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Abstract

Computational prediction of how strongly an olfactory receptor (OR) responds to various odors 
can help in bridging the widening gap between the large number of receptors that have been 
sequenced and the small number of experiments measuring their responses. Previous efforts in 
this area have predicted the responses of a receptor to some odors, using the known responses of 
the same receptor to other odors. Here, we present a method to predict the responses of a receptor 
without any known responses by using available data about the responses of other conspecific 
receptors and their sequences. We applied this method to ORs in insects Drosophila melanogaster 
(both adult and larva) and Anopheles gambiae and to mouse and human ORs. We found the pre-
dictions to be in significant agreement with the experimental measurements. The method also 
provides clues about the response-determining positions within the receptor sequences.
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Introduction

Odor sensing begins with the binding of odor molecules to olfactory 
receptors (ORs) expressed on the membranes of olfactory sensory 
neurons. An organism often expresses a repertoire of tens or hun-
dreds of types of receptors, which combinatorially can detect a very 
large number of odor stimuli (Malnic et al. 1999). The amino-acid 
sequences of these receptors—and consequently their tuning profiles 
to odors—vary from species to species in accordance with their en-
vironmental niches.

Identification of the odors that a given OR responds to, also 
known as deorphanization, is fundamental to understanding olfac-
tory processing. In cases where the sensory neurons expressing a 
particular OR are known and easy to target with electrodes, the cog-
nate odors can be identified using extracellular recordings from those 
neurons (Lu et al. 2007; Olsson and Hansson 2013; Li et al. 2018). 
An alternative approach is to express the OR in an easy-to-target cell 

using heterologous expression systems—including cell lines, Xenopus 
oocytes, or the empty neuron system; these have been used in dif-
ferent species, including humans (Touhara et  al. 1999; Mainland 
et al. 2015), mice (Oka et al. 2006; Saito et al. 2009), fruit flies (de 
Bruyne et al. 2001; Hallem and Carlson 2006; Lin and Potter 2015), 
mosquitoes (Carey et al. 2010; Wang et al. 2010), moths (de Fouchier 
et al. 2017), and tsetse flies (Chahda et al. 2019). However, such ex-
periments need to be performed separately for each receptor and are 
time consuming; moreover, some receptors do not express well in 
the heterologous systems (Ronderos et  al. 2014). High-throughput 
methods for identifying OR–odor interactions have also been devel-
oped recently, but these require elaborate experimental pipelines for 
each species (Jiang et al. 2015; Hu and Matsunami 2018; Jones et al. 
2019). The high-throughput methods also generate many false posi-
tives, so it is recommended that the identified responses be further 
verified with targeted experiments (Nishizumi and Sakano 2015).
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With lowering costs of sequencing, the sequences of ORs are rap-
idly becoming available for various organisms, including multiple 
species of fruit flies (Drosophila 12 Genomes Consortium 2007; 
Gardiner et  al. 2008; Ramasamy et  al. 2016), mosquitoes (Leal 
et al. 2013; Neafsey and Waterhouse 2015; Lombardo et al. 2017), 
bees (Elsik et al. 2016; Karpe et al. 2017), and tsetse flies (Attardo 
et al. 2019). However, experimental data about odor responses are 
available for relatively few ORs. Computational predictions can po-
tentially bridge this gap. Indeed, computational methods have been 
developed to predict the response of an OR to new odors based 
on its known responses to other odors by analyzing the chemical 
structure (Schmuker et  al. 2007), molecular volume (Saberi and 
Seyed-Allaei 2016), or other physicochemical parameters of odor 
molecules (Haddad et al. 2008; Boyle et al. 2013; Gabler et al. 2013; 
Bushdid et al. 2018; Kepchia et al. 2019). However, these methods 
can only be used for ORs whose responses to some odors are known.

Here, we present a computational approach for predicting the re-
sponses of an OR even when no odor responses are available for that 
OR; our method instead uses the known responses of other conspe-
cific ORs and the sequence similarities among them. We demonstrate 
the effectiveness of this approach by comparing our predictions with 
the experimentally measured responses in insects. Our method also 
provides insights into the response-determining positions in the re-
ceptor sequences.

Results

Lack of correlation between OR sequences and 
responses
As odor responses of an OR depend on its 3D structure, which in 
turn depends on the amino-acid sequence, we expected that the se-
quence similarity between a pair of ORs will relate to the similarity 
in their responses. To test this idea, we used large-scale data sets of 
odor responses of 24 ORs in Drosophila melanogaster (Hallem and 

Carlson 2006) and 50 ORs in Anopheles gambiae (Carey et al. 2010) 
to sets of 110 odors; these odor sets were partially different between 
the 2 species but identical for all ORs within a species. For each pair 
of ORs within a species, we calculated the distance between their 
110-length response vectors (see Materials and methods). We quan-
tified amino-acid sequence similarity for each pair of ORs within a 
species using global sequence alignment. While we expected to see 
a negative correlation between sequence similarity and response 
distance, we surprisingly found no correlation at all (Figure 1): the 
Pearson’s correlation coefficient was 0.0018 (P = 0.97, N = 276 pairs 
of receptors) in D.  melanogaster and 0.026 (P  =  0.35, N  =  1225 
pairs) in A. gambiae.

Identification of response-determining positions
The task of sequence-based predictions is made challenging by 
the very low level of conservation among the ORs: the percentage 
amino-acid identity between pairs of ORs was only 20.23 ± 4.48% 
in D.  melanogaster and 20.60  ± 8.17% in A.  gambiae (mean ± 
standard deviation (SD) calculated over all pairs within a species). 
The lack of correlation between the sequences and the responses is 
partly because only a small fraction of residues in the sequence are 
involved in determining odor specificity, and the similarity of these 
residues is not represented well by the overall sequence similarity 
(Man et al. 2007). However, as there is very little structural informa-
tion available for ORs, the positions of these response-determining 
residues are not known. We took an empirical approach to rank 
each position in the multiple sequence alignment of all receptor 
sequences according to its importance in determining the odor re-
sponses (see Materials and methods). Within a species, the ranking 
was done jointly over all ORs to avoid overfitting. Using this ranked 
list of positions for each species, we selected the top 20 positions that 
should help in predicting the odor responses of new ORs.

We first confirmed that the subsequences of amino acids formed 
by these 20 positions in each OR were indeed related to the responses. 

Figure 1. Lack of correlation between response distance and sequence similarity among pairs of ORs. Scatter plots of distances in response vectors versus 
the amino-acid sequence similarity (a larger value indicates more similarity), among pairs of ORs, reveal the lack of correlation in both D. melanogaster (A1) 
and A. gambiae (A2). Distance is calculated as the L1-distance between the two 110-length response vectors containing number of spikes for each of the 110 
odors. Sequence similarity is measured as the Needleman–Wunsch alignment score. Each point corresponds to a pair of conspecific ORs (N = 276 pairs in 
D. melanogaster and N = 1225 pairs in A. gambiae).
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We found the correlation between the response distance and se-
quence similarity (calculated using only the subsequences formed by 
the 20 positions) to be −0.56 (P = 1.7 × 10–24, N = 276 pairs; Figure 
2A1) in D. melanogaster and −0.39 (P = 1.7 × 10–45, N = 1225 pairs; 
Figure 2A2) in A. gambiae. Compared to the result seen with the full 
sequence (Figure 1), these correlations were significantly negative. 
Similar negative correlations were observed even if we used only half 
of the odors for calculating the top 20 positions and the other half 
for calculating the response similarity (Supplementary Figure S1). If 
we varied the number of top-ranked positions used in the analysis, 
the correlation coefficients did not change for numbers between 10 
and 40 but gradually reduced for larger numbers of positions (Figure 
2B1,2), suggesting that lower-ranked residues are not important for 
the prediction of responses. Subsequently, we used the top 20 posi-
tions as the response-determining positions in our analysis (Figs. 
2B1,2 show that our results would not change if we chose some 
other number between 50% and 200% of this number).

We then checked the robustness of the top 20 positions by re-
ducing the number of receptors used for ranking the positions. When 
we removed 1 receptor (this was done by removing each receptor, 
one at a time, to get the averages and error bars), we found that on 
average ~16 of the 20 positions in D. melanogaster and ~19 of the 
20 positions in A. gambiae were retained in the top 20. The number 
of retained positions dropped gradually as more receptors were left 

out (again, all possible combinations were tested for each number). 
But even with half of the receptors removed, at least 8 of the original 
20 positions remained in top 20 in both the species (Figure 2C1,2). 
This analysis indicated that the selected positions were robust to 
minor perturbations in the data sets.

Although the top 20 alignment positions were chosen independ-
ently in D. melanogaster and A. gambiae, we found that 3 of the top 
20 positions were conserved between the species. This number was 
3 times the number of conserved positions expected by chance (20 × 
20/369 = 1.08, where 369 is the number of alignment positions that 
were ranked in both the species), further increasing our confidence 
in the reliability of the identified positions.

Predicting responses using the identified positions
Having identified reasonable candidates for response-determining 
positions, common to all ORs within a species, we asked if it is pos-
sible to reliably predict the responses of a query OR to a panel of 
odors using only the sequence information about the amino acids 
present at the identified positions. We tested this idea using a simple 
and intuitive approach, in which the response of a query OR was 
estimated as the mean of the responses of known ORs, weighted by 
their similarity to the query OR at the response-determining posi-
tions using the BLOSUM62 amino-acid substitution matrix (see 
Materials and methods).

Figure 2. Analysis with response-determining positions. (A1, A2) Scatter plots of distances in 110-odor response vectors versus the sequence similarity meas-
ured at the top 20 positions, among pairs of ORs, show significant negative correlation in both D. melanogaster (A1) and A. gambiae (A2). Each point corres-
ponds to a pair of conspecific ORs (N = 276 pairs in D. melanogaster and N = 1225 pairs in A. gambiae). (B1, B2) Bars indicate the negative correlation between 
the distance in response vectors and the sequence similarity measured using the top N positions, plotted as a function of N in the range of 10–100. Note that the 
correlation values are relatively stable in both the species in the range of 10–40 and decrease gradually in magnitude for larger values of N. (C1, C2) Bars indi-
cate the number of top 20 positions in D. melanogaster (C1) or A. gambiae (C2) retained among the top 20 positions when the positions were recalculated after 
removing different numbers of receptors from the data set. For each number, all possible combinations of that many receptors were removed and the average 
number of positions preserved among the top 20 is reported. Error bars represent SEM over all combinations for each number.
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We first applied this approach to predict the responses of the 
24 and 50 ORs in the D. melanogaster and A. gambiae data sets, 
respectively. By turn, each OR was treated as a query OR and its 
response was predicted using the responses of the remaining ORs 

in the same species (excluding the query OR). We found that the 
predicted response profiles (i.e., the 110-length vectors of odor re-
sponses) of the ORs were correlated with their actual response pro-
files (Figure 3A,B); the correlations were positive and statistically 

Figure 3. Reliability of responses predicted using the top 20 positions. (A) Scatter plots of the actual and the predicted odor responses for 3 representative ORs 
each from D. melanogaster and A. gambiae. The correlation coefficients between the 2 responses are indicated. The responses were spread around the y = x line 
(dashed line, corresponding to ideal predictions). (B1, B2) Violin plots showing the correlation coefficient between the predicted and the actual response vectors 
of ORs in D. melanogaster (B1) or A. gambiae (N = 50) (B2). Each point corresponds to one OR (N = 24 ORs in D. melanogaster and N = 50 ORs in A. gambiae). 
Note that the correlations are mostly positive. Statistically significant positive correlations (with P less than 0.05) are shown with black outlines. (C1, C2) Violin 
plots showing the correlation coefficient between the control predictions and the actual response vectors of ORs in D. melanogaster (C1) or A. gambiae (N = 50; 
C2). Note that the correlations are close to zero in most cases. (D1, D2) Color maps showing the relative prediction error for each OR–odor pair, for the set of 110 
odors, and all 24 ORs in D. melanogaster (D1) or all 50 ORs in A. gambiae (D2). The relative prediction error is measured as DPred,Actual − DCtrl,Actual, where DPred,Actual 
is the absolute distance between the predicted and actual response and DCtrl,Actual is the absolute distance between the control prediction and the actual re-
sponse. The abundance of negative values (red shades) indicates that the predictions are usually better than the control. Column averages and row averages of 
the matrix values are shown on top and right, respectively. (E1, E2) Violin plots shows the average (over odors) of DPred,Actual − DCtrl,Actual for each of the 24 ORs in 
D. melanogaster (E1) or 50 ORs in A. gambiae (E2). In violin plots, horizontal line and the error bar indicate the mean and the SEM, respectively, within a species.
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significant in 21 of the 24 ORs in D. melanogaster and 29 of the 
50 ORs in A. gambiae. Mean of these correlation values was sig-
nificantly greater than 0: 0.46 (P = 2.53 × 10–7, t-test; P = 1.63 × 
10–5, sign-rank test; N  =  24 ORs) in D.  melanogaster and 0.25 
(P = 1.18 × 10–4, t-test; P = 1.19 × 10–4, sign-rank test; N = 50 ORs) 
in A. gambiae. In contrast, control predictions obtained by shuffling 
the response matrices (see Materials and methods) were not correl-
ated with the actual responses (Figure 3C): mean correlation values 
were 0.0002 (P = 0.95, t-test; N = 24 ORs) in D. melanogaster and 
0.0008 (P = 0.65, t-test; N = 50 ORs) in A. gambiae.

The correlation coefficient between the actual and the predicted 
odor response vectors tells whether these responses have the same 
relative magnitude across different odors but does not tell how 
close the 2 responses are in absolute terms (a predicted response 
that is several times larger than the actual response for every odor 
will have a perfect correlation). We, therefore, also used a distance-
based metric and checked whether our predictions were closer to 
the actual responses than the control predictions were. We define 
DCtrl, Actual as the absolute difference between the predicted response 
and the actual response of an OR to an odor and DCtrl,Actual as the 
absolute difference between the control prediction and the actual 
response. Thus, these 2 terms indicate the error in the actual and 
the control predictions. If our predicted response is better (closer 
to the actual response) than the control prediction, the value of 
DPred,Actual −DCtrl,Actual should be negative. The heat maps in Figure 
3D show the comparisons for all the predictions in D. melanogaster 
and A. gambiae and reveal a very high abundance of negative values. 
In D. melanogaster, the average DPred,Actual of an OR (28.60) was 
smaller than average DCtrl,Actual (47.84) by 19.24 spikes (P = 7.30 × 
10–15, paired t-test; N = 24 ORs; Figure 3E1), an improvement of 
more than 40%. In A. gambiae, the average DPred,Actual (20.11) was 
smaller than average DCtrl,Actual (33.29) by 13.18 spikes (P = 8.46 × 
10–26, paired t-test; N = 50 ORs; Figure 3E2), again an improvement 
of about 40%. Thus, our predicted responses using the sequence 
similarity at the response-determining positions were significantly 
closer to the actual responses than random predictions were. These 
improvements were substantial, considering the absolute values of 
odor responses in D.  melanogaster (mean ± SD  =  32.43  ± 49.29 
spikes, N = 24 × 110 OR–odor combinations) and A. gambiae (mean 
± SD = 20.31 ± 37.35 spikes, N = 50 × 110).

Test on an independent data set
Next, we collected the responses of 26 other ORs in D. melanogaster 
from 10 different studies (de Bruyne et al. 1999, 2001, 2010; Dobritsa 
et al. 2003; Goldman et al. 2005; Kreher et al. 2005, 2008; Marshall 
et al. 2010; Ronderos et al. 2014; Dweck et al. 2015) deposited in 
the Database of Odorant Responses (DoOR) (Münch and Galizia 
2016). Each of these ORs had responses available for some of the 
110 odors used previously; overall, 68 of the previously used odors 
were represented in the new data set. These 26 ORs were entirely 
different from the 24 ORs used previously in selecting the response-
determining positions and, therefore, provided an independent test 
for our approach. Using the set of top 20 response-determining posi-
tions as selected earlier from the original D. melanogaster data set, 
we found that the responses predicted for the 26 novel ORs were 
significantly better with our approach compared to the control pre-
dictions (Figure 4A,B): the average DPred,Actual of an OR (37.01) was 
smaller than average DCtrl,Actual (51.36) by 14.35 spikes (P = 1.13 × 
10–7, paired t-test; P = 5.96 × 10–8, sign-rank test; N = 26 ORs), an 
improvement of about 28%. Overall, among the 506 OR–odor re-
sponses predicted (nongray squares in Figure 4A), in 380 (75.1%) 

cases, the predictions were better than the control predictions. These 
results show that once the response-determining positions have been 
identified using known responses of some ORs in a species, the re-
sponses of other conspecific ORs can be predicted reasonably using 
only their sequences.

While predicting the responses of the new ORs above, we had 
relied on the known responses of 24 ORs. Can similar predictions be 
made if responses of fewer ORs are available? To check this, we sam-
pled subsets of ORs from the original data set of 24 ORs and used 
these samples to select response-determining positions and make the 
response predictions. The sizes of these samples varied from 3 to 21 
in intervals of 3 and, for each size, the sampling was performed 10 
times. We found that the difference between the predicted and the ac-
tual response (DPred,Actual) decreased gradually as the number of sam-
pled ORs increased but saturated for 15 or more ORs (Figure 4C). 
A similar trend was observed when we checked how the number of 
sampled ORs affected the fraction of predictions that were better 
than control (Figure 4D). These results suggest that a relatively small 
set of ORs with known responses may be enough to make reason-
able predictions for new ORs.

Predicting responses in larval Drosophila
Although the OR responses in larval D. melanogaster differ from the 
responses in adult Drosophila (Kreher et al. 2008), the ORs them-
selves are the same at the molecular level. Therefore, we checked 
if the top positions identified in adult Drosophila can be used to 
predict the larval responses. We tested this idea on a data set of 21 
ORs and 26 odors (each available at 2 different concentrations, 10–2 
and 10–4) from larval Drosophila (Kreher et al. 2008). For each con-
centration, we found that the predictions were significantly better 
than control predictions (Supplementary Figure S2): at 10–2 con-
centration, the average DPred,Actual (38.01) was smaller than average 
DCtrl,Actual (54.72) by 16.71 spikes (P = 6.32 × 10–12, paired t-test; 
N = 21 ORs); at 10–4 concentration, the average DPred,Actual (12.38) 
was smaller than average DCtrl,Actual (16.7) by 4.32 spikes (P = 1.1 x 
10–8, paired t-test; N = 21 ORs).

Properties of the response-determining positions
Our results show that the identified subset of sequence positions can 
allow reliable prediction of the neural responses for new ORs. To 
check where these top 20 positions are located within the protein 
structure, we visualized these positions in the secondary structure of 
2 representative ORs in D. melanogaster and A. gambiae using the 
Protter tool (Omasits et al. 2014). These residues were not limited to 
any one region but were instead found in various parts of the protein 
(Figure 5). It is important to note that our analysis does not imply a 
causal or a mechanistic role for each of these residues in interacting 
with the odor molecules but only suggests that these residues may 
be involved in some aspect of determination of odor responses, per-
haps indirectly. Notably, the region with the highest density of the 
top 20 positions was the seventh transmembrane helix, including 4 
positions in D. melanogaster and 5 in A. gambiae (Figure 5; similar 
numbers were seen in other receptors). Moreover, of the 3 response-
determining positions that were conserved between the 2 species, 
2 were located in the seventh transmembrane helix. These obser-
vations are in agreement with previous studies, suggesting that the 
seventh transmembrane helix plays an important role in determining 
odor specificity (Hughes et al. 2014; Ray et al. 2014).

Next, we collected data from various experimental studies that 
have mutated individual residues in various ORs and have checked 
their effect on odor responses. We collected a total of 47 such mutated 
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positions from 5 studies (Nichols and Luetje 2010; Nakagawa et al. 
2012; Xu and Leal 2013; Hughes et al. 2014; Ray et al. 2014) and 
compared them with our identified set of response-determining posi-
tions. In addition to D. melanogaster and A. gambiae, these studies 
also included data from Bombyx mori and Culex quinquefasciatus. 
Sequences from these other species were added to our existing mul-
tiple sequence alignment (see Materials and methods), so that the 
mutated positions in all these species can be compared with our 
alignment positions.

Given 20 response-determining positions in D.  melanogaster 
and A. gambiae each, and with 3 being common between the 2 spe-
cies, 37 unique positions in the multiple sequence alignment were 
marked as the top positions out of a total of 817. Thus, each of the 
47 mutated positions in the curated experimental set had a 37/817 

probability of matching a top position, and the expected number of 
matches by chance = 47 × 37/817 = 2.13. So, while only about 2 of 
the 47 mutated positions were expected to be among the top posi-
tions by chance, we found as many as 9 of them to be among the top 
positions (P  = 2.28 × 10–4; binomial test), providing experimental 
support to our response-determining positions. These 9 experimen-
tally studied mutations, which map to the top positions in our align-
ment, are listed in Table 1 (further, Supplementary Table S1 shows all 
positions). Among these, residue 146 in OR85b of D. melanogaster 
is one of the residues expected to play a crucial role in the activation 
of the odorant (Nichols and Luetje 2010). Residue 109 mutant in 
OR1 of B. mori was found to change the reversal potential and recti-
fication index of the BmOR1-Orco complex (Nakagawa et al. 2012). 
Point mutation of residues 165 and 194 in BmorOR1 of B. mori led 

Figure 4. Response prediction on an independent set of ORs. (A) Color map showing the relative prediction error (measured as DPred,Actual − DCtrl,Actual) for each 
OR–odor pair for the set of 68 odors and 26 novel ORs. Pairs whose values were not available are shown in gray. Note the high frequency of negative values 
(red) and very low frequency of positive values (blue), indicating that the predictions were closer to the actual value than the control were in most cases.  
(B) Violin plots shows the average (over odors) of DPred,Actual − DCtrl,Actual for each of the 26 ORs. Horizontal line and the error bar indicate the mean and the SEM, 
respectively. (C) DPred,Actual is plotted as a function of the number of ORs with known responses used in making the predictions. These different numbers of ORs 
were sampled from the original set of 24 ORs with known responses. For each number, the sampling was performed 10 times; for each sampling, selection of 
response-determining positions and prediction of responses was performed. (D) For each number of sampled ORs, we calculated the fraction of the 506 OR–
odor pairs (nongray values in panel A), for which the predicted responses were closer to the actual values than the control predictions were. Both methods of 
generating control predictions (see Materials and methods) were compared. In panels C and D, error bars indicate SEM over the 10 samplings for each number 
from 3 to 21; for 24, all available ORs were used.
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to significant reduction in response to bombykol pheromone (Xu 
and Leal 2013). Similarly, odor responses in A. gambiae were found 
to change with mutation of residue 369 in OR15 (Hughes et  al. 
2014) and residues 405 and 406 in OR1 (Ray et al. 2014). Among 
the remaining 38 out of the 47 mutations in the curated set, 10 and 
8 were found to be within a distance of 1 and 2 residues, respectively, 
from a top column. Thus, in total, 27 of the 47 experimentally con-
firmed important positions matched or were adjacent to our compu-
tationally predicted response-determining positions.

Prediction of vertebrate olfactory responses
As our method does not make any assumption about the compos-
ition of the receptor sequences, it should be applicable to any family 
of chemosensory receptors. We next sought to check its utility in 

predicting the responses of the vertebrate ORs. Saito et al. (2009) 
have provided a data set of EC50 values of 52 mouse and 10 human 
ORs that responded to at least 1 of the 63 odors tested. We ex-
tracted a binary response matrix (1 for response, 0 for no response) 
from this data set: among the mouse responses (52  × 63  =  3276 
values), this matrix included 262 (approximately 8%) 1s and rest 
were 0s. Using the multiple sequence alignment provided in the same 
study (Saito et al. 2009) and mouse data, we calculated the top 20 
response-determining positions. We then calculated the response of 
each mouse receptor using the weighted average of the responses of 
the remaining receptors as done for insect receptors (see Materials 
and methods); for comparison with actual responses, this value 
was also converted to a binary response using a threshold, set to 
keep the total fraction of 1s in the predicted responses also at 8%. 

Figure 5. Localization of the top 20 response-determining positions. Protter plots showing the localization of the top 20 response-determining residues in rep-
resentative ORs: OR85b of D. melanogaster (A1) and OR1 of A. gambiae (A2). Residues in the top 20 positions in the corresponding species are shown with 
shaded backgrounds, while the residues that are among the top 20 positions in both the species are shown with a black outline. One of the top 20 positions in 
A. gambiae mapped to a gap in OR1 in the multiple sequence alignment, so only 19 positions are shaded.

Table 1. Positions identified in previous mutagenesis studies that match the top positions identified in our analysis.

Study Mutated receptor Mutated 
residue

Position in multiple 
sequence alignment 

Rank among top positions Topological 
position

Hughes et al. (2014) A. gambiae OR15 F369L 783 2 in D. melanogaster and 
17 in A. gambiae

TM 7

Nakagawa et al. (2012) B. mori OR1 Y109A 234 14 in D. melanogaster TM 3
Nichols and Luetje (2010) D. melanogaster OR85b C146S 335 20 in D. melanogaster TM 3
Ray et al. (2014) A. gambiae OR1 Y405H 791 6 in A. gambiae TM 7
Ray et al. (2014) A. gambiae OR1 S406A 792 20 in A. gambiae TM 7
Xu and Leal (2013) B. mori OR1 P165A 335 20 in D. melanogaster TM 3
Xu and Leal (2013) B. mori OR1 P194A 398 9 in A. gambiae EL 2
Xu and Leal (2013) A. gambiae OR10 P154A 398 9 in A. gambiae EL 2
Xu and Leal (2013) C. quinquefasciatus OR10 P157A 398 9 in A. gambiae EL 2

Of the 47 mutations that we collected from the mutagenesis studies, the 9 that matched the top positions in D. melanogaster or A. gambiae are listed. The com-
plete set of the 47 mutations is shown in Supplementary Table S1. EL, extracellular loop; TM, transmembrane helix.
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The predictions, thus, obtained had a false alarm rate of about 7% 
and a hit rate of about 21%, resulting in sensitivity index d’ = 0.68 
(P < 0.001, estimated by comparing the d’ value with those obtained 
for 1000 shuffled control predictions). We next asked if human OR 
responses could also be predicted using the mouse training data. 
Using the top positions, the responses, and the threshold identified 
from the mouse data, we predicted the binary responses of the 10 
human ORs. Among the 10 × 63 values in the original human data 
set, 78 (~12%) were 1s. Our prediction yielded 581 0s and 49 1s, 
with a false alarm rate of about 7% and a hit rate of about 13% 
(d’ = 0.34, P = 0.047 based on 1000 shuffled predictions). In sum-
mary, these results show that our method can also be used to predict 
vertebrate OR responses with better than chance accuracy.

Discussion

Sequence-based approaches to response prediction require a rea-
sonably high homology among the receptors. In vertebrates, re-
ceptors with less than 40% sequence identity were found to have 
little overlap in their responses (Li et al. 2015). The insects ORs pre-
sented a particularly difficult test case as they have only about 20 
% homology among conspecific ORs; indeed, we found that there 
was no correlation between the overall sequence similarity and the 
response similarity among the ORs. We were able to overcome this 
difficulty by focusing on subsets of positions that may be important 
for determining odor responses. Our approach was successful in 
predicting the responses for not only the set of fly and mosquito re-
ceptors whose data was used while developing the method but also 
for a completely novel set of receptors whose responses were taken 
from 10 independent experimental data sets. Further, we found that 
the predictions require only about 15 ORs with known responses 
(Figure 4). This computational approach can be particularly useful 
for receptors expressed in neurons that are difficult to access in elec-
trophysiology experiments or for receptors that do not express well 
in heterologous expression systems (Ronderos et al. 2014). Finally, 
we also showed that our method can also be used for vertebrate 
receptors.

Our method allows prediction of responses of novel ORs for al-
ready studied odors. Previously developed methods allow prediction 
of responses of already studied ORs to novel odors (Schmuker et al. 
2007; Haddad et  al. 2008; Boyle et  al. 2013; Gabler et  al. 2013; 
Saberi and Seyed-Allaei 2016; Bushdid et  al. 2018; Kepchia et  al. 
2019). These 2 approaches are complementary and can be combined 
in future work to enable the prediction of the responses of novel ORs 
to novel odors, which would help with large-scale deorphanization. 
While applying these approaches, care must be taken regarding the 
concentrations of the odors in the training data as changes in odor 
concentration can affect neural responses (Hallem and Carlson 
2006; Olsen et al. 2010) and behavior (Wright et al. 2005; Yarali 
et al. 2009). Another caveat is that these approaches are currently 
limited to predicting the response magnitudes and ignore the tem-
poral patterns of spikes observed in the OR neurons (Spors et  al. 
2006; Raman et  al. 2010; Montague et  al. 2011; Su et  al. 2011; 
Grillet et al. 2016; Egea-Weiss et al. 2018).

Unlike vertebrate ORs which are G-protein coupled receptors, 
insect ORs are heteromeric ligand-gated ion channels (Wicher et al. 
2008), composed of a specific OR and a conserved coreceptor Orco 
(Larsson et al. 2004). The structure of any insect receptor was not 
known until very recently when the structure of Orco from fig wasp 
was studied using Cryo-EM (Butterwick et al. 2018). The approach 
of predicting responses using the 3D modeling of ORs, which has 

seen some success in vertebrates (Bavan et al. 2014), is unlikely to 
be very productive in insects in the near future given the very low 
sequence similarity among the ORs and with other proteins and the 
paucity of available structures. Therefore, sequence-based computa-
tional methods will be important for receptors whose structures and 
responses have not been determined experimentally. The sequence-
based predictions are expected to fare better when the responses 
being predicted are in the same range as the responses in the training 
data set but may not fare as well in predicting uniquely strong lig-
ands for a novel receptor (for the latter goal, 3D modeling may be 
necessary). Our computational predictions can be used to identify 
the candidate ligands to be tested experimentally. The method can 
also be extended to other types of chemosensory receptors, such as 
the ionotropic receptors and the gustatory receptors.

We have used a simple algorithm in our approach, where we 
first identify the important positions in the sequences and then use 
the similarity at those positions to make the predictions. It may be 
possible to achieve good predictions without explicitly identifying 
the important positions and instead using a machine learning-based 
approach that uses all the residues and learns a nonlinear mapping 
between the sequences and the responses. However, we preferred 
the simpler deterministic approach over the blackbox approaches 
typically used in machine learning because the deterministic ap-
proach provides a transparent rationale for and information about 
the sequence positions that are used for making the predictions. 
Expectedly, a majority of the identified positions were located in the 
extracellular loops or transmembrane helices (particularly the sev-
enth transmembrane, which has been experimentally shown to be 
important for determining responses), but some were also found in 
intracellular loops. A  previous study has shown that mutation of 
intracellular residues can affect the electrophysiological responses of 
neurons (Nakagawa et al. 2012). We emphasize that our approach 
only looks for correlations between the residues and responses, and 
it is likely that some of the identified positions, particularly those 
found in intracellular regions, affect the odor responses indirectly 
rather than through direct interactions with the odor molecules. By 
comparing the 47 positions previously found to be important in mu-
tagenesis studies in various organisms (Nichols and Luetje 2010; 
Nakagawa et al. 2012; Xu and Leal 2013; Hughes et al. 2014; Ray 
et al. 2014), we found that 9 of them (a statistically significant frac-
tion more than 4 times larger than that expected by chance) mapped 
to the top positions identified in our analysis (Table 1). This shows 
that our method is using reliable positions for making the predic-
tions. The other top positions that have not been experimentally 
studied so far are good candidates for future mutagenesis studies 
and could help in understanding the mechanisms of odor–OR inter-
actions. As more experimental evidence accumulates, the response 
predictions can be further improved by giving more weightage to the 
experimentally verified positions among the top positions.

Materials and methods

Response data sets
Responses of 24 D. melanogaster ORs were obtained from a previous 
study (Hallem and Carlson 2006) and responses of 50 A. gambiae 
ORs were obtained from another study (Carey et al. 2010) for a set 
of 110 odors. The response values indicate the odor-elicited spiking 
response of a neuron expressing the receptor minus the response for 
the diluent or the spontaneous firing rate. To serve as an independent 
data set, responses of 26 other D. melanogaster ORs were obtained 
from 10 studies (de Bruyne et al. 1999, 2001, 2010; Dobritsa et al. 
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2003; Goldman et al. 2005; Kreher et al. 2005, 2008; Marshall et al. 
2010; Ronderos et  al. 2014; Dweck et  al. 2015) deposited in the 
DoOR (Münch and Galizia 2016) for 68 odors that were common 
with the earlier set of 110 odors. If the response of a particular OR 
to an odor was reported in multiple studies, we used the average of 
those values as the actual response.

Sequence analysis
The OR sequences for D.  melanogaster and A.  gambiae were 
obtained from the Database of Olfactory Receptors (Nagarathnam 
et al. 2014 and the Hill et al. 2002 study, respectively). The sequence 
similarity between any 2 receptor sequences was determined using 
the Needleman–Wunsch Algorithm using the BLOSUM62 scoring 
matrix (Needleman and Wunsch 1970; Henikoff and Henikoff 
1992). Multiple sequence alignment was performed for a total of 
140 (62 in D. melanogaster and 78 in A. gambiae) OR sequences 
using MAFFT multiple sequence alignment program, and additional 
sequences from other species (for validation) were added individu-
ally using the “-add” option (Katoh and Frith 2012).

The OCTOPUS tool (Viklund and Elofsson 2008) was used to 
predict the membrane topology of the receptors and the Protter tool 
was used to visualize the 2D topology of the receptors (Omasits et al. 
2014).

Ranking the response-determining positions
We identified the response-determining sequence positions for 
D.  melanogaster and A.  gambiae using the following approach, 
which quantifies at each position how well the differences in amino 
acids across the receptors correlate with the differences in their re-
sponses. These positions corresponded to columns in the multiple 
sequence alignment and were same for all the receptors within a 
species (allowing different positions for each receptor can provide 
better correlations for individual receptors due to overfitting but will 
have poor generalizability for other receptors).

From the total of 817 alignment columns in the multiple se-
quence alignment, we first eliminated the columns which were either 
fully conserved or had gaps in more than half of the sequences, 
leaving 378 columns to be ranked in D. melanogaster and 392 col-
umns to be ranked in A. gambiae, of which 369 were common to 
both species (see Supplementary Table S1). We denote an element 
of the alignment by Ar, c wherec indicates the alignment column 
and r ∈ [1, 24] or [1, 50] in D.  melanogaster and A.  gambiae, 
respectively, indicates the row corresponding to a receptor with 
known responses. The following steps were carried out separately 
for each species. To calculate the rank for each of the columns, we 
first calculated a sequence similarity vector (SSc) for each column, 
each element (SS(r1,r2),c) of which contained the pairwise amino acid 
similarity scores, calculated using BLOSUM62 matrix, between all 
pairs of receptors (r1, r2 ) that did not have a gap in the alignment 
column c:

SS(r1,r2),c = BLOSUM62 (Ar1, c, Ar2, c) ∀ (r1, r2), where Ar1, c �= gap and Ar2, c �= gap.
 

Similarly, we computed a response distance vector (DRo
c) for the 

same pairs of ORs in the column, each element (DRo
(r1,r2),c) of which 

contained the absolute difference between the responses of receptors 
r1 and r2 to an odor o:

DRo
(r1,r2),c =

∣∣No
r1 −No

r2

∣∣ ∀ (r1, r2) , where Ar1, c �= gap and Ar2, c �= gap,
 

where No
r  denotes the neural response of receptor r to odor o. We 

used the L1-norm instead of the Euclidean distance to avoid giving 

extra weightage to larger values. Note that SSc and DRo
c  are both 

vectors of the same length; this length is equal to the number of all 
possible pairs of receptors that did not have a gap in column c. We 
then calculated the Pearson’s correlation coefficient (Ro

c ) between the 
sequence similarity (SSc) and response difference (DRo

c) vectors for 
each column c and each odor o. The P-value of this correlation, de-
noted by Poc, was also noted. A negative value of Ro

c indicates that the 
receptors that have high sequence similarity at the alignment pos-
ition c also have high response similarity (small distance) for odor o
. Finally, we calculated the total score of a column as

Sc = −
110∑

o = 1,
Ro
c < 0

logPoc

 

Use of P-values allowed us to give more weightage to highly sig-
nificant correlations. Columns with high Sc  scores were used subse-
quently as the response-determining positions.

Response prediction
We first generated the subsequences using the amino acids at the 
response-determining positions; this was done for the receptors with 
known responses and also for the receptor whose response is being 
predicted (query). Subsequence similarity (SSSr, query) between the 
query receptor and each of the known receptors was calculated by 
taking the average of BLOSUM62 score for all positions in the 2 
subsequences (excluding positions with gaps). The similarity values 
were then linearly scaled (denoted by SSSr,query) to a range of 0–100 
to avoid negative weights in the subsequent steps:

SSSr,query =
SSSr,query − min

i
SSSri,query

max
i

SSSri,query −min
i

SSSri,query
× 100

 

The predicted response (N o
query) of the query receptor to an odor o 

was calculated as a weighted average of the known responses:

N o
query =

∑n
j=1 (SSSrj,query × No

rj)∑n
j=1 SSSrj, query

 

where n is the number of receptors with known responses and No
rj 

denotes the neural response of receptor rj to odor o.

Control predictions
Control predictions were obtained by shuffling the OR–odor re-
sponse matrix and taking the shuffled response as the control pre-
diction for each OR–odor combination (this operation allowed 
generation of random predictions while maintaining the overall 
statistical properties of the response values). The shuffling was not 
limited to shifting of rows or columns but included the shuffling of 
all elements in the matrix. The shuffling was performed 50 times in-
dependently, and the results (correlations or DCtrl,Actual values) were 
averaged over the 50 shufflings.

Statistical analysis and code availability
All analyses were performed in MATLAB. A  modified version of 
Gramm plotting toolbox (Morel 2018) was used to draw the plots. 
We used Pearson correlation to measure the correlations and t-tests 
and Wilcoxon signed-rank tests to compare the means. All tests 
were 2-tailed. The number of sample points is shown for each test 
in the results. The code developed in this study can be accessed from 
https://github.com/neuralsystems/OR_response_prediction.
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Supplementary material
Supplementary data are available at Chemical Senses online.

Supplementary Table S1: Complete multiple sequence alignment of all 
the ORs.

The table shows the multiple sequence alignment of all the ORs that have 
been used in this study. Each row corresponds to one OR. The first 2 rows 
indicate with colored background the positions that were ranked in the 2 spe-
cies; among these the ranks of the top 20 positions are mentioned. The 47 
residues that have been identified as important in previous mutagenesis studies 
are marked with yellow color in the matrix.
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