled with 

motion is a strong discriminant for sleep/wake state [53]. Our algorithm showed the lowest 

performance with phone features among the comparisons of different modalities; however 

our results (sleep onset/offset detection MAE: 10.3 min and 13.2 min) still excelled previous 

Sano et al. Page 11

IEEE J Biomed Health Inform. Author manuscript; available in PMC 2020 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



work (errors in sleep onset: 44 min, offset: 42 min [28], sleep onset: 38 min and offset: 36 

min [41]).

In order to confirm the generalizability of our algorithm, we also examined the relationship 

between participant-wise average sleep duration and sleep detection algorithm performance. 

Our participants had a range of average sleep duration: 5 hours 18 mins to 9 hours 19 mins). 

Participant-wise sleep detection accuracy was constant and no trend was found either in the 

relationship between average sleep duration vs sleep detection accuracy and between the 

distance to average sleep duration across participants and sleep detection accuracy (ACC

+ST+time) (Figs. A.3).

To better understand the performance benefits of using temporal information, we analyzed 

errors made by the models that did not use the temporal information. We specifically 

consider the models that performed best, which are those that used the ACC+ST+time 

features. Fig. 12 shows the past and future 30 minutes of median values of the feature 

vectors (ACC mean, ST mean, and time) for the sleep and wake detection test data. We can 

see that the non-temporal neural network model made errors and only the LSTM model 

detected sleep/wake properly when the neighboring minutes showed different patterns from 

the detection point (ACC and ST mean, x=0).

Our results showed that the LSTM models trained and tested with data split by days and by 

participants showed very little difference in performance (−0.4–0.5%). These results show 

that the proposed LSTM models can be robust in real world person-independent 

applications. We also showed that the bidirectional LSTM models performed statistically 

significantly better than the real-time LSTM model in all feature combinations. However, 

the performance differences were small (0.2–1%). Thus, a real-time LSTM would probably 

give about the same performance as noticed by a typical wearer, but if it were important to 

maximize the accuracy for scientific or medical purposes, then a slightly slower but 

bidirectional LSTM works better.

In addition to using a McNemar test to compare the LSTM models and the actigraphy 

algorithm (Action4), we also examined participant-wise performance using paired t-test 

(Supplementary Material Table A.2). The results showed that feature combinations such as 

ACC and ACC + ST showed statistically higher accuracy than the actigraphy algorithm, as 

similarly observed in the McNemar test.

Our work has several limitations. One is that the ground truth we used was provided by an 

experienced investigator using Harvard Medical School’s standard operating procedures for 

reconciling diary and actigraphy data; this process is time consuming and does not always 

produce the same results as PSG when PSG and actigraphy are collected simultaneously. 

However, we believe this is more reliable than previously published ambulatory ground truth 

sources such as self reports alone or actigraphy alone. Another limitation arises from 

keeping participants comfortable: because two sensors were needed, they were worn on left 

and right wrists, so that the LSTM trained from data on one wrist was ultimately compared 

to ground truth data derived from the other wrist. We would expect that if it were possible to 

have worn both sensors on the same side, then the results of the LSTM would be even more 
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accurate than they are here. Thus, the actigraphy algorithm was probably given a slight 

advantage in our study because its sensor was also used to produce the ground truth data. 

Furthermore, our phone data did not distinguish if we had missing data (e.g., phone battery 

ran out and phone was off), or if participants did not use their phone or were not carrying 

their phone. Although we asked our participants to charge their phone every day, our data 

might include some time when a phone was not operating. Lastly, our LSTM models could 

take more time to train compared to simple logistic regression or SVM models, though the 

gap can be minimized by using a modern GPU. We have shown that our algorithm can be 

generalized to participants with different sleep habits, so retraining the LSTM models could 

be avoided to the greatest extent possible.

For future work, we need to test the proposed algorithm in other populations, including 

people who do not intensively use their mobile phones, people with medical conditions 

and/or on medications that may affect the Q-sensor data, and people whose primary wake 

episode is not during the day (e.g., night or shift workers). While here we describe a general 

model for all users, we could also build personalized models with individual data or keep 

updating a model while capturing daily sleep data. In this way, the model performance could 

improve especially for irregular sleepers, shift workers or frequent travelers. Furthermore, 

sleep/wake detection performance when using only the phone data might further improve if 

our phone application was modified to collect acceleration, audio and ambient light. Finally, 

compared with implicit knowledge learned in LSTM, RNNs with explicit memory [58], [59] 

can memorize facts and common sense, which are potentially useful for the task of sleep 

detection. We plan to adapt these algorithms to our sleep data in the future.

VII. CONCLUSION

We presented the design and evaluation of a novel algorithm for long-term ambulatory sleep/

wake detection that utilizes data from smartphones and a wrist-worn sensor. The algorithm 

uses an LSTM RNN model to assign a sleep probability to each 1-minute epoch to detect 

sleep/wake state and sleep onset/offset episodes. The novel method achieved a sleep/wake 

classification accuracy of 96.5%, and F1 scores of 0.86 and 0.84 for sleep episode onset and 

offset detection, with mean absolute errors of 5.0 and 5.5 mins respectively, using the 

acceleration, skin temperature and time data.

We evaluated the LSTM algorithm also by comparing it with other machine learning models 

(neural networks, logistic regression, SVM) and with a commercial actigraphy software 

algorithm and showed that the LSTM algorithm was statistically significantly superior to 

these others. We also assessed the generalizability of the method by training and testing the 

model with data from two randomly separated groups of participants, and found that the 

accuracy achieved was person-independent. We also confirmed that our sleep detection 

algorithm performed stably across participants with different sleep duration. Future studies 

should continue to collect a wider variety of data with more types of sleepers, and see if the 

performance shown here from using the temporal LSTM method continues to hold.
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Fig. 1. 
Raw data streams from an exemplary day. The pink bars mark sleep epochs and the red 

triangles indicate waking up during the night as determined from actigraphy and sleep diary. 

The blue bars denote missing data. (SC = skin conductance, ACC = accelerations of three 

axes, ST = skin temperature)
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Fig. 2. 
Two ways to split the features and labels into a training set and a test set: (a) splitting by 

days, (b) splitting by participants.
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Fig. 3. 
Bidirectional LSTM model for sleep detection. The input xt is the feature matrix at time t, 
and the output yt ∈ [0, 1] is the estimated sleep probability. Output dimensions are denoted 

in each box.
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Fig. 4. 
Differential bidirectional LSTM model for sleep episode onset/offset estimation. The input 

xt is the feature vector at time t, and yt
S, yt

W ∈ [0, 1] are the estimated sleep episode onset/

offset probabilities. Output dimensions are denoted in each box.
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Fig. 5. 
(a) Exemplary sleep detection results and the corresponding ground truth. (b) Exemplary 

sleep episode onset detection results and the corresponding ground truth. The red triangles 

indicate the detected sleep onset points.
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Fig. 6. 
Real-time implementation of the proposed sleep detection algorithm. The LSTM model only 

reads historical information. Output dimensions are denoted in each box.
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Fig. 7. 
Sleep detection accuracies using the proposed bidirectional LSTM model compared among 

feature combinations (participant-dependent models). Star marks indicate the performance 

of the LSTM model was statistically significantly better than that of actigraphy (the Action4 

algorithm) (McNemar test).
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Fig. 8. 
Mean absolute weights of each feature across all connected nodes in the input layer of 

LSTM.
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Fig. 9. 
Sleep detection accuracies compared among feature combinations and algorithms.
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Fig. 10. 
Comparison of sleep detection performance between bidirectional LSTM models and 

realtime LSTM models (with time).
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Fig. 11. 
Precision-recall curves for sleep episode onset detection (a) and offset detection (b) using 

the ACC + ST + time feature combination. The curves generated by cross-correlation-based 

template matching [31] and the new differential LSTM method are both shown for 

comparison.
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Fig. 12. 
An example of features where both neural network (NN) model and LSTM model worked 

and only LSTM model worked and neural network model made errors. Only LSTM models 

detected sleep and wake correctly when the neighboring minutes showed different patterns 

from the detection point (x=0). ACC = acceleration, ST = skin temperature.
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TABLE I

FEATURE SETS FOR SLEEP DETECTION

Source Modality Feature variables

Wrist sensor

Skin conductance (SC)

Mean, SD, power within 0–0.1,
0.1–0.2, 0.2–0.3, 0.3–0.4, and 0.4
–0.5Hz bands, the number of SC
responses, storm flag, elapsed
time since a storm started

Acceleration (ACC) Mean, SD

Skin temperature (ST) Mean, SD

Phone

Screen Screen was on, the time the
screen was turned on

SMS Sent a message

Call On a call, missed a call

Location Movement index, connected to
WiFi, connected to cellular nets

Time Time Elapsed minutes since 12:00 AM
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