
Am. J. Trop. Med. Hyg., 101(5), 2019, pp. 1042–1053
doi:10.4269/ajtmh.18-0930
Copyright © 2019 by The American Society of Tropical Medicine and Hygiene

Impact of Antibiotic Resistance on Treatment of Pneumococcal Disease in Ethiopia: An
Agent-Based Modeling Simulation

Hui-Han Chen,1 Andrew Stringer,2 Tadesse Eguale,3 Gauri G. Rao,4 and Sachiko Ozawa1,5*
1Division of Practice Advancement andClinical Education, UNCEshelmanSchool of Pharmacy, University of NorthCarolina at Chapel Hill, Chapel
Hill, North Carolina; 2Department of PopulationHealth and Pathobiology, College of VeterinaryMedicine, NorthCarolina State University, Raleigh,
North Carolina; 3Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia; 4Division of Pharmacotherapy and
Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina;

5Department of Maternal and Child Health, UNC Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill,
North Carolina

Abstract. Antimicrobial resistance (AMR) is a growing threat to global health. Although AMR endangers continued
effectiveness of antibiotics, the impact of AMR has been poorly estimated in low-income countries. This study sought to
quantify the effect of AMR on treatments for pediatric pneumococcal disease in Ethiopia. We developed the DREAMR
(Dynamic Representation of the Economics of AMR) model that simulate children younger than 5 years who acquire
pneumococcal disease (pneumonia,meningitis, andacute otitismedia) andseek treatment fromvarioushealth facilities in
Ethiopia over a year. We examined the AMR levels of three antibiotics (penicillin, amoxicillin, and ceftriaxone), treatment
failures, and attributable deaths. We used the cost-of-illness method to assess the resulting economic impact of AMR
fromasocietal perspectivebyestimating thedirect and indirect treatment costs andproductivity losses. Findings showed
that AMR against antibiotics that were used to treat pneumococcal disease led to 195,763 treatment failures per year,
which contributed to 2,925 child deaths annually in Ethiopia. Antimicrobial resistance resulted in a first-line treatment
failure rate of 29.4%. In 1 year, the proportion of nonsusceptible Streptococcus pneumoniae bacteria increased by 2.1%
and 0.5% for amoxicillin and penicillin, and reduced by 0.3% for less commonly used ceftriaxone. Annual costs of AMR
to treat pneumococcal diseasewere aroundUS$15.8million, includingUS$3.3million for ineffective first-line treatments,
US$3.7million for second-line treatments, andUS$8.9million for long-termproductivity losses. Antibiotic stewardship to
reducemisuseandoveruseof antibiotics is essential tomaintain theeffectivenessof antibiotics, and lessen thehealth and
economic burden of AMR.

INTRODUCTION

Antimicrobial resistance (AMR) poses a global public health
threat by diminishing the effectiveness of existing antimicro-
bials, leaving individuals prone to prolonged hospitalization
andmortality from simple bacterial infections.1,2 Antimicrobial
resistance is the mechanism by which microbes such as
bacteria deactivate the efficacy of antimicrobials from
destroying themand stopping their growth.3 Bacteria become
resistant through various mechanisms, including producing
destructive enzymes that neutralize antimicrobials, modifying
antimicrobial targets by mutation so that drugs cannot rec-
ognize them, or removing antimicrobial agents by pumping
them out of cells.4 Resistant bacteria can also prevent anti-
microbials from entering bacterial cells by modifying the outer
cell membrane or creating bypasses that allow bacteria to
function without the enzymes targeted by antimicrobials.4

Resistance to all first-line and last-resort antimicrobials is in-
creasing globally, and only a few antimicrobials have been
developed in recent decades, resulting in an overall decline in
the total portfolio of antimicrobial effectiveness.5–7

Theglobal costsofAMRareestimated to increase toUS$100
trillion annually by 2050.8 Antimicrobial resistance results in
longer treatment duration, greater side effects from second- or
third-line treatment, higher mortality and morbidity, more
treatment costs, aswell as income losses.9 In theUnitedStates,
antimicrobial-resistant bacterial pathogens are responsible for

more than twomillion infections and23,000deaths each year at
a direct cost of US$20billion, and additional productivity losses
of US$35 billion.10 In Europe, in 2007, 25,000 deaths were at-
tributable to resistant infections, costingV1.5 billion annually in
direct and indirect costs, according to an estimate from the
EuropeanMedicines Agency and European Center for Disease
Prevention and Control.11 Although efforts have been made to
estimate the impact of AMR, most studies have focused on
high-income countries.12 Similar estimates of the impact of
AMR are not currently available in low- and middle-income
countries, although these countries are experiencing the
greatest increase in antimicrobial use.5

The World Health Organization (WHO) lists Streptococcus
pneumoniae as a community-acquired infection of high global
concern for resistance.13 Streptococcus pneumoniae is the
pathogen that causes pneumococcal infections resulting in
several diseases, such as acute otitis media, pneumonia, and
meningitis. Streptococcus pneumoniae is known to cause at
least 18% of severe pneumonia episodes and 33% of pneu-
monia deaths worldwide.14 Understanding the influence of
AMR on pneumococcal infections is particularly important in
countries with high rates of pneumonia and child deaths.
Ethiopia isamong the topfivecountriesgloballywith thehighest
numberofchilddeaths.Estimatessuggest thatbetween33,000
and 37,000 Ethiopian children younger than age 5 die annually
from pneumonia.14 We examined the impact of AMR on treat-
ments for pediatric pneumococcal infections in Ethiopia.
Agent-based modeling (ABM), a type of individual-based

model, can aid in simulating complex interactions among
agents and assess their effects on the system as a whole.15,16

In an ABM, agents such as bacteria and humans follow pre-
determined rules based on their heterogenous characteristics

* Address correspondence to Sachiko Ozawa, Division of Practice
Advancement and Clinical Education, UNC Eshelman School of
Pharmacy, University of North Carolina at Chapel Hill, CB#7574,
Beard Hall 115H, Chapel Hill, NC 27599. E-mail: ozawa@unc.edu

1042

mailto:ozawa@unc.edu


and the environment. Some characteristics change over time,
whereas others do not, resulting in dynamic interactions be-
tween agents and the environment to produce aggregate re-
sults over a period.15 ABM can provide better insights into the
dynamics of infectious diseases compared to previous stud-
ies which primarily used compartmental approaches tomodel
AMR.12,16 In addition, most models that have examined the
impact of AMR were deterministic and did not incorporate an
economic perspective. We aimed to develop a stochastic
ABM with humans and bacterial agents to examine the
broader health and economic effect of AMR on treatment for
pneumococcal disease.12

MATERIALS AND METHODS

Wedeveloped the DREAMR (Dynamic Representation of the
Economics of AMR) model, an ABM with two interactive sub-
models for bacteria and humans. Creating two submodels fa-
cilitated dynamic interactions between humans and bacteria.
In the human submodel, children become infected by
S. pneumoniae, seek care at varying health facilities, and use
antibiotic treatment or do not seek care. When antibiotics are
used, bacterial agents survive or die, and replicatebasedon the
magnitude of antibiotic exposure. This results in a change in the
proportion of resistant strains in the bacterial population also
known as the AMR pattern. The AMR pattern subsequently
affects treatment outcomes of pneumococcal diseases among
human agents, where treatment failures increase as the pro-
portion of resistant strains increase. As a consequence, ad-
verse health outcomes and costs of treatment increase
because of prolonged treatment duration and use of second-
line antibiotics. We used NetLogo 6.0.2 for our simulation, a
freely available and widely used educational software with a
multi-agent programmable modeling environment.17 We

estimated the annual health and economic impact of AMR on
treatment of pediatric pneumococcal infections in Ethiopia.
Bacteria submodel. The DREAMR bacteria submodel in-

cluded two types of bacteria: resistant strains and susceptible
strains (Figure 1). The initial proportions of each type of bac-
teria were set based on resistance patterns for three antimi-
crobials (amoxicillin, penicillin, and ceftriaxone) that are
commonly used to treat pneumococcal diseases inEthiopia.18

The model simulated 5,000 bacterial agents, including both
resistant and susceptible strains for each antibiotic. Each
agent represented 0.02% of bacteria in the entire bacterial
reservoir. The bacterial reservoir consisted of S. pneumoniae
that colonized on either symptomatic or asymptomatic indi-
viduals, where bacterial agents couldmove randomly over the
entire bacteria space. This represented disease transmission,
where bacteria can move from one individual to another.
Every bacterial agent was categorized as either resistant or

susceptible against each antibiotic. Individual bacterium was
also assigned a minimum inhibitory concentration (MIC) value
based on its resistant/susceptible characteristic, where re-
sistant bacteria were more likely to be assigned higher MIC
values. The MIC values were obtained from the gamma distri-
bution to represent the highly right-skewed nature of MIC val-
ues, with variance obtained from the literature.19,20 Themethod
of moments approach was applied to derive parameters
needed for gamma distributions.21 The 90th percentile of MIC
values in the gammadistribution for susceptible strainswas set
to be equal to the breakpoint for susceptible strains determined
by the Clinical Laboratory Standards Institute (CLSI). The 90th
percentile of MIC values for resistant strains was set to the
breakpoint of intermediate strains by combining intermediate
and resistant strains from CLSI as a resistant category.20

We simulated pharmacokinetics based on currently ap-
proved dosages for the three antibiotics and evaluated the

FIGURE 1. Conceptual framework of the bacteria submodel to estimate the accumulation of antimicrobial resistance. This figure appears in color
at www.ajtmh.org.
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resulting pharmacodynamics to determine whether each bac-
terium will die under antibiotic exposure (see Supplemental
Appendix).Pharmacokinetic parameters, including thevolume
of distribution, total body clearance, and elimination rate
constant were retrieved from the literature and product in-
formation for each antibiotic.22–25 The probability that ade-
quate antibiotic exposure was achieved depended on defined
daily doses (DDDs) and the proportion of children colonized
with S. pneumoniae.26 DDDs were derived from the human
submodel, which represented the proportion of children
using antibiotics. Because not every individual carries
S. pneumoniae, the model divided DDDs by the proportion of
humans colonized to estimate the probability that bacterial
agents would be exposed to antibiotics. As a result, larger
DDDs led to a greater propensity for bacteria to be exposed to
antibiotics.27 Antibiotic utilization was simulated based on
common recommended dosages and intervals.28,29

Because the three beta-lactam antibiotics are time de-
pendent, we simulated the effectiveness of antibiotics based
on the percentage of time the exposed antibiotic concentra-
tion is above the MIC, where time is highly correlated with the
overall dose, dosing frequency, and other pharmacokinetic
characteristics.30,31 Bacteria would die if the percentage of
time the antibiotic concentration is above its MIC value be-
came larger than the threshold, under the assumption that all
bacteria are susceptible to the antibiotic if adequate exposure
is achieved.30,32,33 Susceptible strains of bacteria were more
likely to be killed compared with resistant strains because of a
lower MIC distribution.
The model also included fitness costs of resistant bacteria

to counter the AMR growth.12,34 Fitness of resistant bacteria
depended on several factors, such as host immune status, the
environment in which the bacteria are growing, and prior drug
pressure.35 As the literature suggests that resistant strains are
often less fit than susceptible strains when not facing antibi-
otic pressure, resistant bacteria in the model faced a lower
probability of survival when competing with susceptible
strains.34 Survived bacteria, either resistant or susceptible
strains, subsequently had an identical chance to reproduce
regardless of their MIC values, until the total number of bac-
teria in the population reached 5,000 (100%) again to obtain a
new resistant pattern. The rate of change in the proportion of
resistant bacteria was associatedwith antibiotic pressure.We
examined the AMR patterns for each antibiotic, which were
dynamically updated over time in accordance with antibiotic
exposure.
Human submodel. We also developed the DREAMR hu-

man submodel, where we simulated 8,000 child agents be-
tween 0 and 5 years of age with incidence of pneumococcal
infections resulting in pneumonia, meningitis, and acute otitis
media (Figure 2). Each child agent in themodel represented 10
children, where the study modeled a total of 80,000 children
over a 1-year horizon. A similar methodwas also used in other
ABMs to overcome the computational burden.36 Every child
agent in the model was assigned an immunization status for
receiving the pneumococcal conjugate vaccine (PCV) based
on the WHO and United Nations Children’s Fund (UNICEF)
immunization coverage estimates in 2017 for Ethiopia.37 Daily
pneumococcal disease incidence rates were applied based
on the child agent’s PCV immunization status and vaccine
efficacy.26,38–40 Disease incidence also took into consider-
ation the effects of herd immunity, where immunization can

protect unvaccinated populations by preventing disease
transmission when immunization coverage reaches a high
threshold.41,42 This study simulated herd immunity at the
vaccine coverage rate of 2017 (i.e., 68%),where lower disease
incidence rates were applied to unvaccinated populations to
simulate the indirect effect of immunization.43

Care-seeking and treatment of pneumococcal disease in
children was modeled over 1 year. Specifically, caregivers of
children with pneumococcal infections chose whether or not
to seek care from healthcare facilities based on care-seeking
rates from the Ethiopian Demographic and Health Survey.44

Children who did not receive treatment from healthcare facil-
ities would either receive self-medication or remain untreated.
Untreated children faced a greater propensity to develop ad-
verse health outcomes (i.e., disability and death).45 Children
who sought health care received treatment from one of the
following facilities: 1) health post, 2) health center, 3) govern-
ment hospital, or 4) private hospital/clinic.46 All children with
acute otitis media were treated as outpatients, whereas all
meningitis cases were treated as inpatients.47,48 Hospitaliza-
tion rates from the literature were applied to children with
pneumococcal pneumonia who sought care at the health
center, government hospital, or private hospital/clinic.46 At
each health facility, we simulated child agents receiving first-
line antibiotic treatment in an outpatient or inpatient setting.
Three antibiotics were commonly used as first-line treatment
for acute otitis media, pneumonia, and meningitis in Ethiopia:
1) amoxicillin, 2) penicillin, and 3) ceftriaxone.49 In outpatient/
self-medication scenarios, the model assumed that patients
received antibiotics that could be given through oral route (i.e.,
amoxicillin and penicillin). Antibiotic regimens and treatment
durations were extracted from the literature.28,29,50,51 The
study also included the effects of noncompliance, where
noncompliant individuals who received antibiotics from a
healthcare facility or self-medication faced a 2-fold higher risk
of adverse health outcomes.52

The proportion of child agents using antibiotics was derived
on a daily basis to estimate the magnitude of antibiotic utiliza-
tion in the bacteria submodel.When exposed to antibiotics, the
chance of bacterial survival depended on the antibiotic dose
and dosing frequency, pharmacokinetic characteristics, the
MIC values of bacteria, and fitness costs. In addition, themodel
assumed a 75% effective dose in the bacteria submodel when
bacteria encountered antibiotic exposure caused by non-
compliantpatients.Theproportionofantibiotic resistance in the
bacteriasubmodel subsequentlyaffected the ratesof treatment
failures observed among child agents receiving the third day of
first-line treatment in the human submodel.53

Child agents encountered first-line treatment failure if they
used an antibiotic and had a susceptibility value (between
0 and 1 fromauniformdistribution) lower than that of the same
antibiotic’s AMR pattern. Child agents with treatment failure
would then be switched to second-line therapy, and the
overall treatment duration was prolonged. Child agents with
illness either died or recovered from the disease episode
based on overall case fatality rates.39 Child agents who sur-
vived meningitis faced a chance of developing neurological
sequelae.50

Outcomes and uncertainty analyses. We estimated the
annual change in the AMR pattern, measuring the proportion
of bacterial strains for each antibiotic. We simulated the
number and percentage of treatment failures for pneumonia,
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meningitis, and acute otitis media for children under 5 in
Ethiopia.54Other predictedhealthoutcomes includedaverage
DDDs, cumulative incidence of disease episodes, and annual
numbers of death and disability due to pneumococcal disease
in Ethiopia. We also assessed the number of deaths due to
treatment failures. All outcomes are based on an average of
10,000 simulation runs in the model.
In addition to health effects, we also assessed the economic

impact using the cost-of-illness method taking a societal
perspective, where we estimated direct medical costs, direct
nonmedical costs, productivity losses for caregivers, and
productivity losses due to death/disability.55,56 Direct medical
costs combined costs of 1) registration/consultation, 2) lab-
oratory diagnosis, 3) medicines and supplies, 4) hospital bed,
and 5) traditional healer visits.46 Direct nonmedical costs in-
cluded costs of transportation and others such as food and
lodging. Unit costs for each health facility were obtained from
the literature.46 We also estimated the productivity losses for
caregivers and productivity losses due to death and disability

basedonEthiopia’sgrossdomestic productper capita usinga
human capital approach.57,58 A disability-adjusted life year
weight was applied to productivity losses for children living
with disability due to meningitis.59 All costs are expressed in
U.S. dollars (2018), and future costs such as productivity
losses due to premature death and disability were discounted
back to 2018 using a 3% discount rate.
We performed sensitivity analyses to capture uncertainties

resulting from 1) the stochastic nature of ABM, 2) model in-
puts, and 3) model assumptions. Some uncertainty is inher-
ent in the ABM, as the modeling approach uses random
processes to capture heterogeneities across individual agents
and environments. For instance, MIC values were randomly
assigned to bacterial agents, and bacterial agents stochasti-
cally encountered antibiotic exposure resulting in different
AMR patterns across simulations. This uncertainty from
ABM was minimized by running the base case simulation
10,000 times and taking an average across iterations (see
Supplemental Appendix). In addition, we conducted a

FIGURE 2. Conceptual framework of the human submodel to estimate the health and economic impact of antimicrobial resistance. This figure
appears in color at www.ajtmh.org.
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multivariate probabilistic sensitivity analysis (PSA) to in-
corporate the additional uncertainty due to model inputs. By
using Monte Carlo simulations, the PSA randomly drew pa-
rameter values from underlying distributions 10,000 times and
estimated variances.21 Parameters thatwere varied during the
PSA along with their underlying distributions and uncertainty
ranges are listed in Table 1. The 95% confidence intervals
were derived from taking the 2.5th and 97.5th percentiles of
PSA results. We observed that the variance largely came from
the stochastic nature of ABM rather than from key input pa-
rameters. Lastly, uncertainties from key model assumptions
were also examined. Specific sensitivity analyseswere carried
out to assess the effect of the number of child agents in the
model (i.e., simulating 2,500, 5,000, and 8,000 child agents)
and to examine the outcome without herd immunity (see
Supplemental Appendix). Estimated outcomes were compa-
rable between 5,000 and 8,000 child agents, confirming that
the model simulated adequate numbers of agents. Sensitivity
analyses were also conducted to examine the impact of the
multiplication approach, where one child agent represented
10 children. Similar results were obtained between simulating
800 child agents of 10 children compared with 8,000 child
agents of one child, showing that the underlying model was
robust.
Model validation.Weassessed themodel by examining its

face and empirical validities. Face validity ensured that the
model contained important elements, while empirical validity
examined whether generated data are in line with other
existing data. We validated the model at different levels, in-
cluding at the micro-level representing fundamental rules the
agents must follow, and at the macro-level reflecting the
outcomes produced by complex interactions between agents
and environments. Because this study included two sub-
models that had within- and between-model interactions, we
looked into the validity of each submodel and the composite
outcomes that resulted from their interactions. For face val-
idity, we consulted with several experts in microbiology and
pharmacokinetics to ensure that the bacteria submodel in-
cluded important components of AMR, such as antibiotic
selection pressure and fitness costs. For the human sub-
model, we included factors that impacted disease incidence
and treatment patterns, including direct and indirect effects of
immunization and care-seeking behaviors. The aggregate
results met face validity where the magnitude of emerging
resistance against different antibiotics was correlated with
antibiotic utilization, where antibiotics prescribed frequently
weremore likely to gain resistance, and those used less could
reverse the trend of accumulating resistance due to fitness
costs. For empirical validation, we compared our results with
several outcomes of interest, such as disease incidence and
burden of malaria. We calibrated the model so that the study
outputs aligned with available data from Ethiopia.

RESULTS

Over the 1-year simulation, the proportion of non-
susceptible S. pneumoniae increased by 2.14% (95% CI:
0.11–4.99%) and 0.47% (95% CI: −0.23–1.08%) for amoxi-
cillin and penicillin, respectively, and reduced by 0.30%
(95% CI: −1.22–0.67%) for less commonly used ceftriaxone
(Figure 3). Increase in resistance was greater among antibi-
otics prescribed frequently such as amoxicillin. For antibiotics

not commonlyprescribed for pneumococcal diseases suchas
ceftriaxone, our simulation showed that resistance in the
bacteria population could be reduced because of the effect of
fitness costs.
We observed a large disease burden from S. pneumoniae

infections amongchildrenunder age5 inEthiopia (Table2).We
estimated that pneumococcal infections were annually as-
sociated with 227,834 (95% CI: 215,319–240,656) cases of
pneumonia, 2,405 (95%CI: 1,118–3,725) cases of meningitis,
and 2,230,302 (95%CI: 2,191,006–2,269,795) cases of acute
otitis media. Pneumococcal infections in children under 5
were responsible for 26,979 (95% CI: 17,695–36,698) deaths
per year, with many individuals not seeking care. Meningitis
and acute otitis media were simulated to result in 1,310 (95%
CI: 373–2,235) disabilities annually. We projected that pedi-
atric pneumococcal infections resulted in 666,370 (95% CI:
636,459–696,435) first-line antibiotic treatments per year in
Ethiopia. On average, 1.43 (95%CI: 1.33–1.53) in every 1,000
children under 5 used antibiotics per day to treat pneumo-
coccal diseases.
Antimicrobial resistance resulted in an overall first-line

treatment failure rate of 29.38% (95% CI: 28.06–31.28%),
where patients needed to switch to second-line therapy,
endured a longer duration of illness, and incurred greater
costs. Antimicrobial resistance against antibiotics led to
195,763 (95% CI: 180,856–215,506) treatment failures an-
nually, where the majority of treatment failures in the model
came from AMR against amoxicillin and penicillin to treat
acute otitis media (183,604, 95% CI: 170,984–197,811).
Resistance-related treatment failures contributed to 519
(95% CI: 0–1,490) and 2,406 (95% CI: 745–4,843) deaths
through treatment at healthcare facilities and from self-
medication, respectively.
On average, costs for each successful first-line treatment

and treatment failure due to resistance were US$16.69 (95%CI:
US$12.05–$25.89) and US$35.39 (95% CI: US$25.90–$52.97),
respectively (Table 3). Annual overall costs related to AMR
were around 15.8 million, including US$3,267,389 (95% CI:
US$2,149,468–US$5,658,071) for ineffective first-line treat-
ments, US$3,661,208 (95% CI: US$2,547,098–$5,741,984)
for second-line treatments, and $8,872,107 (95% CI:
US$2,158,860–US$20,017,281) for long-term productivity los-
ses due to premature deaths and disabilities. Costs of ineffec-
tive first-line treatments included US$1,432,290 (95% CI:
US$478,281–US$3,609,864) in direct costs and US$1,835,099
(95% CI: $1,671,186–$2,048,206) in productivity losses for
the caregiver. Second-line treatments, which could have
been prevented by effective first-line treatments, added
US$1,391,019 (95% CI: US$416,648–US$3,275,032) in
direct costs and US$2,270,190 (95% CI: US$2,130,451–
US$2,466,952) in productivity losses to the caregiver.

DISCUSSION

This is the first study to estimate the health and economic
impact of AMR on treatment of pediatric pneumococcal in-
fections in Ethiopia by developing an agent-basedmodel. Our
simulation estimated that among all first-line antibiotics used
to treat pneumococcal disease, around 30% resulted in in-
effective treatments because of AMR, necessitating the need
to switch to second-line antibiotic therapy. Treatment failures
led to significant child deaths, higher costs due to prolonged
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TABLE 1
DREAMR model inputs

Parameter variable Unit Value

Standard
error or

uncertainty
range

Underlying
distribution Source

Demographics
Total population Thousands 99,873 – – UN DESA54

Population, age 0–4 years Thousands 14,901 – – UN DESA54

Population growth rate % 2.60 – – UN DESA54

Gross domestic product per capita USD 706.76 – – World Bank58

Life expectancy at birth Years 65.97 – – UNDESA54

Vaccine characteristics
Vaccine effectiveness % 60.20 – – Moore et al.38

Pneumococcal conjugate vaccine 13
coverage rate

% 68 – – WHO/UNICEF37

Pneumococcal disease incidence
Streptococcus pneumoniae
colonization prevalence

% 43.78 2.61 Beta Gabre et al.26

Pneumonia
Incidence Per 100,000 3,397 – – O’Brien et al.39

Case fatality rate % 11 7–18 Beta O’Brien et al.39

Meningitis
Incidence Per 100,000 38 – – O’Brien et al.39

Case fatality rate % 73 18–94 Beta O’Brien et al.39

Neurological sequelae % 32 3.80 Beta Arditi et al.50

Acute otitis media
Incidence Per 100 60.99 – – Monasta et al.40

AOM caused by S. pneumoniae % 40.00 – – Gebre et al.26

Clinical resolution rate, amoxicillin % 92.80 – – Le Saux et al.47

Clinical resolution rate, no treatment % 84.17 – – Le Saux et al.47

Probability of hearing loss Per 10,000 22.84 – – Monasta et al.40

Herd immunity (indirect effect)
Pneumonia (in months)

< 12 % 33 – – Blank et al.43

12–23 % 42 – – Blank et al.43

24–35 % 37 – – Blank et al.43

36–47 % 37 – – Blank et al.43

48–59 % 54 – – Blank et al.43

Meningitis (months)
< 12 % 48 – – Blank et al.43

12–23 % 56 – – Blank et al.43

24–35 % 43 – – Blank et al.43

36–47 % 43 – – Blank et al.43

48–59 % 41 – – Blank et al.43

Acute otitis media (months)
< 12 % 22 – – Blank et al.43

12–23 % 27 – – Blank et al.43

24–35 % 0 – – Blank et al.43

36–47 % 0 – – Blank et al.43

48–59 % 0 – – Blank et al.43

Care-seeking behaviors
Facility types

Health post % 12.17 1.76 Dirichlet Memirie et al.46

Health center % 53.33 2.69 Dirichlet Memirie et al.46

Government hospital % 24.06 2.30 Dirichlet Memirie et al.46

Private clinic/hospital % 10.43 1.65 Dirichlet Memirie et al.46

Hospitalization rate
Pneumonia
Health post % 0 0 Beta Memirie et al.46

Health center % 1.63 0.93 Beta Memirie et al.46

Government hospital % 31.33 5.09 Beta Memirie et al.46

Private clinic/hospital % 36.11 8.01 Beta Memirie et al.46

Meningitis % 100 – – Assumption
Acute otitis media % 0 – – Assumption

Sought care at formal healthcare
facilities

Pneumonia % 27.00 0.43 Beta EDHS44

Meningitis % 35.30 0.47 Beta EDHS44

Acute otitis media % 27.00 0.43 Beta EDHS44

Mortality rate of nonseeking vs.
seeking care

Odds ratio 7.56 3.77–15.10 Normal Reyes et al.45

(continued)
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TABLE 1
Continued

Parameter variable Unit Value

Standard
error or

uncertainty
range

Underlying
distribution Source

Proportion of self-medication % 30.93 2.34 Beta Gebeyehu et al.73

Noncompliance
Formal healthcare facility % 17.11 3.05 Beta Yadesa et al.74

Self-medication % 27.31 2.26 Beta Gebeyehu et al.73

Antibiotic’ effective dose % 75.00 – – Assumption
Risk of adverse health outcomes Fold 2 – – WHO52

Pneumonia
Inpatient Days 10 – – Harris et al.53

Outpatient Days 7 – – Assumption
Meningitis Days 15 – – Arditi et al.50

Acute otitis media Days 7 – – Klein et al.48

Follow-up since onset of therapy Days 3 – – Harris et al.53

Initial antibiotics resistance rate
Amoxicillin % 29.00 – – Anagaw et al.18

Penicillin % 31.30 – – Anagaw et al.18

Ceftriaxone % 9.80 – – Anagaw et al.18

Antibiotic utilization
Pneumonia

Amoxicillin % 20.80 3.63 Dirichlet Achalu et al.49

Penicillin % 25.60 3.90 Dirichlet Achalu et al.49

Ceftriaxone % 53.60 4.46 Dirichlet Achalu et al.49

Meningitis
Ceftriaxone % 100.00 – – Achalu et al.49

Acute otitis media
Amoxicillin % 57.14 18.70 Beta Achalu et al.49

Penicillin % 42.86 18.70 Beta Achalu et al.49

Costs
Direct medical costs

Outpatient % 78.95 – – Memirie et al.46

Inpatient % 79.52 – – Memirie et al.46

Mean medical expenditure
Outpatient
Health post USD 1.61 2.71 Gamma Memirie et al.46

Health center USD 4.06 5.91 Gamma Memirie et al.46

Government hospital USD 12.08 12.05 Gamma Memirie et al.46

Private clinic/hospital USD 28.12 8.85 Gamma Memirie et al.46

Inpatient
Health post USD – – – Memirie et al.46

Health center USD 12.13 8.80 Gamma Memirie et al.46

Government hospital USD 47.89 28.81 Gamma Memirie et al.46

Private clinic/hospital USD 139.66 71.97 Gamma Memirie et al.46

DALY weight for hearing loss DALYs 0.158 – – Salomon et al.59

Pharmacokinetics and
pharmacodynamics characteristics

Penicillin G
Dose IU/kg/day 50,000 – – AAP29

Dosing interval Hours 6 – – AAP29

mg to IU conversion IU/mg 1,670 – – Humphrey et al.22

Volume of distribution L/kg 1.39 – – Bolme et al.23

Clearance mL/min/kg 22.2 – – Bolme et al.23

Ceftriaxone
Dose mg/kg/day 50–100 – – Bradley et al.28

Dosing interval Hours 12 – – Bradley et al.28

Vd mL/kg 387 – – Steele et al.25

Elimination half-life (t1/2) Hours 5.4 – – Steele et al.25

Amoxicillin
Dose mg/kg/dose 30 – – Bradley et al.28

Dosing interval Hours 8 – – Bradley et al.28

Vd mL/kg 764 – – Schaad et al.24

Elimination half-life (t1/2) Hours 1.17 – – Schaad et al.24

Fitness cost (resistant vs. susceptible) Relative fitness 0.86 – – Maher et al.34

AAP = American Academy of Pediatrics; AOM = acute otitis media; DALY = disability-adjusted life year; EDHS = Ethiopia Demographic and Health Survey; IU = international units; UN DESA =
United Nations Department of Economic and Social Affairs; UNICEF =United Nations Children’s Fund; USD =United States dollars; Vd = volume of distribution;WHO=World Health Organization.
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treatment duration, greater loss in productivity, and societal
costs associatedwith increasing AMR. Treatment failures and
resulting impact can be averted by controlling the develop-
ment of AMR associated with antibiotics.
Our results demonstrate the substantial impact of AMR in

low-income countries such as Ethiopia, with a large infectious
disease burden and high rates of antibiotic utilization. Al-
though this study focused specifically on antibiotic utilization
for treatment of pediatric pneumococcal diseases over a year,
we still observed sizable treatment failures and avertable
costs to patients and healthcare systems. These results are
important because the impact of AMR is often not measured
and underappreciated in developing countries, although

antibiotics are commonly available without prescriptions, and
widespread antibiotic misuse is prevalent in these settings.
Our results revealed that resistance tended to increase for

amoxicillin and penicillin, whereas it tended to decrease for
ceftriaxone to treat pediatric pneumococcal infections in
Ethiopia over a year. Differences in these estimates can be
explained by two influential factors: the magnitude of antibi-
otic utilization and fitness costs. Whereas higher antibiotic
exposure increased AMR, fitness costs provided negative
feedback as resistant bacteria often have reduced fitness to
compete with susceptible strains.34 In most cases, the effects
of antibiotic exposure overrode the opposite influence of
bacteria fitness, resulting in an increase in resistance.60

FIGURE 3. Changes in proportions of antimicrobial resistance over time. This figure appears in color at www.ajtmh.org.

TABLE 2
Annual impact of antibiotic resistance on health outcomes due to pneumococcal infections in Ethiopia

Outcomes Value* 95% Probabilistic sensitivity analysis CI†

Incremental change in resistance
Amoxicillin, % 2.14 0.11 4.99
Penicillin, % 0.47 −0.23 1.08
Ceftriaxone, % −0.30 −1.22 0.67

Average defined daily dose, per 1,000
patient days

1.43 1.33 1.53

Disease cases
Pneumococcal pneumonia, n 227,834 215,319 240,656
Pneumococcal meningitis, n 2,405 1,118 3,725
Pneumococcal AOM, n 2,230,302 2,191,006 2,269,795

Adverse health outcomes
Overall death, n 26,979 17,695 36,698
Death during formal treatment, n 2,979 1,118 5,774
Death due to resistance in formal
treatment, n

519 0 1,490

Death due to resistance in
self-medication, n

2,406 745 4,843

Death due to not seeking care, n 21,075 15,832 24,591
Disability, n 1,310 373 2,235

Treatment behaviors
Overall treatments, n 666,370 636,459 696,435
Overall treatment failures , n 195,763 180,856 215,506

Treatment failures (pneumonia), n 11,931 9,872 16,950
Treatment failures (meningitis), n 228 0 745
Treatment failures (AOM) , n 183,604 170,984 197,811

Proportion of treatment failures, % 29.38 28.06 31.28
AOM = acute otitis media; CI = confidence interval.
* Point estimates were derived by taking average values across 10,000 base case simulations.
† The 2.5th and 97.5th percentiles across 10,000 probabilistic sensitivity analyses were used to derive 95% CIs.
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However, when antibiotics were less frequently used, the ef-
fect of fitness costs was observed where the proportion of
resistant strains reduced.60 By incorporating antibiotic expo-
sure and fitness costs of bacteria in the DREAMR model, we
demonstrated the dynamic relationship between antibiotic
use and AMR.
BecauseAMRgrowth is directly attributable to antibiotic use,

antibiotic stewardship to improve appropriate use of antibiotics
is essential. Antimicrobial stewardship can be defined as “a
coherent set of actions which promote using antimicrobials in
ways that ensure sustainable access to effective therapy for all
who need them.”61 On the supply side, this may entail making
antibiotics obtainable by prescription, making accurate di-
agnosis, following antimicrobial guidelines, monitoring antimi-
crobial use and resistance, and investing in a clinical decision
support system to improveprescribingand responsibleuse.On
the demand side, interventions may involve education and
community engagement programs to ensure that patients un-
derstand issues surrounding rational medication use, including
howandwhen to takeantimicrobials, andensuring thatpatients
do not store and use leftover antimicrobials. Improved antimi-
crobial stewardship involving both demand- and supply-side
initiatives are critical to mitigating the global impact of AMR.
Increased PCV immunization coverage could also reduce
pneumococcal disease incidence, thereby reducing antibiotic
utilization and curbing AMR. Future research should demon-
strate the impact of antibiotic stewardship and vaccination on
controlling the development of AMR.
Our findings are consistent with previous studies on the

impact of pneumococcal disease, antibiotic utilization, and

proportion of resistance. Global estimate of the burden of
S. pneumoniae in children under 5 has projected approxi-
mately 57,000 pneumococcal deaths in Ethiopia in 2000,
before the country introduced PCV.39 In our model, overall
deaths due to pneumococcal diseases reflect current vac-
cine coverage and vaccine efficacy, resulting in fewer
deaths. As for the rate of antibiotic utilization, previous
studies report average overall antibiotic use at around 10 to
35 DDDs across countries.13,62 We believe our lower anti-
biotic utilization rate is reasonable, given that our model
only focused on utilization of three antibiotics for pediatric
pneumococcal infections, and because Ethiopia has a rel-
atively low proportion of individuals seeking care. Although
data about antibiotic resistance in Africa are scarce due to
the lack of susceptibility testing and weak surveillance
systems, previous studies have reported the proportion of
nonsusceptible S. pneumoniae to be between 9% and
69%, which aligns with our analysis.13,63 Our results on the
positive correlation between antibiotic use and AMR are
consistent with previous findings in other countries.64,65

There are a number of potential limitations to our study.
First, our model relies on the quality of data reported in the
existing literature. Although we conducted an extensive liter-
ature search to incorporate the most recent and best quality
publisheddata, results of the study are subject to the quality of
data inputs. Data availability also limits the model’s ability to
capture heterogeneity across the population. For example,
data on antibiotic utilization for peoplewhodo not seek care at
formal health facilities were limited, including those who ob-
tain antibiotics from pharmacies or from other individuals.

TABLE 3
Annual impact of antibiotic resistance on costs of pneumococcal infections in Ethiopia

Outcomes Value* 95% Probabilistic sensitivity analysis CI†

Average costs per successful first-line treatment
Overall costs, USD 16.69 12.05 25.89
Direct medical costs, USD 5.78 2.13 13.03
Direct nonmedical costs, USD 1.54 0.56 3.46
Productivity losses for caregiver, USD 9.37 9.36 9.40

Averagecostsper treatment failuredue to resistance
Overall costs, USD 35.39 25.90 52.97
Direct medical costs, USD 11.39 3.91 25.23
Direct nonmedical costs, USD 3.03 1.03 6.72
Short-term productivity losses
(caregiver), USD

20.97 20.95 21.02

Long-term productivity losses
(death/disability), USD

45.32 11.94 92.89

Annual costs incurred by first-line treatments
due to resistance

Overall costs, USD 3,267,389 2,149,468 5,658,071
Direct medical costs, USD 1,131,602 378,609 2,851,699
Direct nonmedical costs, USD 300,688 99,672 758,165
Productivity losses for caregiver, USD 1,835,099 1,671,186 2,048,206

Annual costs incurred by second-line treatments
due to resistance

Overall costs, USD 3,661,208 2,547,098 5,741,984
Direct medical costs, USD 1,098,473 329,218 2,585,820
Direct nonmedical costs, USD 292,546 87,430 689,212
Short-term productivity losses
(caregiver), USD

2,270,190 2,130,451 2,466,952

Long-term productivity losses
(death/disability), USD

8,872,107 2,158,860 20,017,281

CI = confidence interval; USD = United States dollars.
* Point estimates were derived by taking average values across 10,000 base case simulations.
† The 2.5th and 97.5th percentiles across 10,000 probabilistic sensitivity analyses were used to derive 95% CIs.
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Real-world antibiotic utilization may also differ from recom-
mended treatment guidelines, and antibiotic prescription be-
haviors may change in accordance with resistance patterns.
While previous studies have suggested the examination of
S. pneumoniae serotypes, this study was not able to in-
corporate the impact of different serotypes, assuming no
difference in bacterial virulence and response to PCV13. This
limited our ability to examine howheterogeneous serotypes of
infected patients may affect vaccine effectiveness and dis-
ease severity. Further studies should be conducted to ex-
amine the heterogeneity of several crucial data, including
bacterial susceptibility, effect of serotypes, antibiotic quality,
antibiotic utilization, impact of vaccination, bacterial fitness,
and treatment costs, in order to provide a more comprehen-
sive insight on the impact.
Secondly, the bacteria submodel does not incorporate the

effects of genetic mutation and substandard and falsified
antibiotics. Although bacteria can develop resistance under
strong selection pressure due to antibiotic exposure, theymay
also become resistant as a result of genetic mutation under
subinhibitory concentrations or acquire resistant genes from
other strains.66–68 Mutation-related resistance may play an
important role among countries with high prevalence of sub-
standard and falsified medicines, where bacteria are more
likely to be exposed to subinhibitory antibiotic concentra-
tions.69 Future studies should examine these impacts.
Third, our model examined the AMR impact across three

antibiotics commonly used in Ethiopia to treat pediatric pneu-
mococcal disease. These results may not be easily generaliz-
able to other antibiotics and contexts. In addition, antibiotic
treatment might not be optimized, where the route of adminis-
tration and studies of combination therapies that can result in
more realistic exposures among patients were not available for
the study. Finally, ourmodel results focused solelyon theuseof
antibiotics for human health. Further studies should estimate
the impact of AMR from a broader scope under a One Health
approach, taking into account antibiotic use across animal and
environmental health sectors and additional stakeholders
influenced by the accumulation of AMR.70

The DREAMR model is the first to estimate the annual
impact of AMR in a low-income country by estimating the
impact of antibiotic resistance on treatment of pediatric
pneumococcal disease in Ethiopia. The results can inform
in-country stakeholders, international donors, and national
and regional child health experts to recognize the burden of
AMR and examine interventions to improve appropriate
antibiotic use. Reducing the impact of AMR is essential to
achieve the Sustainable Development Goals (SDGs)—to
achieve access to safe, effective, quality, and affordable
essential medicines for all.71 Maintaining the effectiveness
of current antibiotics is also vital to meet the Global Health
Security Agenda (GHSA) to help create a world safe and
secure from infectious disease threats.72
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