
Somatic mutations and clonal dynamics in healthy and cirrhotic 
human liver

Simon F Brunner1, Nicola D Roberts1, Luke A Wylie1, Luiza Moore1, Sarah J Aitken2,3, 
Susan E Davies3, Mathijs A Sanders1,4, Pete Ellis1, Chris Alder1, Yvette Hooks1, Federico 
Abascal1, Michael R Stratton1, Inigo Martincorena1, Matthew Hoare2,5,*, Peter J 
Campbell1,6,*

1Cancer Genome Project, Wellcome Trust Sanger Institute, Hinxton, CB10 1SA, UK 2CRUK 
Cambridge Institute, Robinson Way, Cambridge, CB2 0RE, UK 3Department of Pathology, 
University of Cambridge, Addenbrooke’s Hospital, Cambridge, CB2 0QQ, UK 4Department of 
Hematology, Erasmus University Medical Center, Rotterdam, The Netherlands 5Department of 
Medicine, University of Cambridge, Addenbrooke’s Hospital, Cambridge, CB2 0QQ, UK 
6Department of Haematology and Stem Cell Institute, University of Cambridge, Hills Rd, 
Cambridge CB2 0XY, UK

Summary

The commonest causes of chronic liver disease are excess alcohol intake, viral hepatitis or non-

alcoholic fatty liver disease, with the clinical spectrum ranging in severity from hepatic 

inflammation through cirrhosis to liver failure or hepatocellular carcinoma. The hepatocellular 
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carcinoma genome exhibits diverse mutational signatures, resulting in recurrent mutations across 

>20-30 cancer genes1–7. Stem cells from normal livers have low mutation burden and limited 

diversity of signatures8, suggesting that the complexity of hepatocellular carcinoma arises during 

progression to chronic liver disease and subsequent malignant transformation. We sequenced 

whole genomes of 482 microdissections of 100-500 hepatocytes from 5 normal and 9 cirrhotic 

livers. Compared to normal liver, cirrhotic liver had higher mutation burden. Although rare in 

normal hepatocytes, structural variants, including chromothripsis, were prominent in cirrhosis. 

Driver mutations, both point mutations and structural variants, affected 1-5% clones. Clonal 

expansions millimetres in diameter occurred in cirrhosis, sequestered by bands of fibrosis 

engirdling regenerative nodules. Some mutational signatures were universal and equally active in 

both non-malignant hepatocytes and HCC; some were substantially more active in HCC than 

chronic liver disease; and others, arising from exogenous exposures, were present in a subset of 

patients. Up to 10-fold within-patient variation in activity of exogenous signatures existed between 

adjacent cirrhotic nodules, arising from clone-specific and microenvironmental forces. 

Synchronous hepatocellular carcinomas exhibited the same mutational signatures as background 

cirrhotic liver, but with higher burden. Somatic mutations chronicle the exposures, toxicity, 

regeneration and clonal structure of liver tissue as it progresses from health to disease.

Identifying somatic mutations in non-malignant tissue requires approaches to overcome its 

polyclonality, such as single cell sequencing9, cultures of single cells8,10 or microbiopsy 

sequencing11. The latter relies on local cell division with limited migration leading to a 

clonal patchwork, a known property of hepatocytes12. We generated whole genome 

sequences from 482 laser-capture microdissections of 100-500 hepatocytes (Extended 

Figure 1A) across 14 patients: 5 normal controls; 4 with cirrhosis from alcohol-related liver 

disease (ARLD) and 5 with cirrhosis from non-alcoholic fatty liver disease (NAFLD) 

(Supplementary Tables 1-2, Extended Figures 4-6). Samples of normal liver were acquired 

from hepatic resections of colorectal cancer metastases; samples of cirrhotic liver from 

patients transplanted for synchronous but distant hepatocellular carcinoma (HCC).

To evaluate sensitivity and specificity, we generated independent libraries and sequencing 

data from different sections of the same biopsy, microdissecting the same x,y-region from 

adjacent z-stacks, separated by ~20μm. Concordance was high between variants called in 

adjacent sections, but not distant pairs, suggesting that specificity of mutation calls was high 

(Extended Figure 1B), and sensitivity across patients was 50-95%, dependent on coverage 

and clonality (Extended Figure 1C-F). As a further check on specificity, deep targeted 

sequencing of cancer genes in the same library as 96 whole-genome samples confirmed 16 

of 17 mutations originally called. In keeping with polyploidy as a late differentiation stage in 

liver13, 20-25% of mature hepatocytes in microdissected samples were multinuclear 

(Extended Figure 1G). We therefore deployed copy number algorithms with expected ploidy 

of 4, and report mutation burdens per diploid genome, rather than per cell.

We observed considerable heterogeneity in burden of somatic substitutions both between 

and within patients (Figure 1A; Supplementary Tables 3-4). Using mixed effects models, 

microdissections from cirrhotic livers had, on average, 1251 (CI95% 233-2268; p=0.02) extra 

substitutions per diploid genome compared to normal livers, independent of age. In 
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accordance with published values8, the estimated rate of mutation accumulation was 33/

year/diploid genome, albeit with wide confidence intervals (CI95% -17–84; p=0.18) and 

moderate variation between individuals (estimated between-individual SD, 13/year). Indels 

showed the same heterogeneity between and within individuals as substitutions (Figure 1B).

Structural variants and copy number alterations occurred in moderate numbers across all 9 

patients with liver cirrhosis, despite being rare in normal liver (Figure 1C, Extended Figure 

2, Supplementary Tables 3-4). Occasional whole chromosome or arm-level aneuploidy 

occurred, as well as focal events, including deletions, tandem duplications and unbalanced 

translocations (Extended Figure 2). We found 5 separate clusters of SVs, across 3 patients, 

with patterns indicative of chromothripsis14 (Figures 1D-F, Extended Figure 2). 

Chromothripsis, in which multiple rearrangements occur in a single catastrophic mitosis14, 

is a major mutational process in cancers, occurring in ~5% of HCCs15, but is rare in normal 

somatic cells. To see 1-2% of clones in chronic liver disease with chromothripsis suggests 

that sustained toxicity and regeneration substantially increases mitotic stress in hepatocytes.

We screened for driver mutations among coding regions, 5’-UTRs, 3’-UTRs and promoters 

(Supplementary Tables 5-8). No elements were significant after genome-wide multiple 

hypothesis correction, so we focused on the 30 most prevalent HCC genes1–5. These carried 

22 non-synonymous variants, seen in both normal and cirrhotic samples, including 

inactivating mutations in the tumour suppressor genes ACVR2A, ARID2, ARID1A and 

TSC2 (Extended Figure 3A). With hypothesis testing restricted to these 30 genes, ALB 
(q=0.001) and ACVR2A (q=0.001) were significant. Recurrence in ALB (albumin) likely 

reflects a mutational process in which indels preferentially occur in highly expressed genes, 

as reported in HCCs5,16 (Extended Figure 3B-C). Assuming no negative selection, we can 

use the ratio of non-synonymous to synonymous substitutions for the 30 HCC genes to 

estimate the number of driver substitutions among them17 – this gives a 95% confidence 

interval of 0.0–13.2 drivers in total across 482 microdissections (<3%). Among copy number 

aberrations of potential significance1,2,18 (Supplementary Table 9), we found instances of 

chromosome 22 loss, 8q gain and 8p loss. Two focal deletions in different patients spanned 

ACVR2A (Extended Figure 2C,E). We also found a reciprocal inversion that deleted 

CDKN2A (Extended Figure 2F), the most common focal deletion in HCC, and a deletion 

affecting ARID5A.

We reconstructed phylogenetic trees19, layering them onto the specimen’s histology. 

Samples from the healthy controls showed the highly polyclonal nature of normal liver, with 

little genetic relatedness among even closely located microdissections (Figure 2A-D, 

Extended Figure 4). Samples from patients with chronic liver disease showed more complex 

clonal structure, from which three general inferences can be drawn (Figure 2E-P, Extended 

Figures 5-6). First, we found no sharing of mutations between adjacent liver nodules 

separated by fibrotic bands. This suggests that the connective tissue laid down during cycles 

of damage and regeneration sequesters clones from early stages of the disease process. 

Second, some cirrhotic nodules were monoclonally derived (Figure 2J,N, for example), 

while others were oligoclonal (Figure 2F), with shared mutations often extending across 

microdissections millimetres apart. Third, branching structures in phylogenies point to 

subclonal diversification within nodules. Within such a clone, the proportion of shared, 
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clonal mutations on the trunk relative to those on the subclonal branches gives an estimate in 

molecular time of when the most recent common ancestor of the clone emerged. In some 

patients (for example, Figure 2I-J), the common ancestor of individual nodules emerged 

relatively early in molecular time, while in others (Figure 2M-N), the common ancestor 

appeared much more recently. Since the majority of liver cells do not have driver mutations, 

the size and rapidity of clonal expansions observed here evince the considerable in-built 

capacity of hepatocytes to regenerate in response to liver damage.

A major debate in modelling cancer development is whether cancers need higher mutation 

rates in order to acquire sufficient drivers. We compared mutation burden in cirrhotic liver to 

synchronous, clonally unrelated HCCs from 7 patients. Synchronous HCCs carried, on 

average, 4600 more mutations than matched cirrhotic liver (CI95% 3600-5500; p<10-18 LME 

models; Figure 3A). This argues that mutation rates increase during malignant 

transformation, either through cancer-specific mutational processes or through greater 

activity in cancers of widespread mutational processes.

To assess what mutational processes are active in cirrhosis, we extracted mutational 

signatures across our 482 microdissections, the 7 synchronous HCCs and 54 HCC genomes 

from TCGA1, using two independent algorithms (Figure 3B-E, Extended Figures 7-8). 

Three major groups of mutational signatures emerged: those ubiquitous and similarly active 

across cirrhosis and HCC; those quiet in cirrhosis but universally more active in HCC; and 

those contributing to some patients but not others, including signatures arising from 

exogenous exposures.

In normal and cirrhotic liver, ubiquitous mutational signatures (5 and Sig.A) were prevalent 

across clones, typically accounting for >75% of mutations in combination. Signature 5 is 

widespread across cancers, including HCCs2,4,20, and accumulates linearly with age, 

suggesting it arises from endogenous mutational processes. Sig.A is the dominant cause of 

mutations in normal blood stem cells10,21 and leukaemias21, suggesting it too arises 

endogenously. In HCCs, although Sig.A accounted for a lower proportion of mutations than 

in normal or cirrhotic liver, the absolute numbers of mutations attributed to Sig.A were 

comparable (Difference between cancer and non-cancer, 60 mutations; CI95% -80-200; 

p=0.4; Figure 3F, Supplementary Table 10). This suggests that it is active in hepatocytes 

throughout life, but is outstripped in HCC by mutational processes emerging during 

malignant transformation.

A second group of mutational signatures comprises processes that are relatively quiet in 

cirrhotic liver but universally more active in HCC (signatures 1, 12, 16, 40 and a novel 

signature, D; Supplementary Table 10). One of these, signature 16, consists of T>C 

mutations in ApT context and has a known transcriptional strand bias, with both preferential 

repair of damaged adenines on transcribed strands and increased damage on non-transcribed 

strands22. Although this signature is more active in HCCs, we do see its characteristic 

transcriptional strand bias in cirrhotic liver (Extended Figure 9A). Signature 1, caused by 

spontaneous deamination of methylated cytosine to thymine, is also much more active in 

HCC than non-malignant liver. The acceleration and universality of these signatures in HCC 
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suggests they reflect inbuilt DNA damage and repair processes in hepatocytes that are 

unmasked during malignant transformation.

The third group of mutational processes represents signatures seen sporadically across the 

cohort, many of which are due to exogenous exposures. One, signature 4, is found in lung 

cancers from smokers20 and also HCCs, albeit with a less clear-cut relationship to tobacco2. 

Of our 14 patients, 4 had >10% of microdissections with >5% of mutations attributed to 

signature 4, showing the expected transcriptional strand bias on guanines (Extended Figure 

9B). Not only did signature 4 show considerable patient-to-patient heterogeneity, there was 

also unexpectedly high clone-to-clone and nodule-to-nodule variability within individual 

livers. In one patient, for example, about half the clones we sequenced had 2000-4000 

mutations, whereas the other half had 8000-12000, driven by presence or absence of 

signature 4 (Figure 4A).

This within-patient regional variability extended to other exogenous exposures. In one 

patient, 20-35% of mutations derived from signature 22 (Figure 4B; Extended Figure 9C), 

characteristic of exposure to aristolochic acid23. This patient grew up in Poland, holidaying 

in Balkan states where aristolochic acid exposure is pervasive24. In a different patient, a 

subset of microdissections had 10-20% mutations attributable to signature 24 (Figure 4C), 

associated with aflatoxin-B1 exposure5. Biomarkers of exposure to aflatoxin-B1, produced 

by Aspergillus moulds contaminating crops, are prevalent in arable farmers25, the 

occupation of our patient. In both patients, these carcinogens showed striking variability in 

mutational activity over short distances, generating few mutations in some clones and 

hundreds to thousands in others – such striking regional variation in activity of exogenous 

signatures is both unexpected and unexplained.

In one patient, we found a large clone that carried >2000 mutations attributed to signature 9 

(Figure 4D), caused by off-target somatic hypermutation in B lymphocytes20. A clonotypic 

IGH rearrangement was evident, consistent with a single B lymphocyte subclonally 

diversifying as it expanded in the liver (Extended Figure 10). Signature 9 was only present 

on the ancestral trunk, whereas signatures in the subclones, acquired in the liver, distributed 

similarly to hepatocytes, suggesting the hepatic microenvironment shaped the on-going 

mutational processes in the lymphocytes.

In conclusion, then, non-malignant liver has considerably lower proportions of clones (<5%) 

with driver point mutations or structural variants than oesophagus or skin11,26,27, and those 

present were seen in both normal and cirrhotic liver. They did not drive large clonal 

expansions, being restricted by fibrosis, and were not shared with the distant synchronous 

HCCs, suggesting that the increased cancer risk seen in chronic liver disease arises from a 

myriad of clones competing independently to acquire sufficient driver mutations. TERT 
promoter mutations are likely to be key events in this progression as they are seen in 

dysplastic hepatic nodules18,28, but we did not identify any in cirrhotic or normal liver. The 

low proportion of clones with drivers observed here and in exome studies performed 

elsewhere29,30 means that much larger sample sizes will be needed to comprehensively map 

how driver mutations accumulate in the progression from normal liver through regenerative 

and dysplastic nodules to HCC.
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These data reveal the genomic consequences of chronic liver disease – increased mutation 

rates; complex structural variation including chromothripsis; aneuploidies; low burden of 

mutations targeting known HCC genes. Genomically, one middle-aged, healthy liver looks 

much like any other: a community of small, tightly packed clones, each comprising a few 

hundred cells, containing ~1000-1500 mutations, painted from a limited palette of 

signatures. Unhealthy livers diverge from this norm: large dynasties of clones, sequestered 

by impassable bands of fibrosis, their palette of signatures more variable, more vigorous, 

more regionally variegated.

Methods

Samples And Sequencing

Samples—Patients recruited at Addenbrooke’s Hospital, Cambridge gave written informed 

consent with approval of the Local Research Ethics Committee (16/NI/0196).

Normal liver samples were obtained from patients with liver metastases from colorectal 

carcinoma (CRC). The liver specimens were obtained from resected liver distal to the 

metastases, that were confirmed on histology. None of the patients had undergone neo-

adjuvant systemic therapy; one patient had undergone pre-operative portal vein embolisation 

(PD36718) to the ipsilateral liver lobe. Liver tissue from patients with chronic liver disease 

(CLD) was derived from explanted diseased livers at the time of transplantation. All of the 

patients were identified as having ARLD or NAFLD by clinical history to the transplant 

hepatology and addiction psychiatry teams, as well as explanted liver histology. None of the 

patients had undergone trans-arterial chemo-embolisation (TACE) or other locoregional 

therapy on the transplant waiting list, except PD37118 who underwent a single treatment to 

their HCC with TACE. All of the CLD patients, except one (PD37105), demonstrated 

significant pre-operative impairment of liver function as evidenced by a UKELD of >50.

The explant liver histology was reviewed by a specialist liver histopathologist (SED), 

blinded to the sequencing results. The normal liver specimens had no fibrosis and no 

evidence of chronic liver disease; the explanted diseased livers uniformly demonstrated 

cirrhosis and HCC. The background liver histology was scored according to the Kleiner 

system31 on FFPE samples away from the HCC and the fresh frozen block used for the 

sequencing analysis. The Kleiner score assesses the presence of steatosis, lobular 

inflammation and hepatocyte ballooning to generate a cumulative NAS score. The presence 

or absence of cellular or nodular dysplasia was globally assessed in clinical FFPE samples 

(Supplementary table 1), as well as specifically assessed in the fresh-frozen block used for 

the laser capture microdissection and sequencing (Supplementary table 1). Serial H&E-

stained sections from the frozen block did not demonstrate dysplasia in any of the cases 

(Supplementary table 1). Further, there was no evidence of CRC or HCC on histological 

review of the fresh-frozen block used for sequencing.

All tissue samples were snap-frozen in liquid nitrogen and stored at -80°C in the Human 

Research Tissue Bank of the Cambridge University Hospitals NHS Foundation Trust.
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Preparation of tissue sections—Tissue biopsies were embedded in Optimal Cooling 

Temperature (OCT, ThermoFisher) medium at -25°C. Sections were cut at a thickness of 

20µm using a Leica Cryotome and transferred onto PEN membrane slides (ThermoFisher). 

For fixation, slides were treated with 70% ethanol at room-temperature for 2min. Slides 

were washed twice in 10% phosphate buffered saline (PBS) at room-temperature for 10s. 

For staining, slides were incubated in haematoxylin for 10s and rinsed twice in water. Slides 

were then incubated in eosin for 5s and rinsed once in water. Slides were washed twice with 

70% ethanol for 5s, twice with 100% ethanol for 5s, and in xylene for 5s. Storage was at 

-20°C. Additional sections were stained for H&E, Masson’s Trichrome and Oil Red O by 

standard laboratory techniques. All slides were scanned on a Leica AT2 at ×20 

magnification and a resolution of 0.5μm per pixel.

Laser Capture Microdissection (LCM)—Microdissection was performed using a LCM 

(Leica Microsystems LMD 7000). For each biopsy, 48 microdissections were cut with a 

target size of 20,000µm2, corresponding to about 400 hepatocyte cells. Images were taken 

before and after LCM.

Sample lysis and DNA preparation—LCM biopsies were lysed using the Arcturus 

PicoPure DNA Extraction Kit (ThermoFisher) following the manufacturer’s instructions. 

DNA libraries for Illumina sequencing were prepared using a protocol optimized for low 

input amounts of DNA, as described32.

Whole-genome sequencing—Paired-end sequencing reads (150bp) were generated 

using the Illumina X10 platform for 400 samples, resulting in a target coverage of 30x-70x 

per sample. To avoid the known index-hopping artefact, we chose to avoid multiplexing 

samples and instead sequenced one sample per flow cell lane. To increase coverage for a 

subset of 96 samples, we used multiplexing and achieved 70x coverage. In addition to the 

LCM samples we also sequenced a bulk sample for each biopsy and (where available) 

associated hepatocellular carcinoma (HCC).

The healthy liver samples came from wide resections of hepatic metastases of colorectal 

cancer. In each case, we sequenced the metastasis – this did not reveal any mutations shared 

between the colorectal cancer and liver, nor any variants shared by all liver samples absent 

from the colorectal cancer (beyond regions of loss-of-heterozygosity in the cancer). 

Likewise, for the cirrhotic liver samples, we sequenced the matched HCC, not revealing 

sharing of mutations. In one case, we sequenced microdissections of the fibrotic tissue, and 

here also did not find mutations restricted to all liver cells.

Sequencing data were mapped to the human genome, GRCh37d5, using the BWA-Mem 

algorithm.

Variant Calling

SNV calling—Substitution variants were called using the Cancer Variants through 

Expectation Maximisation (CaVEMan) algorithm33, using the bulk sample of the liver 

biopsy as the matched normal. As part of the algorithm, the variants were annotated using 
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VAGrENT34. Variant calls for bulk sequencing data of the cancer samples were not further 

filtered. For sequencing of LCMs, post-filtering was performed in three steps:

1. Removal of duplicate counts: we noticed instances where variant bases were counted 

twice due to the overlap of paired-end sequencing reads. We removed such double counting 

and re-evaluated variant calls after taking double counts into account.

2. Removal of variants introduced during library preparation: we noticed the presence of 

variants introduced due to incorrect processing of cruciform DNA. Erroneous variants were 

often present in inverted repeats and frequently accompanied by another proximal (~ 1-30bp 

distance). These inverted repeats can form cruciform DNA prior to DNA isolation or during 

library preparation. The library preparation protocol employed can incorrectly process these 

secondary DNA structures and inadvertently introduce one or more erroneous variants. For 

every variant the standard deviation (SD) and median absolute deviation (MAD) of the 

variant position within the read was separately calculated for positive and negative strand 

reads.

In the case that the variant was supported by a low number of reads for a particular strand, 

the filtering was based on the statistics determined from the reads derived from the other 

strand. It was required that either:

1. ≤ 90% of supporting reads report the variant within the first 15% of the read as 

calculated from the alignment start.

2. Or, that the MAD > 0 and SD > 4.

In the case that sufficient reads supporting the variant were available for both strands it was 

required for both strands separately that either:

1. ≤ 90% of supporting reads report the variant within the first 15% of the read as 

calculated from the alignment start.

2. Or, that the MAD > 2 and SD > 2.

3. Or, that at least one strand has fulfills the criteria MAD > 1 and SD > 10.

3. Comparison with an independent panel: to remove variant calls at badly-mapping sites, 

we compared variant calls in the sequenced samples of each donor biopsy with samples from 

all unrelated donors in our cohort. For each variant site we expected the reference base to be 

dominant and conversely expected badly-mapping sites to contain frequent non-reference 

base counts. Thus, we counted the numbers of A, C, G, T, insertion and deletion calls at each 

variant site across all unrelated samples, resulting in a large “pileup” table. The dominance 

of the reference base was evaluated at each variant site using the entropy purity metric E:

E = − ∑
i ∈ A, C, G, T , Ins, Del

P xi ln P xi

where x is the count of base i and the P(xi) are the fractions of base calls. Values of E close 

to 0 indicate that almost all reads in the independent panel contain a single base. Higher 

values of E indicate a mix of base calls at the site. To identify an optimal threshold of E for 
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the filtering of variant sites, we evaluated the entropy metric against a labelled dataset of 

variant calls. Specifically, during the clustering of variants using the Bayesian Dirichlet 

process (described below), we identified clusters that had variants with low allele frequency 

present in all dissections from the same donor. Manual inspection showed that such variants 

occurred at badly-mapping sites. Thus, we labelled variant sites in those clusters as “badly-

mapping” and were able to use the Area-Under-the-Receiver-Operator-Curve to identify a 

threshold value EThr of 0.16 that allowed to separate the two labelled variant groups with an 

AUC of 0.99.

Bayesian Dirichlet process for clustering VAFs across multiple samples—We 

extend the model previously developed for clustering variant allele fractions (VAFs) of 

mutations called in a single sample19 to mutation data across multiple samples from the 

same individual. In normal somatic cells, the vast majority of the genome retains its normal, 

diploid copy number, which means that we can cluster the VAFs directly (excluding 

mutations on the X and Y chromosomes in males) – this has the considerable advantage that 

the Dirichlet Process model we build can rely directly on conjugate prior distributions. The 

model includes a potential split-merge step at each cycle of the Gibbs sampler, following a 

previously described Metropolis-Hastings proposal for conjugate distributions35. The 

algorithm could be extended to include a correction for different copy number states in given 

samples for a particular mutation through, for example, a Metropolis-Hastings update, but at 

considerable computational cost. The full mathematical development of the model is 

detailed in the Supplementary Methods.

We ran the Gibbs sampler for 15,000 iterations, dropping the first 10,000 as a burn-in. We 

used the ECR algorithm36, implemented in the R package label.switching, to resolve the 

label switching problem associated with mixture models. We dropped clusters containing 

<100 variant sites.

Phylogenetic tree construction—Phylogenetic trees were constructed manually using 

the pigeonhole principle as described previously19. In short, each cluster identified using the 

Bayesian Dirichlet process represented a branch of the phylogenetic tree. Nesting of trees 

was identified with three different levels of certainty, illustrated on a pair of branches A and 

B:

1. In case the median VAFs of A and B exceeded 100%, the pigeonhole principle 

defines that A and B are nested.

2. We can assume that non-hepatocyte cells constitute a sizeable fraction of each 

LCM sample. Assuming a non-hepatocyte fraction of 30% we nested branches 

when VAFs of A and B exceeded 70%. This non-hepatocyte fraction was chosen 

as a conservative estimate of the fraction of cells intermixed in our 

microdissections that are not derived from the hepatocyte clone, based on 

observed VAF peaks in our data together with single-cell RNA sequencing data 

from liver tissue.

3. If identical LCMs are members of both A and B, it is highly likely that A and B 

are nested, rather than independent branches. Thus, we also nested branches 
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where the LCMs in one branch were a subset of the LCMs in the other (parental) 

branch.

In each nesting scenario, we defined the parental branch to be the one with the higher 

median VAF in the contained LCMs. We highlighted the evidence level for nesting in each 

representation of phylogenetic trees, marking branches with evidence level 1 with a solid 

line, level 2 with a dashed line and level 3 with a dotted line.

Analysis of driver variants—We curated a list of genes that have been found to be 

significantly mutated in liver cancers in a selection of published studies1–4,6,7,37–39, as 

represented in Supplementary Table 5. Using the VAGrENT annotations34, we counted any 

regulatory, missense, nonsense, frameshift or essential splice variant as a potential driver 

variant. To systematically identify genes under mutagenic selection, we used the dN/dS 

method17 that screens for genes with an excess of non-synonymous mutations compared to 

that expected from the synonymous mutation rate.

Sensitivity correction—We identified 138 pairs of LCMs with a midpoint-to-midpoint 

distance of < 500µm and at least one shared cluster according to the Bayesian Dirichlet 

process. These LCMs we assumed to represent the same clone, thus providing an 

opportunity to calculate the sensitivity of calling a variant present in one LCM in the other. 

If we assume the sensitivity is the same in both samples, then the maximum likelihood 

estimate for the sensitivity, when mutations not called in either sample are unobserved, is 

given by:

s =
2n2

n1 + 2n2

where n2 is the number of variants called in both LCMs in each pair and n1 is the number of 

variants called only in one of the two LCMs. To evaluate the relationship of sensitivity with 

depth-of-coverage and VAF, we performed a logistic regression of sensitivity against these 

two predictors using the lm() function of the R programming language. The model fit was 

then used to calculate sensitivity for any LCM sample, given the coverage and VAF of the 

sample.

Mutation burden analysis—We used a linear mixed effects model to fit the number of 

variants per LCM sample against each individual’s disease aetiology (normal or cirrhotic) 

and age. We defined the individual’s ID as a random effect. The slope of the age coefficient 

was allowed to vary with the random effect. To facilitate the analysis, we used the lmer() 

function available from the lme4 package of the R programming language. To determine the 

significance of the aetiology and age coefficients, we used ANOVA analysis to perform a X2 

test comparing our model with models omitting the aetiology and age coefficients, 

respectively.

Deep targeted sequence validation of mutation calls—For 96 of the 

microdissections sequenced by whole genome sequencing, we performed a deep targeted 

sequencing validation using an Agilent RNA bait-set covering 350 recurrently mutated 
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cancer genes. Among these genes, a total of 17 mutations were identified in the whole 

genome sequencing data from the 96 samples – of these, 16 (94%) were validated, at 

comparable variant allele fractions, in the targeted deep sequencing data.

INDEL calling—INDELs were called using cgpPindel40. Variant calls for bulk sequencing 

data of the cancer samples were not further filtered. To remove artefactual calls from the 

LCM-derived data, we performed two post-filtering steps:

1) Assignment to SNV-based clusters: we evaluated how well the VAF distribution of each 

INDEL across the LCMs from the same donor compared with the VAF distribution of each 

SNV-based cluster as identified by the Bayesian Dirichlet process. Given an INDEL in one 

LCM sample, we thus counted its occurrence in all related LCMs and assigned the resulting 

VAF profile to the SNV clusters’ VAF profiles using a Bayes’ classifier. We noticed that 

many INDELs were assigned to SNV clusters with <100 variants, which we had previously 

removed from the SNV analysis. On closer inspection we noticed that those INDELs had 

low VAF and occurred frequently in badly-mapping regions. We thus discarded INDELs 

assigned to those clusters.

2) Filtering based on beta-binomial overdispersion parameter: we noticed that many INDELs 

occurred with low VAF in a large number of LCMs from the same donor and were, thus, 

likely to be artefactual. To systematically identify such INDELs, we fitted the beta-binomial 

distribution to the variant counts of each INDEL across the LCMs from the same donor. 

Fitted parameter ρ, the overdispersion parameter, was used to filter INDEL calls. A high 

value for parameter ρ (overdispersion) occurs when some LCMs have many variant read 

counts and others few or none. Conversely, a low value occurs when all LCMs have a similar 

number of variant counts (no overdispersion). Based on manual inspection, we removed 

variant calls with ρ < 0.02.

Copy number calling—CNs were called using the ASCAT algorithm41, assuming an 

expected ploidy of 4 (to allow for physiologically polyploid hepatocytes) and 60% non-

hepatocyte cell contamination for all samples. Robustness testing around these starting 

points (different expected ploidy or purity values) found that the specific values used did not 

materially affect the output. Variant calls for bulk sequencing data of the cancer samples 

were not further filtered. To remove artefactual variants from the LCM-derived data, we 

employed the SNV-based phylogenetic information. The genome was segmented into 500bp 

bins and the ASCAT-based copy number of each bin was calculated. Using the binned CN 

data we calculated the median CN in each LCM sample and ASCAT event. For each ASCAT 

event and LCM sample we assigned its absolute deviation from the diploid state. We 

compared each ASCAT event’s CN profile across the LCM samples with the VAF profile of 

each SNV cluster using cosine similarity (described below) to identify the most similar SNV 

cluster. Within each SNV cluster we proceeded to merge overlapping ASCAT events. Using 

manual inspection, we decided to keep ASCAT events if they 1) had a cosine similarity of < 

0.1 to an SNV cluster and 2) if their assigned SNV cluster was not removed during SNV 

analysis due to having < 100 assigned SNVs.
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Structural variant calling—SVs were called using the BRASS algorithm42 (https://

github.com/cancerit/BRASS). Variant calls for bulk sequencing data of the cancer samples 

were not further filtered. To remove artefactual variants from the LCM-derived data, we 

employed post-processing filters. Manual inspection of the sequencing reads identified for 

each SV showed that many reads were identical except for frame-shifts at repetitive sites. 

We decided that such reads represented duplicates and designed a filter to systematically 

remove these. We removed SVs supported by <2 reads after duplicate removal. Each 

remaining SV call was manually inspected.

Clone size calculation—We determined the midpoint coordinates of each LCM 

manually from the microscopy images collected during dissection. For each LCM belonging 

to a clone as determined by the Bayesian Dirichlet process, we used the function chull of the 

R programming language to identify the coordinates of the convex hull that included all 

LCMs. We identified the midpoint of each polygon as the average coordinate of all convex 

hull vertices. The size of the clone was then assigned to be the Euclidean distance between 

each convex hull vertex and the polygon’s midpoint. For clones that only consisted of a 

single LCM, we assigned the minimum clone size discovered across all clones.

Extraction of mutational signatures from SNV contexts using HDP—Mutational 

signatures were extracted using the HDP package (https://github.com/nicolaroberts/hdp) 

relying on the hierarchical Bayesian Dirichlet process. The units of signature extraction were 

mutations assigned to individual branches of the phylogenetic tree, grouped per patient, from 

the LCM data. In addition, to provide a comparison against signatures extracted in HCCs, 

we added catalogues of somatic substitutions from 54 whole genomes sequenced by the 

TGCA, analysed using the same core algorithms as used for the LCM data. The tool was 

used without defining prior signatures. As hyperparameters we set alpha and beta to 6 for the 

alpha clustering parameter. Extraction was started with 40 data clusters (parameter ‘initcc’). 

The Gibbs sampler was run with 10,000 burn-in iterations (parameter ‘burnin’). With a 

spacing of 50 iterations (parameter ‘space’), 50 iterations were collected (parameter ‘n’). 

After each Gibbs sampling iteration, 3 iterations of concentration parameter sampling were 

performed (parameter ‘cpiter’). Resulting signatures were compared to published 

signatures20,43 using the cosine similarity metric described below. Extracted signatures with 

cosine similarity >0.9 compared to a known signature from either the COSMIC20 or 

PCAWG43 catalogue of signatures were assigned the name of the known signature with the 

highest similarity. Extracted signatures with cosine similarity <0.9 to any of the known 

signatures were assigned new names, indexed with letters A, B, and C.

Extraction of mutational signatures from SNV contexts using SigProfiler—We 

used SigProfiler to extract mutational signatures, relying on the non-negative matrix 

factorization (NNMF) method44. In particular, we report the “Decomposed Solution” output 

by the package.

Cosine similarity calculation—To compare two vectors A and B, cosine similarity was 

calculated as follows:
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similarity =
Σi = 1

n AiBi

Σi = 1
n Ai

2 Σi = 1
n Bi

2

Analysis of INDEL proportion and gene expression—A list of transcribed regions 

was retrieved from ENSEMBL using the BioMaRt package45. We identified the subset of 

INDEL and SNV variants that overlapped with the transcribed regions. The proportion of 

INDELs in comparison to the total number of INDELs and SNVs per gene was calculated. 

Gene expression was assigned using the “liver” dataset from the Genotype-Tissue 

Expression project46. To test for the relationship of gene expression on INDEL proportion, 

we fit a Poisson regression using the glm function of the R programming language. We 

modelled the number of INDELs per gene against an offset of the total number of variants 

per gene and the gene’s expression.

Analysis of T>C transcription strand bias at transcription start sites—We 

performed this analysis analogously to a published approach22. In short, we retrieved the 

genomic coordinates of transcription start sites of the all overexpressed genes in the liver 

(GTEx46). We tiled the 10 kilobases up- and downstream of the transcription start site into 

1,000bp bins. We overlapped all T>C (transcribed) and A>G (untranscribed) variant calls 

with the tiled regions and summed the number of variants in each tile across all included 

genes. We also extracted the number of T and A bases in each tile. To test whether strand 

bias was significant only in transcribed regions, we fit a Poisson regression for the number 

of variant calls against the following predictors: strand (transcribed / untranscribed), distance 

from TSS (0 for upstream, 1 for downstream), aetiology (cirrhosis, no cirrhosis) and used 

the number of T and A bases in each tile as the offset variable.

Analysis of C>A and T>A transcription strand bias—We used the 

MutationalPatterns package47 to assign the transcription state for each C>A variant. We 

retrieved the genomic coordinates of all transcribed regions from ENSEMBL using the 

BioMaRt package45 and extracted the frequencies of C and G nucleotides in these regions. 

To test for significance of transcription strand bias, we performed a Poisson regression for 

the number of C>A variants in each sample and transcription strand against factor variables 

for the transcription strand, the patient ID and an interaction term for the two factors. We 

used the C, G nucleotide frequency as an offset variable. To test for significance of 

transcription strand bias for a given donor, we coded the patient ID in a binary fashion: “1” 

for the target donor, “0” otherwise. We proceeded analogously to test for transcription strand 

bias of T>A variants, using A and T nucleotide frequencies as the offset.

Extended Data
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Extended Data Figure 1. Sensitivity analysis of SNV calls.
(A) Overview schematic of the experimental and analytical approach.

(B) Examples of the variant allele fractions (VAFs) of variants from unrelated (top) and 

related (bottom) microdissection sample pairs from four donors (left to right). X-axis 

represents the VAF of sample 1 from each pair; Y-axis represents the VAF of sample 2. Each 

dot represents one variant. Red: variants called in both samples, yellow: variants called in 

sample 1, blue: variants called in sample 2.

(C) Histogram of sensitivities calculated for each sample pair.
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(D) Heatmap of modelled sensitivity at different values of VAF and coverage. Overlaid dots 

represent sample pairs used to fit model.

(E) Relationship of VAF, sensitivity and coverage according to fitted model of sensitivity. 

Overlaid dots represent sample pairs used to fit model.

(F) Comparison of calculated (x-axis) and fitted (y-axis) sensitivity for each sample pair 

(n=34 pairs of samples). The R2 value quoted is a Pearson’s correlation coefficient.

(G) Proportion of hepatocytes that are multinucleated in samples analysed here, estimated 

by counting 500 cells in each H&E section (n=14 patients). Each point represents the 

proportion of a patient in the study. The horizontal bars represent the mean for that 

aetiological group.
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Extended Data Figure 2. Copy number and structural variants in chronic liver disease.
(A, B) Genome-wide copy number profiles for two samples. Black points represent read-

depth of discrete windows along the chromosome, corrected to show overall copy number. 

Arm-level and whole chromosome gains and losses are evident.

(C-H) Focal copy number changes and structural variants. Black points represent read-depth 

of discrete windows along the chromosome, corrected to show overall copy number. Lines 

and arcs represent individual structural variants, coloured by the orientation of the joined 

ends (purple, tail-to-tail inverted; orange, head-to-head inverted; pale blue, tandem 
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duplication-type orientation; pale green, deletion-type orientation). Events affecting known 

HCC genes are marked with labelled arrows (panels C, E, F).
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Extended Data Figure 3. Events affecting known HCC genes in cohort.
(A) Distribution of somatic point mutations in individual microdissections (x axis) affecting 

known HCC genes (y axis). The inset to the left shows the frequency of events in individual 

genes. The inset to the bottom shows the aetiology attributed to the sample, and whether the 

sample was drawn from non-cancerous hepatocytes (left) or HCC (right).

(B) Genomic position of single nucleotide substitutions (SNVs; light blue strip, top) and 

insertion-deletions (INDELs; dark blue strip, bottom) detected in ALB, the gene encoding 

albumin.
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(C) Relationship of gene expression in liver tissue (x axis) and proportion of indels as a 

fraction of all point mutations (y axis). The grey line represents a Poisson regression model 

with a significant (two-sided likelihood ratio test; p < 10-16) coefficient for gene expression 

as a predictor for the ratio of indels (n=5458 genes included in model). The grey ribbon 

represents the 99% confidence interval of the parameter estimates.
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Extended Data Figure 4. Phylogenetic reconstruction of hepatocyte clones in non-cirrhotic liver 
samples.
Left column: Heatmap representing the clustering of the variants observed in each 

microdissection sample (x-axis) of the non-cirrhotic livers. Each cluster (y-axis) contains 

mutations for which variant allele fractions across samples are very similar. The colour scale 

of the boxes represents the estimated mean variant allele fraction for that cluster in that 

sample.

Middle column: Phylogenetic trees constructed from the clustering information. Solid lines: 

nesting is in accordance with the pigeon-hole principle. Dashed lines: nesting is in 
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accordance with the pigeon-hole principle assuming the pool of hepatocytes to be 70% of 

cells. Dotted lines: nesting is only based on clustering, assigning a clone as nested if its 

constituent LCMs are a subset of LCMs in the parental clone. Details given in 

Supplementary Methods.

Right column: Representation of clones according to the physical coordinates of the LCM 

samples, overlaid onto H&E stained sections (top), with Masson’s trichrome and Oil Red-O 

sections also shown (bottom). Locations of immune/inflammatory cell infiltrates are marked 

with yellow rings. Sample sizes were for PD36713, n=30 microdissections; PD36714, n=35 

microdissections; PD36715, n=26 microdissections; PD36717, n=42 microdissections; 

PD36718, n=32 microdissections.
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Extended Data Figure 5. Phylogenetic reconstruction of hepatocyte clones in alcohol-related 
cirrhosis.
Analogous to Extended Figure 4, representing the cirrhotic livers of donors PD37105, 

PD37107, PD37110 and PD37111. The pictures in the right column are of H&E stains on 

the top, with Masson’s trichrome and a macroscopic photograph of the liver on the bottom, 

with HCCs indicated by arrows. Locations of immune/inflammatory cell infiltrates are 

marked with yellow rings. Sample sizes were for PD37105, n=31 microdissections; 

PD37107, n=41 microdissections; PD37110, n=22 microdissections; PD37111, n=39 

microdissections.
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Extended Data Figure 6. Phylogenetic reconstruction of hepatocyte clones in non-alcoholic fatty 
liver disease with cirrhosis.
Analogous to Extended Figure 4, representing the cirrhotic livers of donors PD37113, 

PD37114, PD37115, PD37116 and PD37118. The pictures in the right column are of H&E 

stains on the top, with Masson’s trichrome and a macroscopic photograph of the liver on the 

bottom, with HCCs indicated by arrows. Locations of immune/inflammatory cell infiltrates 

are marked with yellow rings. Sample sizes were for PD37113, n=37 microdissections; 

PD37114, n=41 microdissections; PD37115, n=34 microdissections; PD37116, n=43 

microdissections; PD37118, n=26 microdissections.
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Extended Data Figure 7. Mutation spectrum of individual microdissections
From each donor, we chose 5 clones to represented the heterogeneity in trinucleotide context 

mutation spectra. The six substitution types are shown in the panel across the top of each 

clone’s data. Within each panel, the contribution from the trinucleotide context (bases 

immediately 5’ and 3’ of the mutated base) are shown.
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Extended Data Figure 8. Details of mutational signature extractions
(A) Dot plots showing the concordance for signature attributions between the two signature 

algorithms (n=479 microdissections). Mutational signatures on the y axis were extracted 

using non-negative matrix factorisation and on the x axis using a Bayesian hierarchical 

Dirichlet process. Quoted R values are Pearson’s correlation coefficients.

(B) Signatures extracted by non-negative matrix factorisation. The six substitution types are 

shown in the panel across the top of each clone’s data. Within each panel, the contribution 

from the trinucleotide context (bases immediately 5’ and 3’ of the mutated base) are shown.
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(C) Signatures extracted by the Bayesian hierarchical Dirichlet process, as for panel B. 

Where a signature matches one from panel B, it is shown on the same row.
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Extended Data Figure 9. Transcription strand bias in mutational patterns
(A) Transcription strand bias of T>C mutations at A[T]D context before and after 

transcription start sites of highly expressed liver genes.

(B) Bar plots representing the numbers of C>A variants on the transcribed and non-

transcribed strand. Each hepatocyte clone is represented individually (x-axis). Note the 

strand bias in the highly mutated clones of PD37111, where the tobacco signature is most 

active – the strand bias indicates the damaged base is the guanine, as expected for polycyclic 

aromatic hydrocarbons.
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(C) Bar plots representing the numbers of T>A variants on the transcribed and non-

transcribed strand. Each hepatocyte clone is represented individually (x-axis). Note the 

strand bias in the highly mutated clones of PD37107, where the aristolochic acid signature is 

most active – the strand bias indicates the damaged base is the adenine, as expected for 

polycyclic aromatic hydrocarbons.
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Extended Data Figure 10. Mutations in a B lymphocyte clone in a cirrhotic liver
(A) Illustration of a portion of the B-cell receptor (IGH) region on chromosome 14. Shown 

are the coverage tracks of an LCM sample that does not belong to the lymphocyte lineage 

(top) and a sample that belongs to the lymphocyte lineage (middle). In the center of the 

displayed region there is a drop of copy number in the lymphocyte track, indicating a 

structural rearrangement. The bottom track shows the paired-end reads that contribute to a 

rearrangement event in the lymphocyte sample, co-localised with the drop in copy number.
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(B) Application of the pigeonhole principle – if two clusters of heterozygous mutations in 

regions of diploid copy number are in different cells, then their median variant allele 

fractions must sum to ≤0.5 (if they sum to >0.5, equivalent to a combined cellular fraction of 

>1, there must be some cells that carry both sets of mutations – hence one cluster would 

have a subclonal relationship with the other). Cluster 10 is the cluster with the unique VDJ 

rearrangement of IGH shown in panel A and the large number of mutations attributed to 

signature 9. Clearly, samples from clusters 2, 11 and 55 etc have VAFs which, when 

combined with cluster 10, sum to >0.5. Therefore, they must be subclonal to cluster 10, even 

though they do show signature 9.

(C-H) Representative pairwise decision graphs for clusters of mutations. Median cellular 

fraction is shown for pairs of clusters across every sample from the patient. Where at least 

one sample falls above / to the right of the x+y=1 diagonal line, those two clusters must 

share a nested clonal-subclonal relationship.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Mutational burden observed in non-cancerous hepatocytes.
(A) Burden of SNVs corrected by sensitivity of mutation detection. Each boxplot represents 

a patient (n=14 patients; 482 microdissections), each dot represents one laser-capture 

microdissected sample. The grey-to-black intensity of the points reflects the median variant 

allele fraction (vaf) of mutations in each microdissection. Boxes in the box-and-whisker 

plots indicate median and interquartile range; whiskers denote range.

(B) Burden of insertion-deletion (INDEL) variants (n=14 patients; 482 microdissections).
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(C) Burden of copy number variants (CNVs) and structural variants (SVs), represented as 

number of unique events per patient.

(D) Chromothripsis involving chromosomes 16 and 21 observed in patient PD37111. Black 

points represent corrected read-depth along the chromosome. Lines and arcs represent 

structural variants, coloured by orientation of joined ends (purple, tail-to-tail inverted; 

orange, head-to-head inverted; pale blue, tandem duplication-type orientation; pale green, 

deletion-type orientation).

(E) Chromothripsis involving chromosomes 1 and 3 observed in patient PD37105.

(F) Chromothripsis involving chromosomes 2, 5 and 6 observed in patient PD37105 (in a 

separate clone to panel E).
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Figure 2. Phylogenetic reconstruction of hepatocyte clones.
(A) Phylogenetic tree constructed from clustering of mutations across microdissected 

samples in a normal patient (PD36715). Lengths of branches (x axis) indicate numbers of 

mutations assigned to that branch. Solid lines: nesting is in accordance with the pigeon-hole 

principle. Dashed lines: nesting is in accordance with the pigeon-hole principle assuming 

hepatocytes represent 70% of cells. Dotted lines: nesting is only based on clustering, 

assigning a clone as nested if variant allele fractions of constituent microdissections are 

lower than those in the parental clone.
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(B) Representation of branches from the phylogenetic tree in panel A according to their 

physical coordinates, overlaid onto an H+E stained section. Black points represent branches 

of the tree sharing no mutations with any other samples; coloured points represent branches 

with shared clonal relationships (n=26 microdissections).

(C, D) A second normal liver sample (PD36713; n=30 microdissections).

(E, F) Patient with ARLD (PD37105; n=31 microdissections)

(G, H) Patient with ARLD (PD37110; n=22 microdissections)

(I, J) Patient with NAFLD (PD37114; n=41 microdissections)

(K, L) Patient with NAFLD (PD37115; n=34 microdissections)

(M, N) Patient with NAFLD (PD37116; 43 microdissections)

(O, P) Patient with NAFLD (PD37118; 26 micordissections)
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Figure 3. Mutational signatures in normal liver, cirrhotic liver and HCC.
(A) Number of somatic substitutions (SNVs; sensitivity-corrected for non-cancerous 

samples) and insertion-deletion events (INDELs) in each non-cancer microdissection sample 

(blue points) and associated synchronous HCC (red diamonds).

(B) Stacked bar blot showing estimated proportional contributions of each mutational 

signature to each phylogenetically defined cluster of somatic substitutions. Data generated 

using a Bayesian hierarchical Dirichlet process.
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(C) Stacked bar blot showing proportional contributions of signatures in patients with 

ARLD.

(D) Stacked bar blot showing estimated proportional contributions of signatures in patients 

with NAFLD.

(E) Stacked bar blot showing estimated proportional contributions of signatures to 54 cases 

of HCC from TCGA1.

(F) Number of SNVs attributed to prevalent mutation signatures in each non-cancer 

microdissection sample (blue circles) and synchronous HCCs (red diamonds). Contributions 

for the TCGA samples are shown on the right. The y-axis is on a logarithmic scale.
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Figure 4. The liver as a witness for mutagenic insults occurring throughout life.
(A) Left panel: Phylogenetic tree of clones in patient PD37111, with each branch coloured 

by the proportion of mutations in that branch assigned to the different mutational signatures.

Middle panel: Overlay of the clones represented in (A) onto an H+E stained liver section of 

patient PD37111 (n=39 microdissections). Colouring of clones is according to the 

proportion of mutations attributed to Sig. 4, linked to tobacco exposure (blue: low activity of 

Sig. 4, red: high activity of Sig. 4).
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Right panel: Representative mutation spectrum for samples with low (top) or high (bottom) 

burden of Sig. 4. The six substitution types are labelled across the top. Within each 

substitution type, the contribution from the trinucleotide context are shown as 16 bars. The 

16 bars are divided into four sets of four bars, grouped by whether an A, C, G or T 

respectively is 5’ to the mutated base, and within each group of four by whether A, C, G or 

T is 3’ to the mutated base.

(B) Overlay of mutational signatures onto phylogenetic tree of clones in patient PD37107 

(n=41 microdissections). Colouring of clones in the middle panel is according to Sig. 22, 

linked to the aristolochic acid carcinogen.

(C) Overlay of mutational signatures onto phylogenetic tree of clones in patient PD36714 

(n=35 microdissections). Colouring of clones in middle panel is according to Sig. 24, linked 

to the carcinogen aflatoxin-B1.

(D) Overlay of mutational signatures onto phylogenetic tree of clones in patient PD37113 

(n=37 microdissections). Cluster 10 has many mutations attributed to Sig. 9, linked to the 

somatic hypermutation process in B lymphocytes.
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