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Inkjet Printing of Magnetic Particles 
Toward Anisotropic Magnetic 
Properties
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Hong Zhao1*

Unique properties of one-dimensional assemblies of particles have attracted great attention during the 
past decades, particularly with respect to the potential for anisotropic magnetism. Patterned films can 
be created using inkjet printing; however, drying of particle-laden colloidal droplets on solid surfaces 
is usually accompanied by the well-known coffee-ring effect, deteriorating both the uniformity and 
resolution of the printed configurations. This study examines the effect of externally applied magnetic 
field on particle deposition patterns. Ferromagnetic Gd5Si4 particles were formulated in terpineol oil and 
directly deposited via magnetic field-assisted inkjet printing on a photopaper to generate patterned 
films with suppressed coffee-ring effect. The particle deposition morphology is determined by both 
solvent imbibition and particle-magnetic field interactions. Three characteristic times are considered, 
namely, the critical time for solvent imbibition into the substrate (tim), the time it takes for particles 
to form chains in the presence of the magnetic field (tch), and the time in which the particles reach the 
substrate in the direction normal to the substrate (tpz). The characteristic time ratios (tpz/tim) and (tpz/tch) 
determine the final deposition morphology in the presence of magnetic field. The ability to control 
particle deposition and assembly, thus tuning the magnetic anisotropic properties of nanostructured 
materials is a promising approach for many engineering applications.

One-dimensional (1D) chain structures have attracted tremendous attention during the past decades owing to 
unique shape anisotropies and magnetic characteristics1. The major benefit of 1D particle assemblies is the ability 
to tailor magnetic, mechanical, electrical, and optical properties2. Such particle assemblies are of tremendous 
interest in many technological applications such as high density data storage systems3, magnetic sensors4, and 
magnetic refrigerators5, to name a few.

The chaining, or the formation of the so-called magnetosomes, is a result of intrinsic magnetic anisotropy, 
where magnetic particles orient and assemble with their easy magnetization axes (magnetization vectors) parallel 
to the magnetic field vector to minimize the magnetostatic energy of individual nanoparticles6,7. This phenom-
enon combines the magnetic moments present in every magnetic particle in a particular direction, which is 
considered a promising venue for fabricating functional devices8,9.

One approach that has a great potential in designing and fabricating magnetic devices is inkjet printing. 
Unlike a number of thin-film deposition and photolithography techniques, inkjet printing is a versatile and 
cost-effective tool by which the alignment and chaining of magnetic particles could be well-controlled10. However, 
the well-known coffee-ring effect (CRE) is a known impediment present in inkjet printing applications, and it 
should be addressed before broad adoption of this approach11–13. The CRE phenomenon has been the subject of 
broad investigations and scrutiny to unveil the underlying mechanisms14,15. Under certain conditions, when a 
particle-laden droplet is left to dry on a nonporous substrate, the colloidal particles transport to the three-phase 
contact line (TCL) resulting in a ring-like particle deposition16,17. Two decades ago, Deegan et al. attributed the 
cause of CRE to non-uniform evaporation rate across the air-liquid interface, which generates a lateral convective 
flow responsible for the particle migration toward the TCL18–20. To date, most of the research dedicated to mitigate 
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or suppress the CRE was focused on conventional means, such as controlling the solvent drying conditions21–23, 
modifying particle shapes24,25, tuning solvent properties26, adjusting substrate wettability27,28, and reversing the 
lateral-convective flow through introducing Marangoni flow29–32. However, the effects of porous substrates and 
external magnetic field on the CRE when the colloidal particles are magnetic require further investigations.

The main objective of this study is to elucidate the effect of external magnetic field on the magnetic par-
ticle assembly during inkjet printing to obtain anisotropic magnetic patterns through particle chaining with 
suppressed CRE formation. Ferromagnetic Gd5Si4 particles were formulated in terpineol oil and printed onto 
a porous substrate to form patterned films. A porous substrate (photopaper) used in this study quickly removes 
the solvent through imbibition, which suppresses the CRE to a certain degree. When no magnetic field is applied, 
patterns ranging from uniform deposits to clear rings have been produced depending on the droplet size and 
particle loading. With the magnetic field, however, the CRE can be suppressed or significantly reduced, and 
the magnetic nanoparticles assemble into chains, producing anisotropic magnetic patterns. Three characteristic 
times, namely the critical time for solvent imbibition into the substrate (tim), the time for particles to chain along 
the direction of the magnetic field (tch), and the time for the particles to reach the substrate in the direction nor-
mal to the substrate (tpz) under the magnetophoretic force, are considered in this work. These characteristic times 
demonstrate the competition between particle chaining and deposition in the presence of magnetic field versus 
solvent imbibition, which are directly related to the morphology of the particle deposition. Such ability to control 
the magnetic particle deposition and assembly through inkjet printing provides a great potential for many engi-
neering and technological applications.

Results and Discussion
Particle-laden droplets were jetted on a photopaper substrate, where the solvent removal through infiltration 
and evaporation occur simultaneously. However, for terpineol oil, the infiltration occurs at a much faster rate 
than evaporation. In this study, the size of the printed droplets was controlled by jetting multiple bursts of col-
loidal droplets, where three-phase contact lines remain pinned during the solvent imbibition as shown in the 
Supporting Information (Fig. S1). We note that TCL pinning on solid substrates is usually determined by the sub-
strate wetting property, which is mainly dependent on surface roughness33,34 and chemical homogeneity35–37. The 
initial pinning of solvents on substrates could be further enhanced by introducing suspended particles to anchor 
the contact line18,38. The TCL pinning of terpineol oil loaded with ferromagnetic particles on a porous substrate 
could be attributed to fast solvent imbibition, surface roughness of the photopaper, and low surface tension and 
high viscosity of the oil. Generally, non-uniform evaporation flux across the curved interface of sessile droplets 
initiates a radial evaporation-induced flow that drives the particles to the TCL. This is usually combined with 
particle diffusion in the bulk of the deposited droplets. Yet, the low vapor pressure and high viscosity of terpineol 
oil results in extremely low radial and diffusion velocities of the particles (Fig. S2). Therefore, it is reasonable to 
neglect the evaporation of terpineol oil and the associated radial particle transport and particle diffusion in the 
following discussion.

Without applied magnetic field, various particle deposition patterns were observed depending on the droplet 
volume. Different from conventional CRE, where colloidal particles transport to the edge of sessile droplets by 
virtue of the evaporation-induced capillary flow, in this study, solvent imbibition is the main driving mechanism 
that dictates the particle deposition pattern when no magnetic field is applied. Solvent in small droplets can 
be fully imbibed into the porous substrate directly underneath the droplets (primary imbibition stage), where 
the colloidal nanoparticles are immobilized and deposited onto the substrate due to fast solvent removal. For 
larger droplets, however, the solvent cannot be completely removed through primary imbibition, and its excess is 
removed through a much slower lateral imbibition (secondary imbibition stage) into the regions surrounding the 
as-deposited droplets. In this case, the colloidal particles can be driven to the TCL during the secondary imbibi-
tion process, producing deposits similar to conventional CRE. The images in the top row of Fig. 1 illustrate parti-
cle deposition patterns for various sizes of printed colloidal droplets with 25 mg/mL particle concentration when 
no magnetic field is applied. For droplet volumes of about 30 nL and smaller, primary imbibition is dominant and 

Figure 1.  Optical images of particle depositions of different droplet volumes, printed with 25 mg/mL particle 
concentration. The top row designated as “Random” illustrates samples printed without external magnetic field. 
The bottom row designated as “Aligned” illustrates samples with one-dimensional chains of particles formed 
during printing in the presence of applied magnetic field.
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nearly uniform particle depositions without accumulation at the TCL are observed owing to fast solvent removal 
that prevents particle transport to the periphery of the jetted droplet. Particles begin to accumulate at the edges 
of sessile droplets with larger than 30 nL volumes, indicating that secondary imbibition stage plays a role, where 
many particles are now transported to the TCL as the remaining solvent is slowly removed laterally. Printing 
colloidal inks with a lower particle concentration of 10 mg/mL follows a similar trend in the pattern formation 
whereas the CRE becomes visible when droplet volumes reach about 40 nL (Fig. S3).

Results described in the previous paragraph can be compared with those reported by Duo and Derby who 
studied particle accumulation at edges of sessile droplets on various porous substrates, including photopapers and 
ceramic powder beds, but without examining the influence of droplet volume39,40. They showed that Marangoni 
flow leads to suppression of the CRE due to the change in solvent composition during evaporation when depos-
iting the droplets on a solid non-porous substrate. In case of photopapers and ceramic powder beds, Marangoni 
flow is reduced inside sessile droplets since solvent composition does not change during imbibition, leading to 
ring formation. The effects of different droplet and particle sizes, as well as pore diameters on the ring formation 
were investigated by Pack and coworkers41. In their study, the porosity of the substrate was limited to only vertical 
pores that were normal to the substrate surface, allowing only primary solvent imbibition without secondary (lat-
eral) imbibition. Therefore, when primary imbibition terminates, ring formation is controlled by the evaporation 
of the remaining solvent. For substrates with large pore sizes solvent could be completely and quickly removed, 
suppressing CRE.

The mechanism of solvent removal in our study is different since the terpineol oil is nearly exclusively removed 
by infiltration into the porous substrate rather than through evaporation. As follows from our experiments, a 30 
nL sessile droplet takes about 98 s to be completely drained, whereas a 50 nL droplet drains within approximately 
143 s. The former can be considered as the critical characteristic imbibition time for ring formation, since the 
particle accumulation at the contact line is observed for droplet volumes starting from 30 nL. Fig. S4 and Video S1 
in the Supporting Information illustrate the process of solvent drainage into the photopaper.

The location on which the sessile droplet is deposited has a limited capacity of solvent absorption. Once the 
jetted droplet impacts the photopaper, it loses approximately 11% of its entire volume within 500 ms by imbibi-
tion. Then, the solvent further seeps in at a slower rate into the porous substrate isotropically in all directions. 
When the deposition area underneath the droplet becomes saturated with terpineol oil, the solvent can only infil-
trate laterally beyond the original footprint of the droplet. We note that the contact line of the droplet is pinned on 
the substrate and solvent seepage refers to the solvent infiltrated into the substrate. This, in turn, generates a radial 
flow that drives some of the particles toward TCL. However, this is not a concern for small sessile droplets (i.e., 
droplet volumes smaller than 30 nL), where the solvent is completely absorbed by the photopaper before notice-
able particle transport to the contact line, resulting in a uniform particle deposition through immobilizing of the 
colloidal particles (Fig. 1). For larger droplets, the solvent eventually generates a larger footprint underneath the 
droplet as it continues to seep through the photopaper, resulting in deposition of magnetic particles on the pho-
topaper, surrounded by a ring of terpineol oil within the substrate (Video S1). It is worth noting that the contact 
line of the droplet remains pinned at the original TCL during the solvent imbibition process (Fig. S1). Nilghaz et 
al. reported a similar observation in an effort to study dye stain formation on paper substrates, that is the solvent 
wicking front propagates further into the porous substrate than the dye where the dye molecules were separated 
from and left behind the water solvent42. They attributed this behavior to the capillary penetration into the paper, 
where the dye molecules were preferentially retained by the paper fibers. In our study, the colloidal particles are 
much larger than the pore size of the photopaper, therefore, the particle penetration is excluded. Instead, the 
particles deposit on the surface of the photopaper, forming different particle deposition patterns depending on 
the droplet volume.

The application of an external magnetic field significantly impacts the colloidal ferromagnetic particle depo-
sition in sessile droplets43. Intrinsic magnetocrystalline anisotropy of Gd5Si4 magnetic particles results in strong 
dipole interactions among the particles. These particles are forced to chain and assemble with their easy magneti-
zation directions along the direction of the external magnetic field vector. The horizontal component of the mag-
netic field drives the magnetic particles to form long chains, especially for larger droplets. In addition, applying 
magnetic field significantly suppresses the ring formation. The underlying mechanism of suppressing the CRE 
by exerting magnetic field is that, the magnetic particles transport toward the substrate under the magnetopho-
retic force, represented by the magnetic field gradient in a direction perpendicular to the substrate. This inhibits 
the radial particle transport and deposition at the TCL due to solvent imbibition, especially for larger droplets. 
In addition, the colloidal particles are arrested by forming chains instead of being dragged to the contact line 
region by the lateral solvent flow during the secondary solvent imbibition stage. This, in turn, also contributes to 
the suppression of the CRE by limiting the number of individual particles that can migrate toward the contact 
line. Figures 1 and 2 display the chain formation and suppression of the coffee ring effect when printing droplets 
with colloidal magnetic particles under the influence of magnetic field. The ring formation has been significantly 
suppressed especially for the 50 nL droplets. Figure 3 is a schematic illustrating the difference between particle 
deposition patterns with and without the presence of magnetic field.

In order to better understand the influence of applying external magnetic field on ferromagnetic particle 
deposition, COMSOL Multiphysics was employed to simulate the particle chaining and deposition processes. 
To simulate the particle chaining, only two magnetic dipoles were introduced to the simulation domain, where 
the interaction force between the two dipoles is significantly affected by their initial orientation angle (α) with 
respect to the external magnetic field (Fig. S5). Figure 4 and Video S2 demonstrate the chaining process by two 
dipoles, one of which is placed at the center of the domain. The second dipole is positioned at 30° angle with 
the direction of the magnetic field (the positive direction of the y-axis coincides with the positive direction of 
the magnetic field). The initial distance between the two diploes corresponds to the mean particle distance (Lm) 
calculated for 25 mg/mL particle concentration. Details about the modeling are provided in the Methods section. 
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Videos S2–S6 display the chaining process with dipoles positioned at different orientation angles with the mag-
netic field vector, such as 0°, 30°, 45°, 60°, and 90°. Figure S6 shows the time elapsed for the dipoles to collide and 
chain (tch). Figure S7 shows the interaction forces exerted on each particle at different initial orientation angles, 
which determines whether they approach or move away from each other. When both dipoles are placed along the 
x-axis (α = 90°), the force is repulsive and the dipoles move apart. On the contrary, the dipoles attract the most 
when α = 0° as shown in Video S3. In this case, the particle velocity continuously increases until the dipoles col-
lide. For any other orientation (0° < α < 90°), the dipoles follow elliptical trajectories until they collide and align 
themselves with the y-axis, i.e., the direction of the magnetic field. The characteristic chaining time (tch) increases 
with increasing α, which can be attributed to the competition between repulsion and attraction forces (Fig. S7).

The magnetophoretic force suppresses the CRE through attracting the magnetic particles toward the substrate. 
This force is generated by the magnetic gradient in the z-direction, which is perpendicular to the substrate since 
the permanent magnet is positioned underneath the substrate. The full magnetic field of the simulation domain is 
shown in the Supporting Information (Fig. S8a,b). Figure S8c shows the magnetic field gradient in the z-direction 
developed inside the droplet. In this domain, the particles are released at a distance (Lm) away from the substrate 
in order to estimate the characteristic time (tpz) needed for magnetic particles to reach the substrate under the 
magnetophoretic force (Fig. S9). At the early stages of particle motion, the particle velocity starts to gradually 
increase, reaching the maximum of 108 µm/s in 238 ms, and then remains constant until the particles reach the 
substrate (Video S7).

The influence of exerting magnetic field on particle assembly and deposition can be determined by compar-
ing the characteristic time needed for the particles to chain (tch) and the time elapsed for particles to transport 

Figure 2.  Scanning electron microscope (SEM) images demonstrating the difference in particle accumulation 
at the TCL region with and without applying magnetic field for droplet volumes of 30 nL and 50 nL. The images 
present a clear evidence of the reduced number of particles deposited at the TCL when the magnetic field was 
applied. The particle concentration was 25 mg/mL.

Figure 3.  Schematic illustration of the magnetic field effect on ferromagnetic particle deposition. Ring-like 
depositions are produced when no magnetic field is applied, whereas, aligned chain-like patterns with much 
suppressed CRE are formed when a magnetic field is applied.
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vertically toward the substrate (tpz) with the critical time for solvent imbibition (tim). The characteristic time ratios 
(tpz/tim) and (tpz/tch) determine the final particle deposition and assembly in the presence of magnetic field. The 
characteristic time ratio (tpz/tim) determines whether the colloidal particles have sufficient time to reach the sub-
strate before the solvent is completely drained. Rings form when tpz/tim > 1, where the particle transport toward 
the substrate under the magnetophoretic force is much slower than the imbibition process, thus resembling no 
magnetic field condition. In this case, the particles follow the infiltration flow that persists during secondary imbi-
bition stage, resulting in the ring formation. However, when tpz/tim <1, the CRE is suppressed and the particles 
deposit on the substrate under the magnetophoretic force before the solvent is completely drained. On the other 
hand, the characteristic time ratio (tpz/tch) exemplifies the competition between the particle chaining and particle 
deposition (immobilization) when the magnetic field is applied. For tpz/tch < 1, the magnetic particles deposit onto 
the substrate forming uniform but random depositions without obvious chain formation. In contrast, tpz/tch > 1, 
describes chain formation in the liquid phase before the particles are deposited on the substrate.

The experimental outcomes are corroborated by the analysis of characteristic time ratios when considering the 
critical solvent imbibition time for a 30 nL droplet. The corresponding characteristic time ratio tpz/tim = 2.5 × 10−3 
is orders of magnitude smaller than 1. This indicates suppression of the CRE, where the particles rapidly transport 
toward and deposit on the substrate before the solvent is completely infiltrated. In addition, the characteristic 
time ratios tpz/tch for the orientation angles of 0°, 30°, 45°, and 60° are 762.2, 560.5, 361.3, and 72.1, respectively. 
Hence, for all simulated cases except α = 90°, the particles chain in the liquid phase before depositing on the sub-
strate. The combined effects of the magnetophoretic force and the chaining forces prompt the particles to form 
chains in the liquid phase along with the accelerated particle deposition onto the substrate. This explains the effect 
of magnetic field on the chain formation, as well as suppression of CRE, which is in a good agreement with our 
experimental observations.

Implication in printed anisotropic magnetic films.  In order to evaluate magnetic properties of different 
patterns of magnetic particles, continuous films were generated by this inkjet printing process with and with-
out external magnetic field. The printed films were characterized with a physical property measurement system 
(PPMS) and SEM. Figure 5a illustrates magnetization curves of the printed films measured at 300 K. The corre-
sponding patterns formed by particles during printing with and without magnetic field are illustrated in Fig. 5b. 
Higher magnetization values were obtained when measuring films with 1D chains parallel to the direction of the 
measuring magnetic field, as compared to the magnetization values of the films with random particle orientation. 
This confirms that chains are formed by particles in nearly identical orientations, and that the chain axes coincide 
with the easy magnetization directions of the individual particles. Conversely, the lowest magnetization values 
were observed when the 1D chains were normal to the direction of the magnetic field. The difference in magnet-
ization is due both to intrinsic magnetocrystalline anisotropy of Gd5Si4, and to shape anisotropy of 1D chains. 
Samples with random particle orientation (i.e., printed without applying magnetic field) were tested at different 
orientations with respect to direction of the measuring magnetic field vectors and are shown in Fig. S10. We 
also note that the photopaper employed in this study contributes weak but measurable magnetic background, as 
illustrated in the Supporting Information (Fig. S11). The background from the substrate was subtracted from the 
magnetization data illustrated in Figs. 5a and S10.

Figure 4.  (a–f) Demonstration of chain initiation process by two magnetic dipoles in the presence of magnetic 
field. The dipoles are initially positioned with an orientation angle α = 30° with respect to the magnetic field 
vector. The magnetic field vector direction coincides with the positive y-axis. The elapsed time for the two 
dipoles to collide and initiate the chain is 446 µs. In this case, the dipoles travel in elliptical paths until they align 
and collide.
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In summary, 1D chain structures of magnetic particles with suppressed ring formation have been obtained 
on porous substrates through the magnetic-field assisted inkjet printing process. Gd5Si4 magnetic particles were 
formulated in terpineol oil and printed on photopapers. We demonstrate that CRE can be suppressed and particle 
deposition morphology can be controlled by solvent imbibition, whereas particle chaining, and particle transport 
can be further tailored making use of magnetic interactions. When no magnetic field was applied during printing, 
different particle depositions were observed depending on the particle concentration and the volume of the jetted 
droplet. For small droplets, no ring formation was observed because the solvent can imbibe into the substrate in 
a short period of time (i.e., less than the critical imbibition time). However, the solvent imbibition time for large 
colloidal droplets exceeds the critical imbibition time mostly due to the second stage of solvent seepage. This, 
in turn, generates a radial flow that drags some of the colloidal particles to the periphery of the sessile droplet. 
Applying magnetic field enables the formation of 1D chain structure through assembling the magnetic particles 
along their easy axes. It also significantly suppresses the CRE through limiting particle transport to the TCL by 
means of particle chaining and magnetophoretic force, especially for larger droplets. Numerical simulations pre-
dicted that colloidal magnetic particles assemble in the liquid phase before they vertically transport and deposit 
on the substrate, which agrees very well with our experimental findings. Finally, films printed in the presence of 
magnetic field exhibit anisotropic magnetic response to the applied magnetic field due to the 1D assembly struc-
ture, which holds a great potential in many engineering applications.

Methods
Inkjet printing of magnetic particles.  In this study, a photopaper (Kodak, 8.5 × 11″ Gloss) was cut into 20 
mm × 20 mm and used as a porous substrate for the inkjet printing process. Gd5Si4 magnetic particles were pre-
pared by ball milling at the Ames laboratory44,45. The particles were dispersed in terpineol oil (Alpha-Terpineol, 
96% purity, Alfa Aesar) to obtain particle concentrations of 10 mg/mL and 25 mg/mL. In order to enhance the 
adhesion of the Gd5Si4 particles with the substrate, 0.15 wt% ethyl cellulose (18–22 mPa·s, 5% in toluene + etha-
nol (80:20) at 25 °C, TCI America) was added to the dispersion to form the magnetic ink. Then, the magnetic ink 
was ultrasonicated for 10 min before printing.

The magnetic ink with different particle concentrations was jetted on the photopaper substrate via an inkjet 
printing platform (Jetlab 4, MicroFab). A piezoelectric nozzle with an orifice size of 80 µm (MJ-ATP-01-80-8MX, 
MicroFab) was employed in this study, driven by a waveform generator (Jetdriver III, MicroFab). The nozzle was 
heated to 50 °C to facilitate the jetting process of terpineol oil. The size of the jetted droplets on the photopaper 
was controlled by the number of bursts, where the volume of individual jetted droplet was ~500 pL generated at 
200 Hz jetting frequency. The alignment of the magnetic particles during printing was achieved by placing a neo-
dymium permanent magnet (BC14-N52, K&J Magnetics) underneath the substrate to force the nanoparticles to 

Figure 5.  (a) Magnetization of printed films measured as a function of magnetic field. “Random” refers to films 
printed without external magnetic field. “Parallel” and “Normal” refer to films printed in magnetic field with 
magnetic particle chains, respectively, parallel and perpendicular to the measuring magnetic field vector. (b) 
Optical and SEM images of the films printed with (left) and without (right) magnetic field, illustrating chain 
formation in the films printed in the presence of external magnetic field. The scale bar in the optical images is 
100 µm.
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align along the direction of the externally applied magnetic field. Samples with random particle orientations were 
printed without the permanent magnet.

Morphology characterization.  An ultra-high-resolution scanning electron microscope (HITACHI SU-70 
FE-SEM) with 5 kV and 15 mm scanning distance was used for morphology characterization of the printed pat-
terns. To minimize charging effect of the printed magnetic particles, the samples were coated with platinum using 
a platinum sputter (Denton Vacuum Desk V) for 120 s.

Magnetic characterization.  Magnetic properties of the printed patterns were characterized using a physi-
cal property measurement system (PPMS) from Quantum Design. The size of the printed films was adjusted to 4 
mm × 4 mm, printed using ink with 25 mg/mL particle concentration. Isothermal magnetization was measured 
at T = 300 K in magnetic field varying between −30,000 Oe and +30,000 Oe with field sweep rate of 10 Oe/s. The 
total mass of the magnetic particles on the substrate was calculated based on the number and volume of droplets 
to form the film and the ink concentration. Each sample was measured with film surface parallel and normal to 
the direction of the measuring magnetic field vector.

Numerical simulations of magnetic field and particle motion.  Two simulation domains were con-
structed in COMSOL Multiphysics (version 5.4) to estimate the characteristic times tch and tpz. The first simulation 
domain couples the magnetic field and particle tracking with the fluid flow together to simulate the characteristic 
time (tpz) needed for the particles to migrate toward and reach the substrate from a distance Lm away the substrate 
surface. With the assumption that the colloidal magnetic particles are homogeneously dispersed in the bulk of 
the sessile droplet, the distance Lm is taken as the mean distance between two colloidal magnetic particles, as 
estimated by Eq. 1 46,

=L V N( / ) (1)m 0
1/3

where V0 is the initial volume of the sessile droplet and N is the total number of particles in the bulk of the droplet. 
In COMSOL, the magnetic field strength H is calculated by solving the Gauss’ law equation for magnetism,

μ μ−∇ ∇ − =V M( ) 0 (2)m0 0

where = −∇H Vm; M is magnetization; μ0 is the vacuum permeability; and Vm is scalar magnetic potential. The 
particle motion is governed by Lagrangian equation (Eq. 3) that involves various forces such as drag force FD, 
magnetophoretic force FMG, Brownian force Fb, gravitational force Fg, and buoyancy force Fbo,

= + + + +md s
dt
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where m, s, and t are the mass of the particle, the spatial coordinate of the particle, and time, respectively. The 
magnetophoretic force (FMG) is defined as:
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3
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where rp is the radius of the particle; and K is defined as:
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whereμr,p is the relative permeability of the ferromagnetic particles and μr,f is the relative permeability of the fluid. 
In COMSOL the drag force (FD) is expressed by Eq. 6,
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where τp is the particle response time; mp is the particle mass; u is the fluid velocity; and v is the velocity of the 
particle. The particle velocity response time for spherical particles in stokes flow is given by Eq. 7,

τ
ρ

μ
=

d

18 (7)p
p p

2

where ρp is the density of the particle, dp is the particle diameter, and μ is the fluid viscosity. In this model, we 
assume the average particle size is 5 µm, and 30 nL droplet size as the simulation domain in which the particles 
are released. It is common for particles larger than 1 µm to be nearly unaffected by the Brownian motion, espe-
cially in highly viscous fluids such as terpineol oil. Furthermore, the gravitational and buoyancy forces, initially 
included in our simulations, were found to have negligible effects on the chaining time, vertical deposition veloc-
ity and time, indicating dominance of magnetophoretic and drag forces. Therefore, only the magnetophoretic 
force and the drag force are considered in this study.
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On the other hand, estimating the characteristic time for the magnetic particles to chain (tch) required only 
the particle tracking in the droplet. The terpineol oil is considered as the fluid in the domain. Two particles were 
released in the domain and treated as magnetic dipoles in a uniform magnetic field. The two particles can be 
treated as two magnetic dipoles, whose magnetic moments orient in the same direction as the external magnetic 
field. The induced magnetic dipoles in the applied magnetic field was calculated according to the specifications of 
the magnet used in our experiments. Figure S5 is the two-dimensional (2D) spatial representation of a magnetic 
dipole pair. The magnetic forces between the two dipoles are derived in both x- and y- directions as expressed in 
Eq. 8 and Eq. 9 47,

μ α α

π
=

−
F

m m cos
r

3 [1 5 ( )]sin( )
4 (8)x

0 1 2
2

4

μ α α

π
=

−
F

m m cos
r

3 [3 5 ( )]cos( )
4 (9)y

0 1 2
2

4

where m1 and m2 are the two magnetic dipole moments, π= =m m Kr H4 p1 2
3 ; α is the orientation angle of the 

dipoles with respect to the magnetic field; r is the dipole-diploe distance. The estimated characteristic times (tch) 
and (tpz) were compared with the experimentally determined critical time for solvent imbibition (tim) to identify 
the conditions for chain formation and CRE suppression.
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